Curves

How to represent curved surfaces?
How to represent curves?
True representations
Nonparametric:
Explicit functions

$$
y=f(x)
$$

Implicit functions

$$
x^{2}+y^{2}-r^{2}=0
$$

Parametric:

$$
\mathrm{P}(\mathrm{u})=(\mathrm{x}(\mathrm{u}), \mathrm{y}(\mathrm{u}))
$$

Approximate representations
Short straight line segments
polyline

What representations should be used in graphics?
Say use DDA for circles
Problems:

Don't just represent end points thus complex display structures

> Also hard to transform
> don't just transform end points
> eg - circle to ellipse

Clipping
algorithms only work for points and straight lines
Not simple analytical expression
must consider which quadrant of circle being plotted (different expressions for different octants)

Better if use parametric representations
Allow multivalued functions

Must allow for easy interpolation

unknown curve

samples
want smooth interpolation

How to draw arbitrary curves?
i.e. CAD - design car body, (without polygons)
old technique - artist draw car and sculpted model draftsman copied curves onto a technical drawing
(used spline - stiff metal strip - bend around curve stays bent - move and copy to paper)

with CAD

how input curve?

1) digitize points on drawing and interpolate
2) design body using graphics system draw it using a bit pad
but if want to scale and rotate, then better to have representation that is not just a set of points
have designer specify curves in parametric form B-splines - polynomial of degree n

Designer specifies and manipulates the control points the system draws in the curve

B-Splines

> piecewise polynomial functions

control points: $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}$
set of data points on the curve:

$$
x_{1}, x_{2}, x_{3}, x_{4}
$$

want to interpolate the set of data points, $x_{i}, i=1$ to n
to get $x(s)$, the interpolated points, (s is the parameter)
assume $x(i)=x_{i}$
(s takes on integer vales at data points)

$$
\mathrm{x}(\mathrm{~s})=\begin{aligned}
& \mathrm{n}+1 \\
& \mathrm{i}=0
\end{aligned} \mathrm{v}_{\mathrm{i}} \mathrm{~B}_{\mathrm{i}}(\mathrm{~s})
$$

v_{i} are the coefficients representing the curve the vertices of the guiding polygon
B_{i} are the basis functions the blending functions

Linear

Quadratic

Cubic

B-Splines are variation diminishing they vary less than their guiding polygon

linear: $\mathrm{n}=1$

quadratic: $\mathrm{n}=2$
cubic: $\mathrm{n}=3$
n is the degree of the interpolating polynomial
Cubic give the most continuity:
position
slope
curvature
If spans of uniform size, then get uniform shape basis functions

Assume uniform spans
n data points
$(\mathrm{n}+2) \mathrm{v}_{\mathrm{i}} \mathrm{s}$
2 extra give the boundary conditions - what happens at the ends
if closed curve, then $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{n}}$ and $\mathrm{v}_{\mathrm{n}+1}=\mathrm{v}_{1}$

For cubic B-spline
only four nonzero basis function at each point on the curve

on ($\mathrm{i}, \mathrm{i}+1$)

$$
\mathrm{B}_{\mathrm{i}-1}(\mathrm{~s}) \quad \mathrm{B}_{\mathrm{i}}(\mathrm{~s}) \quad \mathrm{B}_{\mathrm{i}+1}(\mathrm{~s}) \quad \mathrm{B}_{\mathrm{i}+2}(\mathrm{~s})
$$

so for any point $\mathrm{x}(\mathrm{s})$,
find span
use four terms in summation

How Represent the Basis Functions?

Four Basis Functions / Span

Four parts / function

$$
x(s)=C_{i-1,3}(s) v_{i-1}+C_{i, 2}(s) v_{i}+C_{i+1,1}(s) v_{i+1}+C_{i+2}(s) v_{i+2}
$$

Note that $\mathrm{C}_{\mathrm{i}-1,3}=\mathrm{C}_{\mathrm{i}, 3}$ etc
So only define over 0 to 1

$$
\begin{array}{r}
C_{i, j}(s)=C_{j}(s-i) \quad i=0,1, \ldots n+1 \quad j=0,1,2,3 \\
x(s)=C_{3}(s-i) v_{i-1}+C_{2}(s-i) v_{i}+C_{1}(s-i) v_{i+1}+C_{0}(s-i) v_{i+2}
\end{array}
$$

