
2D Graphics Primitives II

Additional issues in scan converting lines

1)Endpoint order

Want algorithms to draw the same pixels for each line

How handle?

a) draw only in one order - switch endpoints

b) algorithm to draw in both directions
only problem is for error = 1/2 pixel
e.g.: if choose E then when going in one direction,

choose SW when going in opposite direction

N
NE

E

SESW

W

NW

S
Solution (a) can be a problem when drawing a patterned

line - want pattern to start at specified start end point

e.g. 001100110011 versus 110011001100

walters@buffalo.edu CSE 480/580 Lecture 8 Slide 1

walters@buffalo.edu CSE 480/580 Lecture 8 Slide 2

2) Starting at the edge of a clip rectangle

Clip Rectangle

Line to be clipped

To clip line:
can analytically clip with the sides of the clip rectangle
on right - get integer coordinates
on left - get non integer y

can't draw lines with non integer coordinates
could use closest pixel

Now scan-converted clipped line has
different slope!
Correct by initializing decision variable to

midpoint of next two points

Clip Rectangle

Problem for lines intersecting
horizontals:
Which pixels closest?
Multiple pixels lie on

bottom scanline

If find intersection of line and y =ymin and then round x,
don't get all the pixels

Thus intersect y = ymin - 0.5 with line, and round up the x

walters@buffalo.edu CSE 480/580 Lecture 8 Slide 3

3) Varying intensity of line as a function of slope

Diagonal lines have less intensity than horizontals and verticals

If bi-level display - no solution

If multilevel display - can vary intensity of each point as
function of average distance between points (thus of slope)

4) Outline primitives composed of lines

shared vertices should be drawn only once

Why:
 a) if write in XOR mode (sometimes done) then

if background color initially set
write pixel once and sets to foreground color
write pixel twice and sets to background color

Source 0 0 1 1
Dest 0 1 0 1

or 0 1 1 1
xor 0 1 1 0 (draw & undraw)
copy 0 0 1 1 (default)
invert 1 0 1 0
clear 0 0 0 0

b) reduce number of memory accesses (writes)

walters@buffalo.edu CSE 480/580 Lecture 8 Slide 4

Scan Conversion of Polygons

Rectangles

Polygons in general

How draw polygon?

Do we need a special point plotting routine for polygons?
What is OpenGL’s point plotting function for a line?

(GL_Lines)
Would you use this to draw a polygon?
Why GL_LINE_STRIP rather than GL_LINES?

How to draw a filled polygon

1) Draw polygon boundary (scan-conversion of lines)
Then fill the boundary

2) Draw a filled polygon (scan-conversion of polygons)

Issues:

1) Edge adjacent polygons
Example: Rectangles

How specify?
two opposite corners: (0,0) (20,10)
upper left corner, width, height: 0, 0, 20, 10

(easier to move)
If have two rectangles: 0, 0, 20, 10

20, 0, 20, 10
Discretization Problem

Shared edge
Continuous
Discrete

walters@buffalo.edu CSE 480/580 Lecture 8 Slide 5

Define which pixels belong to a primitive

Interior pixels obviously belong
What about boundary pixels?

Problem above, as middle column could belong to both
Don't want to scan convert twice
Need to decide what color to display

Solution:
Left and bottom edges drawn and belong to rectangle
Right and top edges not drawn and not belong

0 <= angle < pi
draw and include

pi <= angle < 2 pi
don't draw or include

Applies to rectangles and to any other polygon
How apply to any polygon?

Go round polygon in counter clockwise direction
and assign directions to edges

Drawing Rule

Still draws some points twice
Which points?

Can apply rule to filled and unfilled polygons
When would you apply it to unfilled?

Each span misses it's rightmost pixel
Each rectangle misses it's topmost span

Scan converting rectangles

Write rectangle a scan-line at a time
a span at a time
y = yc; xmin < x <= xmax

Exploits Spatial Coherence
Nearby pixels generally have the same value

When not true?

Exploits Span Coherence
All pixels on a span have the same value
Neighboring spans generally have the same value

Is this true for all polygons?

