
walters@buffalo.edu CSE 480/580 Lecture 22 Slide 1

Adding Visual Realism

Road to Point Reyes (see figure)

Texture Mapping

Fractals

Particle Systems

Texture Mapping

Avoid boring, flat, smooth surfaces

Avoid actually modeling each surface detail

Have patch of texture defined - Brodatz textures

Map it all over the object

Two parts:

1) Texture mapping
eg image distortion

2) Texture filtering
eg antialiasing

Texture patch application:

1) Tiling
eg light and dark marble tiles
 repetitive pattern on bark

2) Nontiling
eg billboard, painting

walters@buffalo.edu CSE 480/580 Lecture 22 Slide 2

Texture Space:
(s, t) Array
Coordinates

Object Space:
(u,v) Surface
Parameters

Image Space:
(x,y) Pixel
Coordinates

Texture-Surface
Transformation

Viewing and Projection
 Transformation

Can do texture mapping in either direction:

1) texture scanning

texture space to object space to image space

2) pixel-order scanning

image space to object space to texture space

Texture to object space

parametric linear functions

u = a us + b ut + c u

v = a vs + b vt + c u

Object to image space

regular viewing and projection transformations concatenated

Problem with mapping texture space to image space

the texture patch often doesn't match up with the pixel boundaries

walters@buffalo.edu CSE 480/580 Lecture 22 Slide 3

Mapping from image space to texture space

Disadvantage:

Must compute inverse to the viewing and projection
transformations

Advantage:

Don't need to subdivide pixels

Can easily incorporate image processing - eg filtering

Example:

Map texture onto cylindrical surface defined by:

u = §; v = z

0 ² § ² ¹/2;0 ² z ² 1

In x,y,z:

x = r cos u; y = r sin u; z =v

Texture:

s

t

0.25

0.5

0.75

 1.0

0 0.25 0.5 0.75 1.0

x
y

z

r

§

walters@buffalo.edu CSE 480/580 Lecture 22 Slide 4

Map texture array to the surface

pattern origin to lower left corner

u = s¹/2; v = t

Select viewing position and apply inverse transformation

Map image coordinates to object space

u = tan -1(y/x); v = z;

Map object space to texture space

s = 2u/¹; t =v;

Antialiasing:

Why may need to do it?

Interference of sampling rate due to pixel spacing and
texture pattern

How do it?

One simple way: pyramid weighted filtering

Project larger pixel area from
image space

Use pyramid weighting

walters@buffalo.edu CSE 480/580 Lecture 22 Slide 5

Fractals

Man-made Objects

Flat surfaces

Smooth curved surfaces

Objects in Nature

Rough jagged edges

eg lightening bolt

nice to be able to specify just the ends points and
not each little jag

Get roughness and jagginess using fractals

Fractals are self-similar

Start with Artificial Fractals

Recursively defined curves

walters@buffalo.edu CSE 480/580 Lecture 22 Slide 6

Koch Curves - (1904 - Sweden - Helge von Koch)

Infinite length within a finite area

K0

K1

K2

Formation Process for K i from Ki-1

For each straight line at K i-1 (of length L)

Break line into thirds (of length L/3)

Replace middle third with two lines of length L/3

with 60 degree angle between first new line and
the original line, and second new line joining up
two unattached ends

Start with a triangle, get Koch Snowflake

walters@buffalo.edu CSE 480/580 Lecture 22 Slide 7

Consider the length of K 0 to be 1

Then |K 0| = ?

|K 1| = ?

|K i| = (4/3) i

As i goes to infinity, |K i| goes to infinity

But the whole thing is still within a finite area

Look at objects of this nature as having a dimension

greater than a line (1)

but less than a plane (2)

That is a fractional dimensional object

fractal

This new dimension is called the Hausdorff-Besikovich dimension, D

D = log (N) / log (1/S)

where N is the number of line segments going from one
stage to the next

and S is the length of each segment, relative to the length
of segments in the previous level

For Koch Curve:

N = 4; S = 1/3; D = log 4/ log 3 = 1.2619

walters@buffalo.edu CSE 480/580 Lecture 22 Slide 8

Other artificial fractals:

C-Curve

N = 2, S = 1/Ã2 D = log 2 / log Ã2 = 2

Dragon Curve

D3

D0 D1 D2

One elbow up,
the next down

N = ?; S = ?; D = ?

(see figure)

(see figure)

walters@buffalo.edu CSE 480/580 Lecture 22 Slide 9

Hilbert Curves

Space filling curves

As order goes to infinity,
 every point in the area is passed through

Four basic primitives:

A1 B1

C1 D1

Connected by extra lines as follows:

A2
B2

C2 D2

walters@buffalo.edu CSE 480/580 Lecture 22 Slide 10

Hilbert's Curve Rules:

Ai+1 = B i up Ai right A i down C i
Bi+1 = A i right Bi up B i left D i
Ci+1 = D i left Ci down Ci right Ai
Di+1 = C i down Di left Di up Bi

walters@buffalo.edu CSE 480/580 Lecture 22 Slide 11

Curve never crosses itself
Curve is arbitrarily close to any point in square
Length of curve is infinite

Li+1 versus L i?

walters@buffalo.edu CSE 480/580 Lecture 22 Slide 12

Strictly self-similar curves:

Koch

Peano, etc

Statistically self similar

Fern

Coastline

Mapmaker puts in bays, peninsulas, fiords

Accurate? No! eg Cape Cod

If look at coastline at different scales
get similar pattern of wiggles and bays

What is the length of the coastline?
I step it off
My cat steps it off
An ant steps it off

eg measure it with dividers set at different lengths
length depends on scale at which it is measured

Coastline fractal dimensions about 1.15 to 1.25

Other examples

clusters of stars

shapes of snowflakes

walters@buffalo.edu CSE 480/580 Lecture 22 Slide 13

How to program statistically self-similar fractals

Random Midpoint Displacement Algorithm

For each line segment in object,

Replace it by an "elbow" with random offset

a

b
c

m

t

L

Recursively apply such an algorithm

Line is ab
L is it's bisector
m is it's midpoint

choose t randomly

c = (m x - (by - ay) t, m y + (b x - ax) t)

For each segment choose a new random value of t

Use normal (Gaussian) distribution with mean of 0

Standard deviation of s

walters@buffalo.edu CSE 480/580 Lecture 22 Slide 14

At each recursive level can change s by multiplying it by a factor f

f = 1 gives Brownian motion

f < 1 gives "smooth" curve

f > 1 gives very rough surface

Could easily model a coastline using midpoint displacement

Similar algorithm for fractal surfaces

Use to build artificial landscapes, mountains, etc

A

B

C

a

b
c

c'

b'

a'

Represent surfaces by a triangular mesh
At each level of recursive algorithm

Find midpoint of each side of triangle (a,b and c)
Add random value to each midpoint (get a', b' and c')
Form four new triangles: Ca'c', Ba'c', Ab' c', a'b'c'

