
walters@buffalo.edu CSE 480/580 Lecture 23 Slide 1

Added Realism, Continued

Fractals, Continued

Fractal Trees (Peter Oppenheimer)

tree :=
{

Draw Branch Segment
if (too small)

Draw Leaf
else
{

Continue to Branch
{

Transform Stem
"tree"

}
repeat N times
{

Transform Branch
"tree"

}
}

}

Parameters:
§ angle between main stem and the branches
M/L size ratio of branch to old stem
O/L size ratio of new stem to old stem
T rate at which stem tapers
H amount of helical twist in the branches
N number of branches per stem segment

walters@buffalo.edu CSE 480/580 Lecture 23 Slide 2

L

O

M
§

M/L = 0.4
O/L = 0.8
§ = ¹/4
N = 2

walters@buffalo.edu CSE 480/580 Lecture 23 Slide 3

walters@buffalo.edu CSE 480/580 Lecture 23 Slide 4

If parameters don't change at each step

strictly self similar

eg. fern

If parameters change randomly

statistically self similar

eg. juniper - gnarled tree

Stem shape

we did lines

cylinders, spiral, helix, squiggle
(see figure)

Rendering the fractal

thick antialiased lines

texture bump mapping

texture mapping - bark

bark by analytical means
sawtooth waves modulated by brownian fractal motion

(see figure)

walters@buffalo.edu CSE 480/580 Lecture 23 Slide 5

Particle Systems

Want to model clouds, smoke, fire, water, etc.

Problems:
not smooth well defined shapes
shape changes over time

Solution:
particle systems

(see figures)

How particle systems differ from other representations

1) not set of primitive surface elements
but rather a cloud of primitive particles

2) not static
but dynamic - particles change form and move

new particles born, old particles die

3) not deterministic
but stochastic shape appearance, etc.

Advantages:

1) particles are very simple-- i.e. point versus polygon
therefore process more, faster
therefore can easily motion blur

2) model definition is procedural
therefore easy to program
therefore can adjust level of detail easily

3) dynamic
therefore shape change is possible

walters@buffalo.edu CSE 480/580 Lecture 23 Slide 6

To compute each frame of motion sequence

1) new particles generated

2) new particles assigned attributes

3) old particles past life-time killed

4) remaining particles transformed

5) image of living particles rendered

Very general since is procedural

eg step 4 could be solution to partial differential equations
or statistical mechanics or set of rules

Examples for each step

1) a) keep mean number of particles and variance constant
 b) number of particles is function of screen size

(don't compute more if too small to see)
2) attributes include: initial position, initial velocity, size, color,

transparency, shape, lifetime
 may specify overall shape and position of "cloud" of particles

(maybe just inside of sphere - start in middle and move out)
3) a) extinguish if past lifetime
 b) extinguish if intensity is too low

 c) extinguish if particles move outside of shape
4) particle dynamics

motion, color, size, transparency may change
5) a) render as points composed with rest of scene

 b) render as point light sources
good for fire, explosions, bad for clouds

walters@buffalo.edu CSE 480/580 Lecture 23 Slide 7

Prototypical example

Genesis scene in Start Trek - Wrath of Khan
Wall of fire
(see figure)

Two hierarchy particle system
Top level particles start on sphere

First at impact point
Then in expanding rings

time to generate is function of distance from center
Motion of particles

perpendicular to sphere's surface with an initial velocity
gravity pulls particles back to surface

Average color and rate of color change inherited from parent
particle but varies stochastically

Grass

static - show entire growth in one frame

(see figure)

walters@buffalo.edu CSE 480/580 Lecture 23 Slide 8

Graftals

similar to fractals

based on formal language techniques: L-systems

like fractals - "the closer you get - the more it looks the same"

but not strictly or statistically self-similar because can't
compute D (fractal dimension)

L-systems

Lindenkayer systems

parallel rewriting grammars

apply productions in parallel

example:

alphabet { 0, 1, [,], (,)} left, right

axiom 0

production rules 0 to 1[0]1(0)0
1 to 11
[to [,] to]
(to (,) to)

so first level 0

second level 1[0]1(0)0

third level 11[1[0]1(0)0]11(1[0]1(0)0)1[0]1(0)0

walters@buffalo.edu CSE 480/580 Lecture 23 Slide 9

Get data structure

How render?

0 and 1's as stems - antialiased lines

] and) as leafs - antialiased disks

Not a fractal

is a subfractal

problem is the 1's in the trunk generation

Graftals

family of objects generated by parallel graph grammars

includes many fractals

example:

could have graphtal representation of Koch curve

