2D Primitives I

Scan Conversion of Filled Primitives Rectangles Polygons

Clipping

In graphics must approximate the ideal mathematical continuous primitive with a discrete version

Many concepts are easy in continuous space Difficult in discrete space

Example: Lines

Line Drawing Algorithms
Lines used a lot - want to get them right
Criteria for Line Drawing Algorithms:

1) Lines should appear straight - no jaggies

Discretization problem
Horizontal, vertical and diagonals easy
Others difficult
\qquad

2) Lines should terminate accurately

Discretization
Cumulative round-off: e.g. octagon

3) Lines should have constant density dots/line length equal spacing of dots

4) Line density should be independent of line length or angle

5) Lines should be drawn rapidly Efficient algorithms

Mathematical Preliminaries
How to represent a line with an equation?
Nonparametric:
Explicit

$$
y=f(x)
$$

example?
Implicit

$$
\begin{aligned}
& f(x, y)=0 \\
& f(x, y)=a x+b y+c=0
\end{aligned}
$$

Parametric:

$$
\begin{aligned}
& x=f(t) \\
& y=g(t)
\end{aligned}
$$

Scan Converting Lines

Drawing lines by identifying each point
Rastor (discrete) Space

Line Algorithm:
Line from ($\mathrm{x} 1, \mathrm{y} 1$) to $(\mathrm{x} 2, \mathrm{y} 2)$

$$
\mathrm{dx}=\mathrm{x} 2-\mathrm{x} 1
$$

$d y=y 2-y 1$
$\mathrm{m}=\mathrm{dy} / \mathrm{dx}$
$\mathrm{y}=\mathrm{y} 1$
for $\mathrm{x}=\mathrm{x} 1$ to x 2
\{DrawPixel(x,Round(y)
$y=y+m\}$

Different possibilities:
Pixels lie at intersections
Pixels lie in centers

Different locations for origin
Different size or shape pixels square in Timex/Sinclare ~round on CRT overlap versus none

Horizontal, vertical, diagonal
Oblique

Problems: slow
floating point math
almost vertical lines get dotty
How solve last one?
axis of greatest motion

DDA Algorithm: (Digital Differential Analyzer)

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{n}+1}=\mathrm{x}_{\mathrm{n}}+\varepsilon \Delta \mathrm{x} \\
& \mathrm{y}_{\mathrm{n}+1}=\mathrm{y}_{\mathrm{n}}+\mathcal{\mathrm { y }} \mathrm{y}
\end{aligned}
$$

update x and y by their differentials (epsilon is some small positive constant)

Problems:
still slow
still floating point math
Advantages:
mathematically well defined no spotty lines

Bresenhams Algorithm:
one of the best for lines (doesn't generalize)
only integer math
simple but weird algorithm
based on the error keeps track of how far a pixel is from the "true line" and corrects when it gets too far

Ideal Continuous Line: $\left(\mathrm{x}_{\mathrm{a}}, \mathrm{y}_{\mathrm{a}}\right)$ to $\left(\mathrm{x}_{\mathrm{b}}, \mathrm{yb}_{\mathrm{b}}\right)$

$$
\begin{aligned}
\mathrm{y}= & \mathrm{m}\left(\mathrm{x}-\mathrm{x}_{\mathrm{a}}\right)+\mathrm{ya}_{\mathrm{a}} \\
& \text { where } \mathrm{m} \text { is the slope }
\end{aligned}
$$

Assume:

$\mathrm{X}_{\mathrm{a}}<\mathrm{X}_{\mathrm{b}}$
$0<\mathrm{m}<1$
what set of possible lines?

how many sets of possible lines?

For this set, which will be axis of greatest movement? true point is at y choose $\mathrm{y}_{\mathrm{i}-1}$ or $\mathrm{y}_{\mathrm{i}}-1+1$?
look at difference (error) is d1 or d2 smaller? choose point with smallest difference

Look at (d1-d2)

> if >0, choose $y_{i-1}+1$
> if <0, choose y_{i-1}
$d 1-d 2=\left(y-y_{i-1}\right)-\left(y_{i}-1+1-y\right)$
$=2 \mathrm{y}-2\left(\mathrm{y}_{\mathrm{i}-1}\right)-1$
$=2 \mathrm{~m}\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{a}}\right)+2\left(\mathrm{y}_{\mathrm{a}}-\mathrm{y}_{\mathrm{i}-1}\right)-1$
(regroup)
(substitute in for y)
(multiply by Δx)
$e_{i}=\Delta x(d 1-d 2)=2 \Delta y\left(x_{i}-x_{a}\right)+2 \Delta x\left(y_{a}-y_{i-1}\right) \Delta x$ This will be the decision variable

