Adding Visual Realism

Road to Point Reyes (see figure)

Texture Mapping
Fractals

Particle Systems

Texture Mapping

Avoid boring, flat, smooth surfaces
Avoid actually modeling each surface detail
Have patch of texture defined - Brodatz textures
Map it all over the object
Two parts:

1) Texture mapping eg image distortion
2) Texture filtering eg antialiasing

Texture patch application:

1) Tiling
eg light and dark marble tiles repetitive pattern on bark
2) Nontiling eg billboard, painting

Can do texture mapping in either direction:

1) texture scanning
texture space to object space to image space
2) pixel-order scanning
image space to object space to texture space
Texture to object space
parametric linear functions

$$
\begin{aligned}
& u=a_{u} \mathrm{~S}+\mathrm{b}_{\mathrm{u}}^{\mathrm{t}+\mathrm{c}} \mathrm{u} \\
& \mathrm{v}=\mathrm{a}_{\mathrm{v}} \mathrm{~S}+\mathrm{b}_{\mathrm{v}} \mathrm{t}+\mathrm{c} \mathrm{u}
\end{aligned}
$$

Object to image space
regular viewing and projection transformations concatenated
Problem with mapping texture space to image space the texture patch often doesn't match up with the pixel boundaries

Mapping from image space to texture space
Disadvantage:
Must compute inverse to the viewing and projection transformations

Advantage:
Don't need to subdivide pixels
Can easily incorporate image processing - eg filtering
Example:
Map texture onto cylindrical surface defined by:

$$
\begin{aligned}
& u=\S ; \\
& 0^{2} \S^{2} 1 / 2 \varrho^{2} Z^{2} 1
\end{aligned}
$$

In $\mathrm{x}, \mathrm{y}, \mathrm{z}$:

$$
x=r \cos u ; \quad y=r \sin u ; \quad z=v_{x}
$$

Texture: t
1.0
0.75
0.5
0.25

Map texture array to the surface
pattern origin to lower left corner

$$
\mathrm{u}=\mathrm{s}^{1} / 2 ; \quad \mathrm{v}=\mathrm{t}
$$

Select viewing position and apply inverse transformation
Map image coordinates to object space

$$
\mathrm{u}=\tan ^{-1}(\mathrm{y} / \mathrm{x}) ; \quad \mathrm{v}=\mathrm{z} ;
$$

Map object space to texture space

$$
\mathrm{s}=2 \mathrm{u} / 1
$$

Antialiasing:
Why may need to do it?
Interference of sampling rate due to pixel spacing and texture pattern

How do it?
One simple way: pyramid weighted filtering

Project larger pixel area from image space

Use pyramid weighting

Fractals

Man-made Objects
Flat surfaces
Smooth curved surfaces
Objects in Nature
Rough jagged edges
eg lightening bolt
nice to be able to specify just the ends points and not each little jag

Get roughness and jagginess using fractals
Fractals are self-similar

Start with Artificial Fractals
Recursively defined curves

Koch Curves - (1904-Sweden - Helge von Koch)

Infinite length within a finite area

Formation Process for K_{i} from $\mathrm{K}_{\mathrm{i}-1}$
For each straight line at $\mathrm{K}_{\mathrm{i}-1}$ (of length L)
Break line into thirds (of length $\mathrm{L} / 3$)
Replace middle third with two lines of length $\mathrm{L} / 3$
with 60 degree angle between first new line and the original line, and second new line joining up two unattached ends
Start with a triangle, get Koch Snowflake

Consider the length of K_{0} to be 1
Then $\left|\mathrm{K}_{0}\right|=$?

$$
\begin{aligned}
& \left|K_{1}\right|=? \\
& \left|K_{i}\right|=(4 / 3) \quad i
\end{aligned}
$$

As i goes to infinity, $\left|\mathrm{K}_{\mathrm{i}} \mathrm{i}\right|$ goes to infinity
But the whole thing is still within a finite area

