Computer Graphics Hardware

Output Devices
 Display
 Vector
 Raster
 Hardcopy
 Plotters
 Printers

Input Devices
Graphics Processors

Video Display Devices

Video Monitor

CRT (cathode ray tube) was most common
 Storage CRT versus Refresh CRT
 Draw once and image remains on screen
 Constant refreshing of screen
 Refresh rates - 30 Hz, interlaced

Basic CRT design
 (see figure)
 Vacuum in a glass tube
 Electron gun
 Cathode with coiled wire filament
 heat and it emits electrons
 very high voltages
 Deflection system
 Phosphor coated screen

 Focusing system

 Acceleration system
Focusing system
 electrons repel each other - diverge
 a) Magnetic
 coil around outside of tube
 very small spot size
 flying spot scanners
 b) Electrostatic
 most common in graphics monitors
 positively charged metal cylinder
 (electrostatic lens)
 focuses beam in middle of screen
 curved screen
 distance from "lens" to screen is constant
 flat screen
 distances increase from center
 additional electronic deflection dependent focusing
 (see figure)

Acceleration system
 Speed electron towards the screen
 a) Positively charged metal near screen
 b) Accelerating anode
 (see figure)

Deflection system
 Control where beam hits screen
 a) Magnetic deflection
 2 pairs of coils mounted outside envelope
 top and bottom
 right and left
 vary currents in coils to get correct deflection
 most common
 (see figure)
 b) Electrostatic deflection
 2 pairs of plates inside envelope
 vary charge
 (see figure)
Screen
coated with phosphors
electrons hit screen and loose energy
heat
most goes to electrons of phosphor
jumps them to higher energy states
when fall back to lower states - give off energy as light

Phosphor characteristics
color of light - wavelength of energy
persistence
time taken to go from initial light level to 1/10th
long persistence
refresh less frequently
what happens to image of moving objects?
short persistence
refresh more frequently
less motion blur
typical 10 - 60 microseconds

Intensity
Control grid of electron gun
the more negatively charged, more electrons get repelled
the fewer make it through the control grid

Intensity distribution of spot on screen

Gaussian fall off of intensity with distance
Function of the electron density in the beam
Resolution

Maximum number of dots that can be displayed without overlap on CRT
(1K by 1K)
independent of screen size

OR

Maximum number of dots that can be displayed per inch or cm
(300 dpi)

How define overlap?
okay to overlap portions falling below 60% of maximum

What happens to overlap as increase intensity?

Aspect ratio
ratio of number of vertical points to horizontal points to produce equal length lines
3/4

Raster Scan versus Random Scan
(see figures)
Random scan
refresh is a function of the image complexity
Raster scan
horizontal retrace and vertical retrace
interlaced versus noninterlaced
Refresh rate

60 hz is typical
how often refresh each "dot" on screen?
 once every 16667 microseconds
compare to persistence (10-60 microseconds)
"dot" is mostly dark!

flicker
when image appears to go on and off
refresh rate not high enough

CFF - critical fusion frequency
freq at which flickering display just fuses into nonflickering
what determines CFF?
 for given phosphor?

Horizontal scan rate
scan lines displayed per second
approximately refresh rate times number of lines

Color CRTs

Beam penetration
Random scan
two layers of phosphor
 slow beam - outer layer (say red)
 faster beam - inner layer (say green)

Shadow mask
more colors
better quality
small patches of red, green and blue phosphors
 perceive as one colored patch

3 electron guns
a) delta-delta
 triad of patches
 (see figure)
 shadow mask
difficult to keep aligned
 high resolution
b) precision in-line
easier to align, lower resolution
Flat-Panel Displays
 Thinner, lighter, require less power
 Examples?

Emissive versus nonemissive
 Can you see it in the dark?
 Could be lighted nonemissive

Emissive
 Plasma panels
 mixture of gases between two glass plates
 vertical and horizontal conducting ribbons
 apply voltage to two ribbons to make plasma glow
 (see figure)
 Thin-film electroluminescent displays
 similar, but phosphor instead of gas
 (see figure)
 LED's
 matrix of diodes, one per pixel
 apply voltage and they produce light

Nonemissive
 LCD
 LC substance flow like a liquid, but have crystalline
 molecular structure
 Usually use nematic LC's (threadlike)
 Two polarizers, two conductors, reflector
 LC in normal state twists the light,
 so is reflected back to viewer
 apply voltage to conductors to turn off
 (see figure)
 Active Matrix LCD - transistor at each pixel (stores)
Projection CRT
 project light from small diameter, very bright CRT onto screen
 (example?)