Calculate e_{i} incrementally:

$$
\begin{array}{r}
\mathrm{e}_{\mathrm{i}+1}=\mathrm{e}_{\mathrm{i}}+2 \Delta \mathrm{y}\left(\mathrm{x}_{\mathrm{i}+1}-\mathrm{x}_{\mathrm{i}}\right)-2 \Delta \Delta_{\mathrm{x}}\left(\mathrm{y}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}-1}\right) \\
=1
\end{array}
$$

if y was incremented:

$$
\mathrm{e}_{\mathrm{i}+1}=\mathrm{e}_{\mathrm{i}}+2(\Delta \mathrm{y}-\Delta \mathrm{x})
$$

otherwise:

$$
\mathrm{e}_{\mathrm{i}+1}=\mathrm{e}_{\mathrm{i}}+2 \Delta \mathrm{y}
$$

Now very simple to compute!

Bresenham's Initial Conditions

$$
\begin{aligned}
\mathrm{i} & =0 \\
\mathrm{x}_{0} & =? \quad \mathrm{y}_{0}=? \\
\mathrm{e}_{\mathrm{i}} & =\Delta \mathrm{x}(\mathrm{~d} 1-\mathrm{d} 2) \\
\mathrm{e}_{1} & =\Delta \mathrm{x}\left[\left(\mathrm{y}-\mathrm{y}_{\mathrm{a}}\right)-\left(\left(\mathrm{ya}_{\mathrm{a}}+1\right)-\mathrm{y}\right)\right] \\
& =?
\end{aligned}
$$

Bresenham's Algorithm:

$$
\begin{aligned}
& \mathrm{x}=\mathrm{X} \mathrm{a} \\
& y=y a \\
& d x=x_{b}-x_{a} \\
& d y=y b-y a \\
& \text { err }=2 d y-d x \\
& \text { for } i=1 \text { to } d x \\
& \text { drawpixel (x,y) } \\
& \text { if err > } 0 \\
& \text { \{ } \\
& y=y+1 \\
& \text { err }=\mathrm{err}+2 \mathrm{dy}-2 \mathrm{dx} \\
& \text { \} } \\
& \text { else } \\
& \text { err }=\mathrm{err}+2 \mathrm{dy} \\
& \mathrm{x}=\mathrm{x}+1 \\
& \text { Why efficient? } \\
& \text { How Generalize to other sets of lines? } \\
& \text { was } \mathrm{x}_{\mathrm{a}}<\mathrm{x}_{\mathrm{b}} \text { and } \mathrm{o}<\mathrm{m}<1 \\
& \mathrm{x}_{\mathrm{a}}>\mathrm{Xb}_{\mathrm{b}} \text { ? } \\
& \text { m > } 1 \text { ? } \\
& 0>m>-1 \text { ? } \\
& (d y=-d y \text { and dec } y) \\
& \mathrm{m}=1 \text { or } \mathrm{m}=0 \text { ? }
\end{aligned}
$$

Midpoint Line Algorithm
Bresenham's cannot generalize to arbitrary conics
Thus use Midpoint Line Algorithm
For lines and circles, end up with identical algorithm

Bresenhams: look at sign of scaled difference in errors
Midpoint: look at which side of line midpoint falls on (see derivation in the text)

It has been proven that Bresenhams gives an optimal fit for lines
It has been proven that Midpoint is equivalent to Bresenhams for line

Scan Converting Circles

Circle equation: $x^{2}+y^{2}=R^{2}$

1) So try plotting

$$
\begin{aligned}
& y=+/-\operatorname{SQRT}\left(\mathrm{R}^{2}-\mathrm{x}^{2}\right) \\
& (\text { see example })
\end{aligned}
$$

Problem: gets spotty in places
Why?
(axis of greatest motion)
2) Try polar coordinates

$$
\begin{aligned}
& x=R \cos (\theta) \\
& y=R \sin (\theta)
\end{aligned}
$$

Problem: very slow Why?

So we need a better technique - like for lines
8 - Way Symmetry
assume circle is centered at origin

How much of circle do we have to compute?
(how many axes of symmetry)
If compute (x, y) for a point in the second octant drawpixel(x,y) drawpixel(-x,y) drawpixel $(-y, x) \quad$ drawpixel $(-y,-x)$ drawpixel(-x,-y) drawpixel(x,-y) drawpixel($\mathrm{y},-\mathrm{x}$) drawpixel (y, x)
What if circle centered about pixel other than origin?
What if circle not centered about a pixel?

Mitchner's Circle Algorithm:
Based on Breshenham's ideas
Derive it for the second octant
$x^{2}+y^{2}=R^{2}$
start from $x=0$, and go to $x=y$

Since our points $\mathrm{P}_{\mathrm{i}-1}=\left(\mathrm{x}_{\mathrm{i}-1}, \mathrm{y}_{\mathrm{i}-1}\right)$ will be integers, there will be errors
$e\left(P_{i-1}\right)=\left(x_{i-1}^{2}+y_{i-1}^{2}\right)-R^{2}$
what sign is $e\left(P_{i-1}\right)$ when (x, y) inside circle? outside circle?

