Color

Color
How to represent color images?
How display?

Normalized
RGB
Color Space

Contains all displayable colors
Where are the grays?
Hard to use to conceptualize colors
What are the physical correlates of color?

Monochromatic Light

Simple correlation between wavelength and color Blue - 360 nm

$$
\text { Red - } 780 \text { nm }
$$

Black ?

White?

Colors are cognitive concepts
By definition we must look at human perception to understand color Is there a unique perception for each unique spectral signal?

No
Metemers are different spectral signals that are perceived as being identical by humans

Generally a spectral signal containing a single large spike is perceived as having the hue associated with the wavelength of the spike

No.
Photons

Wavelength

Achromatic Light
Black and white, grey-scale
How select intensities
Use scale of 0 to 1 to represent black to white
If can only represent $(\mathrm{n}+1)$ intensities
e.g. 8 intensities (3 bits/pixel in frame buffer)

How select which 8 intensities?
a) regularly spaced from 0 to 1 ?

No - human brightness perception is on a log scale
The difference in perceived brightness of two patches:
0.8 versus $0.4=0.4$ versus 0.2
b) logarithmic spacing
let I_{0} be the lowest possible intensity
let r be the multiplicative factor for each intensity step
$\mathrm{I}_{1}=\mathrm{rI} 0, \mathrm{I}_{2}=\mathrm{rI} 1$, etc.
for $0<=j<2 \quad \mathrm{k}$, where $\mathrm{k}=$ number of bits/pixel
$\mathrm{m}=2^{\mathrm{k}}-1$
$\mathrm{I}_{\mathrm{j}}=\mathrm{r}^{\mathrm{j}} \mathrm{I}_{0}$
$r=(1 / \mathrm{I} 0)^{1 / m}$

Ratio between minimum and maximum intensity is the dynamic range

Problems with nonlinearities in CRT and in film overcome with gamma corrections in the LUT

How many intensities are enough?

What value of n ?

Depends on dynamic range of display device

Depends on dynamic range of eye

Depends on how small a step in intensity the eye can "see" if $\mathrm{r}=1.01$ or less, then at the eye's maximum sensitivity
$1 / \mathrm{I}_{0}$ is the dynamic range of a device

$$
\mathrm{n}=\log 1.01\left(1 / \mathrm{I}_{0}\right)
$$

e.g. CRT dynamic ranges of 50 to 200 gives values on n of 400-530
photographic slides - 1000
gives n of 700
B/W newsprint - 10
gives n of 234

Halftoning

Increase the dynamic range of a media, at the price of spatial resolution
Print dot for each pixel
size of dot is function of pixel's intensity
(see figure)

Approximate halftoning
Use a set of display pixels for each image pixel
E.g. get five levels from a binary display using this:

For an n by n group of display pixels, how many intensity levels are possible?

$$
\mathrm{n}^{2}+1
$$

Can extend to multilevel displays to increase their intensity resolution

Must have more output pixels than image pixels for this technique

Look-up Tables (LUT)

Achromatic perception is scene dependent

Experiments

Land set up scene with varying luminance, varying reflectances
Dark grey card in brightest spot Light grey card in darkest spot Medium grey card in middle illumination

Carefully set up so that brightness from each card the same
Question: How would observers perceive the reflectances?

Related experiment by Mach

white card folded and illuminated from the side
perceived as being white and folded if viewed binocularly
can make grey and white flat figure be perceived as white when viewed monocularly through a peephole

Related experiment

room illuminated by one visible dim light bulb viewed monocularly through a peephole
black circle illuminated by a bright hidden spotlight circle perceived as white

Chromatic Color

How get the same colors on different output devices?
Compare patches of color
For reflected light - compare using standard lighting Standards used:

Munsell color chips

Hue, value, saturation space
named colors are equal perceived distances apart

PANTONE MATCHING SYSTEM

How specify colors?
Tints, shades and tones

Human color perception
Human psychophysics
Sensitivity of cones
(see figure)
Not really R, G, B
Now say long, medium and short wavelength
Tristimulus color theory
colors perceived based on sensitivity of the three cone types
get different colors by adding together different amounts of the three primaries

Luminous sensitivity
(see figure)
basically sum of the three cone sensitivity functions
Color matching functions
How produce a given color by combining the three primaries
(see figure)
Note negative values of "red"
By adding RGB can't get all perceivable colors

Color Spaces

Colors can be represented using any three linearly independent primaries

Eg RGB, Hue Brightness and Saturation

How convert between spaces?
Matrix multiplication of the primaries (see table)
Can all spaces represent all colors?
No
For example, a color monitor cannot display all perceivable colors

Use chromaticity diagrams to understand this
P_{k} (lamda), $\mathrm{k}=1,2,3$, are the primary sources of light
$\mathrm{T}_{\mathrm{k}}(\mathrm{C})=\mathrm{b}_{\mathrm{k}} / \mathrm{w}_{\mathrm{k}}, \mathrm{C}$ is a color, w k is the amount of the kth primary needed to produce white light, b_{k} is the amount of the kth primary needed to produce color C
$\mathrm{T}_{\mathrm{k}}(\mathrm{C})$ are called the tristimulus values of the color C

$$
\mathrm{t}_{\mathrm{k}}=\left(\mathrm{T}_{\mathrm{k}}\right) /\left(\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}\right), \quad \mathrm{k}=1,2,3
$$

t_{k} are the chromaticities of a color $\mathrm{t}_{1}+\mathrm{t} 2+\mathrm{t} 3=1$, thus only need to use two use to take 3-D color space to a 2-D space

CIE Chromaticity Diagrams

CIE defined three primaries that could be added to get all colors (see figure)

X, Y, Z
Color matching with $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$
(see figure)
Y is defined to represent luminance
Get 3-D X, Y, Z Color space
(see figure)
2-D Chromiticity Diagrams
(see figure)
only valid for one luminance get different colors with different luminances
(e.g. brown only at low luminances)
"white" in center (approximates sunlight)
Hues around the perimeter of perceivable area
Line of purples - nonspectral colors
Dominant wavelength - line from white through color

Complementary colors

Along line on other side of white
Define dominant wavelength of nonspectral colors by the wavelength of it's complement

Color Gamuts

Mix two colors and get colors lying on line between them Mix three colors and get colors lying in triangle between them See that can't mix visible red, blue and green to get all colors When want to shade colored scenes
want to interpolate between two colors
result depends upon the color space being used

Use CIE Chromitity Diagrams to specify color ability of graphics devices

Perceptual Color Space

Uses dimensions which make sense to humans

Brightness
 Perceptual luminance

Hue
"redness", "greeness", etc.
For monochromatic light, corresponds to wavelength Dominant wavelength

Saturation

the aspect of perception that varies most strongly when white light is added to monochromatic light Excitation purity

