
2D Primitives I

Point-plotting (Scan Conversion)
Lines
Circles
Ellipses

Scan Conversion of Filled Primitives
Rectangles
Polygons

Clipping

In graphics must approximate the ideal mathematical continuous
primitive with a discrete version

Many concepts are easy in continuous space -
Difficult in discrete space

Example: Lines

 Walters@buffalo.edu CSE 480/580 Lecture 7 Slide 1

Line Drawing Algorithms

Lines used a lot - want to get them right

Criteria for Line Drawing Algorithms:

1) Lines should appear straight - no jaggies
Discretization problem
Horizontal, vertical and diagonals easy
Others difficult

2) Lines should terminate accurately
Discretization
Cumulative round-off: e.g. octagon

3) Lines should have constant density
dots/line length
equal spacing of dots

 Walters@buffalo.edu CSE 480/580 Lecture 7 Slide 2

4) Line density should be independent of line length or angle

5) Lines should be drawn rapidly
Efficient algorithms

Mathematical Preliminaries

How to represent a line with an equation?

Nonparametric:

Explicit

y = f(x)

example?

Implicit

f(x,y) = 0

f(x,y) = ax + by + c = 0

Parametric:

x = f(t)
y = g(t)

 Walters@buffalo.edu CSE 480/580 Lecture 7 Slide 3

t=0

t=1

Scan Converting Lines

Drawing lines by identifying each point

Rastor (discrete) Space

Different possibilities:
Pixels lie at intersections
Pixels lie in centers

Different locations for origin

Different size or shape pixels
square in Timex/Sinclare
~round on CRT
overlap versus none

1 2 3 4 5 6 7 8

8
7
6
5
4
3
2
1

Horizontal, vertical, diagonal

Oblique

Line Algorithm:

Line from (x1, y1) to (x2,y2)

dx = x2-x1
dy = y2-y1
m = dy/dx
y = y1
for x = x1 to x2

{DrawPixel(x,Round(y)
y = y + m}

Problems:
slow
floating point math
almost vertical lines get dotty

How solve last one?
axis of greatest motion

1 2 3 4 5 6 7 8

8
7
6
5
4
3
2
1

 Walters@buffalo.edu CSE 480/580 Lecture 7 Slide 4

DDA Algorithm: (Digital Differential Analyzer)

xn+1 = xn + x

yn+1 = yn + y

(x1, y1)

(x2, y2)

y
x

x

y

update x and y by their differentials
(epsilon is some small positive constant)

Problems:
still slow
still floating point math

Advantages:
mathematically well defined
no spotty lines

Bresenhams Algorithm:
one of the best for lines (doesn't generalize)
only integer math
simple but weird algorithm
based on the error

keeps track of how far a pixel is from the "true line"
and corrects when it gets too far

 Walters@buffalo.edu CSE 480/580 Lecture 7 Slide 5

xi-1 xi-1 + 1
xi

yi

yi-1

yi-1 +1
d2

d1

Ideal Continuous Line: (xa, ya) to (xb, yb)

y = m (x - xa) + ya
where m is the slope

Assume:
xa < xb
0 < m < 1

what set of possible lines?

how many sets of possible lines?

For this set, which will be axis of greatest movement?

x

y

true point is at y
choose yi-1 or yi-1 + 1?

look at difference (error)
is d1 or d2 smaller?
choose point with smallest difference

 Walters@buffalo.edu CSE 480/580 Lecture 7 Slide 6

xi-1 xi-1 + 1

yi

yi-1

yi-1 +1
d2

d1

xi

Look at (d1 - d2)
if > 0, choose yi-1 + 1
if < 0, choose yi-1

d1 - d2 = (y - yi-1) - (yi-1+1 - y)

= 2 y - 2(yi-1) -1 (regroup)

= 2m (xi - xa) + 2(ya -yi-1) - 1 (substitute in for y)

(multiply by x)

ei = x(d1 - d2) = 2 y (xi-xa) + 2 x(ya-yi-1) - x
This will be the decision variable

Calculate ei incrementally:

ei+1 = ei + 2 y (xi+1 - xi) - 2 x(yi - yi-1)
= 1 = 0 or 1

if y was incremented:
ei+1 = ei + 2(y - x)

otherwise:
ei+1 = ei + 2 y

Now very simple to compute!

 Walters@buffalo.edu CSE 480/580 Lecture 7 Slide 7

Bresenham's Initial Conditions

i = 0

x0 = ? y0 = ?

ei = x(d1 - d2)

e1 = x[(y-ya) - ((ya+1)-y)]

 = ?

Bresenham's Algorithm:
x = xa
y = ya
dx = xb -xa
dy = yb - ya
err = 2 dy - dx
for i = 1 to dx

{
drawpixel (x,y)
if err > 0

{
y = y + 1
err = err + 2dy - 2dx
}

else
err = err + 2dy

x = x + 1
}

Why efficient?