LCD Projection
 flat panel display used with overhead projector
 (see figure)

3D Viewing

Stereoscopic viewing
 Stereo images (not full 3-d)

 a) Red and green glasses
 red and green images

 b) Scan alternate images in alternate frames
 View with goggles that shutter each lens in synch with scanning
 (see figures)

 c) Multiple stereo images versus just two
 Time Multiplexing
 As rotate head, see different views
 Compare to 2 view perception as move head
Hard Copy Output Devices
 Plotters
 Printers

Impact Devices
 Inked ribbon
 examples?

Nonimpact Devices
 Lasers, ink-jets, xerographic, electrostatic, electrothermal
 examples?

Pen plotters
 Stationary paper and 2-D moving pen
 (see example)
 Paper moves in 1-D and pen in 1-D
 (see example)
Resolution issues
 Random Scan or Raster Scan?
 How draw line?
 What determines resolution along length of line?
 What determines resolution across width of line?

Dot Matrix Printers
 Print head with matrix of wire pins
 Retract some pins before printing to print specified pattern

Laser Printers
 Drum coated with photoelectric material (e.g., selenium)
 Laser beam creates charge distribution on drum
 Toner applied to drum and sticks according to charge
 Toner transferred to paper
Ink-Jet Printers
 Paper rolled on drum
 Boiled ink squirted onto paper through little nozzles (jets)
 Charged ink stream deflected by electric field
 (see figures)

Electrostatic Printers
 Negatively charge a row at a time on paper
 Apply toner
 (see figure)

Electrothermal Printer
 Heat sensitive paper
 Dot matrix print head applies heat
 (example?)

Dye Sublimation

How get color output?

Impact device?

Non impact device?
 3 pigments: cyan, magenta, yellow (sometimes black)

Will you get the same colors on a laser printer, as on a CRT?

Non Hard Copy, Non Display Output Devices

Print 3-D solid objects
 Ink jet like head
 Squirts fast drying thermopolymer material
 Builds up 3-D models in layers
Input Devices

Keyboards

- Standard Keyboard
- Button Boxes
 (see example)

Mouse

- Mechanical mouse
 - Rotating ball
 - Two perpendicular padded shafts rotated by ball motion
 - Shaft encoders output proportional to rotation
- Optical mouse
 - Laser
 - Reflective Grid
 - Added buttons, trackball, thumbwheels

Trackball

- Like upside down mouse with big ball
- Fingers or hand move ball

Joystick

- Movable
 - Measure motion
- Stationary
 - Measure strain

Data Glove

- Measures hand position and uses as input
- Many degrees of freedom

(aside - data glove as output device
 - Haptic computer interface
 - Texture and pressure sensation via forces applied
 to finger tip
 (see example))
Motion Capturing Systems

Selspots
 Attached to body in motion
 Capture 3-D paths of points
 (see example)
 Occlusion of visual "spots"

Full Body Scanners
 How does it work?
 (see example)
 Captures shape and color in 12 seconds

Uses?

Digitizers

Graphics Tablets
 (see example)
 High resolution input
 Trace contours
 Hand held cursor
 Stylus
 (see example)
Electromagnetic
 Grid of wires
 Electromagnetic pulses generated in sequence
 Induces electrical signal in stylus or cursor
Acoustic
 Strip microphones
 Detect sound of spark on stylus tip
 Time arrival at different microphones
Can be 3-D
 (see example)
Image Scanners

Hand Held
(see example)
Flat Bed
(see example)
Drum
(see example)

Touch Panels

Optical
Line LED's along top and side
Line of light detectors along bottom and other side

Electrical
One plate of conducting material
One plate of resistive material
Touch pushes plates together
Measure voltage drop across resistive plate

Acoustical

Built into plasma panels

Transparent overlay on other displays