Look at objects of this nature as having a dimension
greater than a line (1)
but less than a plane (2)
That is a fractional dimensional object
fractal
This new dimension is called the Hausdorff-Besikovich dimension, D
$\mathrm{D}=\log (\mathrm{N}) / \log (1 / \mathrm{S})$
where N is the number of line segments going from one stage to the next
and S is the length of each segment, relative to the length of segments in the previous level

For Koch Curve:

$$
\mathrm{N}=4 ; \quad \mathrm{S}=1 / 3 ; \quad \mathrm{D}=\log 4 / \log 3=1.2619
$$

Other artificial fractals:

C-Curve

$$
N=2, \quad S=1 / \tilde{A} 2
$$

$D=\log 2 / \log \tilde{A} 2=2$
(see figure)

Dragon Curve

D3

One elbow up, the next down
$\mathrm{N}=? ; \quad \mathrm{S}=? ; \quad \mathrm{D}=?$
(see figure)

Hilbert Curves

Space filling curves

As order goes to infinity, every point in the area is passed through

Four basic primitives:
A_{1}

Connected by extra lines as follows:

Hilbert's Curve Rules:
$\mathrm{A}_{\mathrm{i}+1}=\mathrm{B}_{\mathrm{i}}$ up A_{i} right A_{i} down C_{i}
$\mathrm{B}_{\mathrm{i}+1}=\mathrm{A}_{\mathrm{i}}$ right B_{i} up B_{i} left D_{i}
$\mathrm{C}_{\mathrm{i}+1}=\mathrm{D}_{\mathrm{i}}$ left C_{i} down C_{i} right A_{i}
$\mathrm{D}_{\mathrm{i}+1}=\mathrm{C} \mathrm{i}$ down D_{i} left D_{i} up B_{i}

Curve never crosses itself Curve is arbitrarily close to any point in square Length of curve is infinite

$$
\mathrm{L}_{\mathrm{i}+1} \quad \text { versus } \mathrm{L}_{\mathrm{i}} \text { ? }
$$

Strictly self-similar curves:
Koch
Peano, etc
Statistically self similar
Fern
Coastline
Mapmaker puts in bays, peninsulas, fiords
Accurate? No! eg Cape Cod
If look at coastline at different scales get similar pattern of wiggles and bays

What is the length of the coastline?
I step it off
My cat steps it off
An ant steps it off
eg measure it with dividers set at different lengths length depends on scale at which it is measured

Coastline fractal dimensions about 1.15 to 1.25
Other examples
clusters of stars
shapes of snowflakes

How to program statistically self-similar fractals
Random Midpoint Displacement Algorithm
For each line segment in object,
Replace it by an "elbow" with random offset

a
Line is ab
L is it's bisector
m is it's midpoint
choose t randomly

$$
c=\left(m_{x}-\left(b_{y}-a_{y}\right) t, m_{y}+\left(b_{x}-a_{x}\right) t\right)
$$

For each segment choose a new random value of t
Use normal (Gaussian) distribution with mean of 0

Standard deviation of s

Recursively apply such an algorithm

At each recursive level can change s by multiplying it by a factor f
$\mathrm{f}=1$ gives Brownian motion
f < 1 gives "smooth" curve
$\mathrm{f}>1$ gives very rough surface

Could easily model a coastline using midpoint displacement
Similar algorithm for fractal surfaces
Use to build artificial landscapes, mountains, etc

Represent surfaces by a triangular mesh
At each level of recursive algorithm
Find midpoint of each side of triangle (a, b and c)
Add random value to each midpoint (get $\mathrm{a}^{\prime}, \mathrm{b}^{\prime}$ and c^{\prime})
Form four new triangles: $\mathrm{Ca}^{\prime} \mathrm{c}^{\prime}, \quad \mathrm{Ba}^{\prime} \mathrm{c}^{\prime}, \mathrm{Ab}^{\prime} \mathrm{c}^{\prime}, \quad \mathrm{a}^{\prime} \mathrm{b}^{\prime} \mathrm{c}^{\prime}$