What are the C's?
define over $\mathrm{t}=0$ to 1
For cubic B-spline

$\begin{array}{llll}\mathrm{C}_{0} & \mathrm{C}_{1} & \mathrm{C}_{2} & \mathrm{C}_{3}\end{array}$

$$
\begin{aligned}
& \mathrm{C}_{0}(\mathrm{t})=\mathrm{t}^{3} / 6 \\
& \mathrm{C}_{1}(\mathrm{t})=\left(-3 \mathrm{t}^{3}+3 \mathrm{t}^{2}+3 \mathrm{t}+1\right) / 6 \\
& \mathrm{C}_{2}(\mathrm{t})=\left(3 \mathrm{t}^{3}-6 \mathrm{t}^{2}+4\right) / 6 \\
& \mathrm{C}_{3}(\mathrm{t})=\left(-\mathrm{t}^{3}+3 \mathrm{t}^{2}-3 \mathrm{t}+1\right) / 6
\end{aligned}
$$

$\begin{array}{llll}\mathrm{C}_{0} & \mathrm{C}_{1} & \mathrm{C}_{2} & \mathrm{C}_{3}\end{array}$
$\mathrm{C}_{0} \quad 0$ to $1 / 6$
$\mathrm{C}_{1} \quad 1 / 6$ to $4 / 6$
$\mathrm{C}_{2} \quad 4 / 6$ to $1 / 6$
C3 $1 / 6$ to 0
In matrix form

$$
\left[\begin{array}{llll}
\mathrm{C}_{3} & \mathrm{C}_{2} & \mathrm{C}_{1} & \mathrm{C}_{0}
\end{array}\right]=1 / 6\left[\begin{array}{llll}
\mathrm{t}^{3} & \mathrm{t}^{2} & \mathrm{t} & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
1 & 4 & 1 & 0
\end{array}\right]
$$

If calculate $\mathrm{x}(\mathrm{t})$ over $\mathrm{t}=0,1$

$$
x_{i}(t)=\left[\begin{array}{llll}
C_{3} & C_{2} & C_{1} & C
\end{array}\right]\left[\begin{array}{l}
v_{i-1} \\
v_{i} \\
v_{i+1} \\
v_{i+2}
\end{array}\right]
$$

So, given the basis functions segment them to get the C_{j} have v_{i}
find $\mathrm{x}_{\mathrm{i}}(\mathrm{t})$

How to find just the data points?
just the x_{i} 's
$t=0$
What is $\left[\begin{array}{llll}\mathrm{C}_{3} & \mathrm{C}_{2} & \mathrm{C}_{1} & \mathrm{C}_{0}\end{array}\right]$?

$$
x_{i}=1 / 6\left[\begin{array}{llll}
1 & 4 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{i-1} \\
v_{i} \\
v_{i+1} \\
v_{i+2}
\end{array}\right]
$$

For closed curve with $\mathrm{V}_{0}=\mathrm{V}_{\mathrm{n}}$ and $\mathrm{V}_{\mathrm{n}+1}=\mathrm{V}_{1}$

$$
\left[\begin{array}{l}
\mathrm{x}_{0} \\
\mathrm{x}_{1} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{x}_{\mathrm{n}-1} \\
\mathrm{x}_{\mathrm{n}}
\end{array}\right]=1 / 6\left[\begin{array}{ccccccc}
4 & 1 & & & & & 1 \\
1 & 4 & 1 & & & & \\
& & & & & & \\
& & & & & & \\
& & & & & & \\
& & & & 1 & 4 & 1 \\
1 & & & & & 1 & 4
\end{array}\right]\left[\begin{array}{l}
\mathrm{v}_{0} \\
\mathrm{v}_{1} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{v}_{\mathrm{n}-1} \\
\mathrm{v}_{\mathrm{n}}
\end{array}\right]
$$

Now easy to see how to find x_{i} from v_{i} and v_{i} from x_{i}

How do you get a sharp corner in a B-spline?
If add additional identical data points?

B-splines have local control
move one control point and how much of the curve changes

with linear basis functions?
with quadratic? with cubic?

Bezier Splines

another common spline

global control
number of blending functions is a function of the number of data points

3 data points

4 data points