Edge Coherence
All pixels on an edge have the same value

Can bundle pixels together into words to reduce memory access

walters@buffalo.edu CSE 480/580 Lecture 8 Slide 6

walters@buffalo.edu CSE 480/580 Lecture 8 Slide 7

Draw and then fill Algorithms

Pixel defined filling versus polygon defined filling

Define pixel connectivity

Neighbors
4-neighbors 8-neighbors 6-neighbors

[i-1, j-1]

[i-1, j+1]

[i+1, j-1]

[i+1, j+1]

[i-1, j] [i, j]

[i, j-1]

[i, j+1]

[i+1, j]

[i-1, j-1]

[i+1, j+1]

[i-1, j] [i, j]

[i, j-1]

[i, j+1]

[i+1, j][i-1, j] [i, j]

[i, j-1]

[i, j+1]

[i+1, j]

[i-1, j+1]

[i+1, j-1]

[i-1, j] [i, j]

[i, j-1]

[i, j+1]

[i+1, j]

Path
A path from the pixel at [i0, j0] to the pixel at [in, jn] is a

sequence of pixel indices [i0, j0], [i1, j1], ... , [in, jn] s.t. the pixel
at [ik, jk] is a neighbor of the pixel at [ik+1, jk+1] for all k with
0 <= k <= n-1.

4? 8? 6? 4? 8? 6? 4? 8? 6?

walters@buffalo.edu CSE 480/580 Lecture 8 Slide 8

A region (polygon) is n-connected if there exists an n-path between
every pair of points in the region.

Define different connectivities for boundary and interior pixels

If boundary is 8 connected and interior is
8 connected, then interior of polygon
is connected to background

If boundary is 4 connected, then two
boundary regions

If boundary is 8 connected and interior is
4 connected, then okay

Here okay to have 4 connected boundary
and 8 connected interior

Must use opposite connectivity for boundary
and interior in general

walters@buffalo.edu CSE 480/580 Lecture 8 Slide 9

x
y

Elegance versus Efficiency?

Recursive Flood Fill:

Label (x, y, interior, new: Integer) ;
Begin

If (pixel(x,y) == interior) Then
pixel(x,y) = new;
Label(x+1, y, interior, new);
Label(x-1, y, interior, new);
Label(x, y+1, interior, new);
Label(x, y-1, interior, new);

End;
End Label;

walters@buffalo.edu CSE 480/580 Lecture 8 Slide 10

Scan Conversion of Filled Polygons

Uses spatial coherence

For each scan line crossing a polygon:
Locate intersections of scan lines with polygon edges
Sort intersections by x
Fill horizontal regions using pairs of intersections

 (see Figure 1)

Scan lines passing through vertices
add the intersection twice

 (see Figure 2)
okay for y', not for y
so add the intersection twice only if end points of two

edges don't monotonically increase or decrease
 (add both only if a local extrema)

now okay for both
OR
Shorten one edge at vertex where not extrema

If monotonically decreasing, then shorten top
of next segment such that y = y-1

If monotonically increasing, then shorten
top of current segment such that y - y-1

 (see Figure 3)

Use scan coherence to calculate intersections
express slope in terms of coordinates of scan line intersection

points
m = (yk+1 - yk) /(xk-1 - xk)
m = 1/(xk+1 - xk)
xk+1 = xk + 1/m yk

yk+1

walters@buffalo.edu CSE 480/580 Lecture 8 Slide 11

to avoid using fractions
xk+1 = xk + x/ y
now initialize counter to 0
increment counter by x as go up a scan line
when counter >= y, then increment current x intersection

and decrease counter by y

Example:
slope = 7/3
counter inc = 3
counter = 0
x = x0 = 5
y = y0 = 4

intercepts counter
5,4 0
5,5 3
5,6 6
6,7 9 reset to 2
6,8 5
7,9 8 reset to 1
etc. This in essence truncates instead of rounding

Can increment by 2 x, and decrement by 2 y and compare
to y
This rounds
How avoid multiplication?

Using a sorted edge table
Going clockwise around polygon, use bucket sort to store edges

sorted by smallest y value of edge, and x intercept of low pt
Don't store horizontal edges
Do edge shortening at monotonic vertices
Each entry:

max y value of edge
x intercept for lower vertex of edge
inverse of the slope of edge
(x and y) (see Figure)

walters@buffalo.edu CSE 480/580 Lecture 8 Slide 12

Start at scan line at bottom of polygon and generate active edge list
of all lines crossed by the scanline

Add new edges from sorted edge table
Remove edges if y > ymax of edge

If new entry in active edge list then compute scanline intersection
else incrementally compute scanline intersection

Store intersections in same sorted order
Read off pairs of intersections and fill between them

Example:
ScanLine Active List

1 AE, AB
2 AE, AB
3 CD, DE, AE, AB
4 CD, AB
5 CD, AB
6 CB, AB
7 CB, AB
8 CB, AB
9 none

Inside/Outside Tests

Different Filling Rules
Odd-even rule
Nonzero winding rule