Only two possible next points in this octant S_{i} and T_{i}
choose one with smallest error
Create error difference

$$
\mathrm{d}_{\mathrm{i}}=\mathrm{e}\left(\mathrm{~S}_{\mathrm{i}}\right)+\mathrm{e}\left(\mathrm{~T}_{\mathrm{i}}\right)
$$

So if $\mathrm{d}_{\mathrm{i}}<0, \quad$ choose S_{i} else, choose T_{i}
Only five possible cases: show it works in each for c : S is outside, T is inside
errors will have opposite signs, S 's positive
if $d<0$, T's is larger, choose S
for a and b : S is on or inside circle, T inside
T's is negative, S^{\prime} s is negative or 0
d < 0, choose S
for d and $\mathrm{e}: \mathrm{T}$ is on or outside; S is outside
S's error positive, T's is positive $\mathrm{d}>0$, choose T

Incremental version of decision variable:

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{i}+1}=\mathrm{d}_{\mathrm{i}}+4 \mathrm{x}_{\mathrm{i}-1}+6+2\left(\mathrm{y}_{\mathrm{i}}^{2}-\mathrm{y}_{\mathrm{i}-1}{ }^{2}\right)-2\left(\mathrm{y}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}-1}\right) \\
& \text { (should be able to derive this) }
\end{aligned}
$$

if $\mathrm{d}_{\mathrm{i}}<0$, then y didn't change

$$
d_{i+1}=d_{i}+4 x_{i-1}+6
$$

else, y changed by -1

$$
\begin{aligned}
\mathrm{d}_{\mathrm{i}+1} & =\mathrm{d}_{\mathrm{i}}+4\left(\mathrm{x}_{\mathrm{i}-1}\right)+6-2\left(2 \mathrm{y}_{\mathrm{i}-1}-2\right)-2 \\
& =\mathrm{d}_{\mathrm{i}}+4\left(\mathrm{x}_{\mathrm{i}-1}-\mathrm{y}_{\mathrm{i}-1}\right)+10
\end{aligned}
$$

Initial Conditions:

$$
\begin{aligned}
\mathrm{x}_{0}= & =0, \quad \mathrm{y}_{0}=? \\
\mathrm{~S}_{1} & =(1, \mathrm{R}) \quad \mathrm{T}_{1}=(1, \mathrm{R}-1) \\
\mathrm{d}_{1}= & \left(\mathrm{x}_{\mathrm{s}}^{2}+\mathrm{ys}_{\mathrm{s}}^{2}\right)-\mathrm{R}^{2}+\left(\mathrm{xt}^{2}+\mathrm{yt}^{2}-\mathrm{R}^{2}\right) \\
& =1+\mathrm{R}^{2}-\mathrm{R}^{2}+\left(1+\mathrm{R}^{2}-2 \mathrm{R}+1-\mathrm{R}^{2}\right) \\
& =3-2 \mathrm{R}
\end{aligned}
$$

Michner's Circle Algorithm:

$$
x=0
$$

$$
y=R
$$

$$
\mathrm{d}=3-2 \mathrm{R}
$$

$$
\text { while } \mathrm{x}<=\mathrm{y}
$$

\{

DrawPixel(x,y)
if $\mathrm{d}<0$

$$
d=d+4 x+6
$$

else

$$
\begin{gathered}
\{ \\
\\
\\
d=d+4(x-y)+10 \\
x= \\
\} \\
\}
\end{gathered}
$$

Midpoint Circle Algorithm

Do analysis based on whether midpoint is inside or outside of circle

See derivations in text for: midpoint circle algorithm integer midpoint circle algorithm integer second-order difference midpoint circle algorithm

Midpoint Circle Algorithm

```
\(\mathrm{x}=0\)
\(y=R\)
\(\mathrm{d}=1-\mathrm{R}\)
\(\mathrm{dE}=3\)
dSE \(=5-2 R\)
DrawPixel(x,y)
while ( \(\mathrm{y}>\mathrm{x}\) ) \{
if \(d<0\{\)
\[
\mathrm{d}=\mathrm{d}+\mathrm{dE}
\]
\[
\mathrm{dE}=\mathrm{dE}+2
\]
\[
\mathrm{dSE}=\mathrm{dSE}+2
\]
\[
x=x+1
\]
\}else \(\{\)
\[
\mathrm{d}=\mathrm{d}+\mathrm{dSE}
\]
\[
\mathrm{dE}=\mathrm{dE}+2
\]
\[
\mathrm{dSE}=\mathrm{dSE}+4
\]
\[
x=x+1
\]
\[
y=y-1
\]
DrawPixel(x,y)
What is initial sign of d ?
How can d ever go from positive to negative?```

