Added Realism, Continued
Fractals, Continued
Fractal Trees (Peter Oppenheimer)

Parameters:

§ angle between main stem and the branches
M / L size ratio of branch to old stem
O / L size ratio of new stem to old stem
T rate at which stem tapers
H amount of helical twist in the branches
N number of branches per stem segment

If parameters don't change at each step

strictly self similar

eg. fern

If parameters change randomly
statistically self similar
eg. juniper - gnarled tree

Stem shape
we did lines
cylinders, spiral, helix, squiggle (see figure)

Rendering the fractal thick antialiased lines texture bump mapping texture mapping - bark bark by analytical means
sawtooth waves modulated by brownian fractal motion (see figure)

Particle Systems

Want to model clouds, smoke, fire, water, etc.
Problems:
not smooth well defined shapes
shape changes over time
Solution:
particle systems (see figures)

How particle systems differ from other representations

1) not set of primitive surface elements
but rather a cloud of primitive particles
2) not static
but dynamic - particles change form and move new particles born, old particles die
3) not deterministic
but stochastic shape appearance, etc.

Advantages:

1) particles are very simple-- i.e. point versus polygon therefore process more, faster therefore can easily motion blur
2) model definition is procedural therefore easy to program therefore can adjust level of detail easily
3) dynamic
therefore shape change is possible

To compute each frame of motion sequence

1) new particles generated
2) new particles assigned attributes
3) old particles past life-time killed
4) remaining particles transformed
5) image of living particles rendered

Very general since is procedural
eg step 4 could be solution to partial differential equations or statistical mechanics or set of rules

Examples for each step

1) a) keep mean number of particles and variance constant
b) number of particles is function of screen size
(don't compute more if too small to see)
2) attributes include: initial position, initial velocity, size, color, transparency, shape, lifetime
may specify overall shape and position of "cloud" of particles
(maybe just inside of sphere - start in middle and move out)
3) a) extinguish if past lifetime
b) extinguish if intensity is too low
c) extinguish if particles move outside of shape
4) particle dynamics
motion, color, size, transparency may change
5) a) render as points composed with rest of scene
b) render as point light sources
good for fire, explosions, bad for clouds

Prototypical example

Genesis scene in Start Trek - Wrath of Khan
Wall of fire
(see figure)
Two hierarchy particle system
Top level particles start on sphere
First at impact point
Then in expanding rings
time to generate is function of distance from center
Motion of particles
perpendicular to sphere's surface with an initial velocity gravity pulls particles back to surface
Average color and rate of color change inherited from parent particle but varies stochastically

Grass

static - show entire growth in one frame

> (see figure)

Graftals
similar to fractals
based on formal language techniques: L-systems
like fractals - "the closer you get - the more it looks the same"
but not strictly or statistically self-similar because can't compute D (fractal dimension)

L-systems

Lindenkayer systems

parallel rewriting grammars
apply productions in parallel
example:

Get data structure
How render?
0 and 1's as stems - antialiased lines
] and) as leafs - antialiased disks
Not a fractal
is a subfractal
problem is the 1 's in the trunk generation
Graftals
family of objects generated by parallel graph grammars
includes many fractals
example:
could have graphtal representation of Koch curve