How Generalize to other sets of lines?

was xa < xb and o < m < 1

xa > xb ?

m > 1 ?

0 > m > -1 ?
(dy = -dy and dec y)

m = 1 or m = 0?

 Walters@buffalo.edu CSE 480/580 Lecture 7 Slide 8

Midpoint Line Algorithm
Bresenham's cannot generalize to arbitrary conics
Thus use Midpoint Line Algorithm
For lines and circles, end up with identical algorithm

xi-1 xi-1 + 1
xi

yi

yi-1

yi-1 +1
e(si) = d2

e(ti) = d1

Bresenhams: look at sign of scaled difference in errors

Midpoint: look at which side of line midpoint falls on
(see derivation in the text)

It has been proven that Bresenhams gives an optimal fit for lines

It has been proven that Midpoint is equivalent to Bresenhams
for line

Q
M

 Walters@buffalo.edu CSE 480/580 Lecture 7 Slide 9

Scan Converting Circles

Circle equation: x2 + y2 = R2

1) So try plotting

y = +/- SQRT(R2 - x2)

(see example)

Problem: gets spotty in places

Why?
(axis of greatest motion)

2) Try polar coordinates

x = R cos()

y = R sin()

Problem: very slow

Why?

So we need a better technique - like for lines

8 - Way Symmetry
assume circle is centered at origin
How much of circle do we have to compute?

(how many axes of symmetry)
If compute (x,y) for a point in the second octant

drawpixel(x,y) drawpixel(-x,y)
drawpixel(-y,x) drawpixel(-y,-x)
drawpixel(-x,-y) drawpixel(x,-y)
drawpixel(y,-x) drawpixel(y,x)

What if circle centered about pixel other than origin?
What if circle not centered about a pixel?

0

0

 Walters@buffalo.edu CSE 480/580 Lecture 7 Slide 10

1 2 3 4 5 6 7 8

8
7
6
5
4
3
2
1

Mitchner's Circle Algorithm:

Based on Breshenham's ideas

Derive it for the second octant

x2 + y2 = R2

start from x=0, and go to x=y

Since our points Pi-1 = (xi-1,yi-1) will be integers, there will be errors

e(Pi-1) = (xi-12 + yi-12) - R2

what sign is e(Pi-1) when (x,y) inside circle?

outside circle?

Only two possible next points in this octant
Si and Ti
choose one with smallest error

Create error difference

di = e(Si) + e(Ti)

So if di < 0, choose Si
else, choose Ti
Only five possible cases: show it works in each

for c: S is outside, T is inside
errors will have opposite signs, S's positive
if d < 0, T's is larger, choose S

for a and b: S is on or inside circle, T inside
T's is negative, S's is negative or 0
 d < 0, choose S

for d and e: T is on or outside; S is outside
S's error positive, T's is positive
 d > 0, choose T

Pi-1
Si

Ti

a

b
cd

e

 Walters@buffalo.edu CSE 480/580 Lecture 7 Slide 11

Incremental version of decision variable:

di+1 = di + 4xi-1 + 6 + 2(yi2-yi-12) - 2(yi-yi-1)
(should be able to derive this)

if di < 0, then y didn't change
di+1 = di + 4xi-1 + 6

else, y changed by -1
di+1 = di + 4(xi-1) + 6 - 2 (2yi-1 -2) -2

= di + 4(xi-1 -yi-1) + 10

Initial Conditions:

x0 = 0, y0 = ?
S1 = (1, R) T1 = (1, R-1)
d1 = (xs2 + ys2) - R2 + (xt2 + yt2 - R2)

= 1 + R2 - R2 + (1 + R2 - 2R + 1 - R2)
= 3 - 2R

Michner's Circle Algorithm:
x = 0
y = R
d = 3 - 2R
while x <= y

{
DrawPixel(x,y)
if d < 0

d = d + 4x +6
else

{
d = d + 4(x-y) + 10
y = y - 1
}

x = x +1
}

Problems:
multiplication
doesn't generalize to all conics

 Walters@buffalo.edu CSE 480/580 Lecture 7 Slide 12

Midpoint Circle Algorithm

Do analysis based on whether midpoint is inside or outside of circle

P
E

SE

M

See derivations in text for: midpoint circle algorithm
integer midpoint circle algorithm
integer second-order difference midpoint

circle algorithm

Midpoint Circle Algorithm
x = 0
y = R
d = 1-R
dE = 3
dSE = 5 - 2R
DrawPixel(x,y)
while (y > x){

if d < 0{
d = d + dE
dE = dE + 2
dSE = dSE + 2
x = x + 1

}else{
d = d + dSE
dE = dE + 2
dSE = dSE + 4
x = x + 1
y = y -1
}

DrawPixel(x,y)
}

What is initial sign of d?

How can d ever go from positive to
negative?

 Walters@buffalo.edu CSE 480/580 Lecture 7 Slide 13

