Three Dimensional Representations

Quadric Surfaces

Superquadrics
Sweep Representations
Constructive Solid Geometry

Octrees

Quadric Surfaces

Second degree equations - quadratics
Sphere
nonparametric: $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=\mathrm{r}^{2}$
parametric: use latitude (§) and longitude (II)

$$
\begin{array}{ll}
x=r \cos \S \cos \llbracket & -1 / 2^{2} \S \S^{21} / 2 \\
y=r \cos \S \sin \llbracket & -1^{2} \mathbb{2}{ }^{21}
\end{array}
$$

$$
\begin{gathered}
\text { use } 0^{2}{ }^{2} u_{1} \mathrm{v}^{2} 1 \\
\S={ }^{\mathrm{u}} \mathrm{u} \\
\mathbb{T}=2^{1} \mathrm{v}
\end{gathered}
$$

Ellipsoid

nonparametric: $(\mathrm{x} / \mathrm{r} \mathrm{x})^{2}+(\mathrm{y} / \mathrm{r} \mathrm{y})^{2}+(\mathrm{z} / \mathrm{r} \mathrm{z})^{2}=1$

Torus
Rotate circle (or other conic) in yz plane about z axis Parametric:

$$
\begin{array}{ll}
\mathrm{x}=\mathrm{r}_{\mathrm{x}}(\mathrm{r}+\cos \S) \cos \llbracket & -12 \S^{21} \\
\mathrm{y}=\mathrm{r}_{\mathrm{y}}(\mathrm{r}+\cos \S) \sin \llbracket & -12 \prod^{21} \\
\mathrm{z}=\mathrm{r}_{\mathrm{z}} \sin \S &
\end{array}
$$

Superquadrics
Generalize quadrics by adding extra parameters
Number of extra parameters equals dimension of object one extra for curves
two extra for surfaces
Superellipse
parametric: $\quad \mathrm{x}=\mathrm{r}_{\mathrm{x}} \cos ^{\mathrm{S}} \mathrm{\Psi} \quad-12 \mathbb{I}^{21}$

$$
y=r y \sin ^{S} \mathbb{I}
$$

(see figure)
Superellipsoid
parametric: $\mathrm{x}=\mathrm{r} \mathrm{x}_{\mathrm{x}} \cos ^{\mathrm{s} 1} \S \cos ^{\mathrm{s} 2 \mathrm{q}} \quad-1 / 2^{2} \S^{21} / 2$

$$
y=r y \cos ^{s 1} \S \sin ^{52} \mathrm{I} \quad-12 \mathrm{I} \mathbb{2}^{21}
$$

$$
\mathrm{z}=\mathrm{r} \mathrm{z} \sin ^{\mathrm{s} 1} \S
$$

(see figure)

How to define shapes for manufacture?
Consider the process used to form the shape
Surfaces of revolution
wood turned on a lathe pot formed on potters wheel

Extrusion
spaghetti
plastic siding and gutters
Rolling, forming, molding
clay finger pots
pie crusts
Sawing, flat grinding
construction 2×4 's
Develop representation appropriate for the process
Examples:
sawing and flat grinding yields polygons
surface of revolution yields surfaces represented by sweep representations

Computer graphics systems for design should allow user to easily create appropriate surfaces

Sweep Representations

Define by: two-dimensional shape sweep that moves the shape through a region of space

Translational sweep

example:

Sweep an ellipse along a line

Rotational Sweep
example:
How get a torus?
Arbitrary Sweep
example:
Define cross section as a closed curve represented as a B-spline

Define path as a curve represented as a B-spline

Constructive Solid Geometry

Intersection, union and difference of specified volumes

Volumetric rather than surface representation

Form by union of a block lying flat and a block lying on edge
Subtract a cylinder from the union to get the hole

How get a quarter cylinder of height H from a rectangular block of height H and a cylinder of height J ?

How implement constructive solid geometry in computer graphics system?
If use boundary representation of objects use Ray-casting

Represent scene in world coordinates
Represent firing plane with $x-y$ plane
Fire rays from each pixel in firing plane
Note intersection of rays with surfaces of objects
Apply operations to intersections to get new boundaries

Operation
Union
Intersection
Difference obj2-obj1 obj1-obj2

Surface Limits
A, D
C, B
B, D
A, C

Easy to represent finished objects as a tree
large circles - objects small circles - operations

Octrees

Spatial occupancy array

2-D - quadtrees

Quadrant labels

Three types of nodes - white, black, grey
What color are leaf nodes?
What colors can root nodes be?

BSP Trees

Binary space partitioning
Instead of dividing space into 8 regions at each step divide into just two regions using a plane

What additional info must be stored? the definition of the partitioning plane

Can be much more efficient

What happens to the octree representation of an object
if the object is translated?
For a BSP tree?

For image $=2 \mathrm{n}_{\mathrm{x}} 2^{\mathrm{n}}$ pixels
What is the minimum height of it's quad-tree?

What is it's maximum height?

Are there always fewer nodes than pixels?

What would be a worst case image?
a checkerboard with square size of one pixel
What number of nodes in a worst case quadtree?

Octrees

Do same thing with voxels versus pixels

Max possible children / node?

