
2D Graphics Primitives III

Clipping

Example: user change in window size and Expose event

Redraw entire image?

Redraw clipped image

Specifications of entire scene as lines, circles etc (OpenGL calls)
Scan convert entire scene into a pixmap
Copy portion of pixmap as specified by clipping rectangle

Versus

Specification of entire scene as above
Scan convert entire scene, but write only visible pixels

(Scissoring)

Versus

Specifications of entire scene as above
Specifications of clipped scene
Scan convert from clipped specifications

First is easy, but wastes time and space

Second may be quite efficient if done in microcode or hardware
Generalizes to arbitrary shape clip regions

Third is often best for points, lines, polygons (simple algorithms)

walters@buffalo.edu CSE 480/580 Lecture 9 Slide 1

Define Clip Rectangle (Region)

Start with rectangular clip region (clip-box)

defined by xl, xr, yt, yb

yt

yb
xl xr

Clipping Points

How determine if point should be displayed?

Clipping Lines

More difficult

yt

yb
xl xr

A

B

C

D
E

Which lines easy to clip?

walters@buffalo.edu CSE 480/580 Lecture 9 Slide 2

Cohen-Sutherland Line Clipping Algorithm

Based on idea that some lines are trivially accepted (entire line drawn)
others trivially rejected (none of line drawn)
others more difficult (maybe clip some, maybe draw nothing)

Look at nine regions of space as divided by the clip-box

Assign 4 bit region code to each region:

b4 b3 b2 b1

b1 = 1 if point is to the left of the left boundary
b2 = 1 if point is to the right of the right boundary
b3 = 1 if point is below bottom boundary
b4 = 1 if point is above top boundary

1001 1000 1010

0001 0000 0010

0101 0100 0110

Find region code of each end of line
(C1, C2)

Use to accept or reject line

eg if both ends are 0000?

what else is easy case?

walters@buffalo.edu CSE 480/580 Lecture 9 Slide 3

1001 1000 1010

0001 0000 0010

0101 0100 0110

Look at logical operations on the region codes (AND, OR)

A) If C1 OR C2 = 0000, then trivially accept line

B) How trivially reject a line that has both points above top?
C1 AND C2 = 1xxx

 How trivially reject a line below, to right and to left?
C1 AND C2 = ?
C1 AND C2 = ?
C1 AND C2 = ?

 How generalize these four cases?
C1 AND C2 not equal 0000

C) Rest are difficult
C1 AND C2 = 0000

Cohen-Sutherland Algorithm
Start with input list of lines (endpoints)
M: While input list is not empty
 Find Region codes (C1 and C2) for line
 Remove line from input list
 If C1 OR C2 = 0000, then add line to output list
 Else if C1 AND C2 = 0000, find intersection of line

with an edge (top, bottom, left, right order)
Add intersection point and interior point to input list

 End

A

B

walters@buffalo.edu CSE 480/580 Lecture 9 Slide 4

A

B

Given the order of testing for intersections, what is a worst case
input line for Cohen-Sutherland algorithm?

This required two clips
First required two tests
Second required four tests

Can a line require 4 clips? (How many regions can a line pass
through?)

If four clips required,
then how many tests on first clip?
on second?
on third?
on forth?

Cohen-Sutherland not the most efficient algorithm as it can end
up doing needless clipping.

Still used widely, since widely known

walters@buffalo.edu CSE480/580 Slide 5

Cyrus-Beck Parametric Line Clipping Algorithm
more efficient
can clip against convex polygon clip region
can clip in 3D as well as 2D

Liang-Barsky
like above, but faster for upright rectangular 2D and 3D regions

Derivaton of Liang-Barsky

Based on parametric representation of line
(x1,y1)

(x2,y2)

x = x2 - x1

y = y2 - y1

x = x1 + x u
y = y1 + y u

Write clipping equations in parametric form

xL <= x1 + xu <= xr

yb <= y1 + yu <= yt

Rewrite as four inequalities

u pk <= qk , where k = 1, 2, 3, 4

p1 = - x q1 = x1 - xL
p2 = x q2 = xr - x1
p3 = - y q3 = y1 - yb
p4 = y q4 = yt - y1

0 <= u <= 1

walters@buffalo.edu CSE480/580 Slide 6

p1 = - x q1 = x1 - xL
p2 = x q2 = xR - x1
p3 = - y q3 = y1 - yB
p4 = y q4 = yT - y1

Each value of k corresponds to one boundary:
k = 1 corresponds to left boundary
k = 2 corresponds to the right boundary
k = 3 ?
k = 4 ?

If line is parallel to the kth boundary, then
pk = ?

The values of qk indicate which side of the kth boundary
the start point is on

yT

yB
xL xR

if qk < 0, then p1 is outside kth boundary
qk >= 0, the p1 is inside or on the kth boundary

if pk < 0, then line goes from outside to inside the kth boundary
pk > 0, then line goes from inside to outside the kth boundary

if pk 0, then the intersection of the line with the kth boundary is at

rk = qk / pk

For each line we want to find u1 and u2 that lie in clip region

walters@buffalo.edu CSE 480/580 Slide 7

Liang-Barsky Algorithm
 For each line segment

u1 = 0;
u2 = 1; (We are starting with the original endpoints)
k =1;
while still need to clip and k < = 4

compute pk and qk
if pk = 0 and qk < 0, then reject line and stop clipping
else

if pk < 0,
u1 = maximum of u1 and rk

else
u2 = minimum of u2 and rk

if u1 > u2
reject line and stop clipping

k = k + 1;
end
if line not rejected, u1 and u2 are end points of clipped line

end

yT

yB
xL xR

Example:

A

B

Line AB
p1 = - x q1 = x1 - xL
p2 = x q2 = xR - x1
p3 = - y q3 = y1 - yB
p4 = y q4 = yT - y1

p1 < 0 q1 < 0
p2 > 0 q2 > 0
p3 > 0 q3 > 0
p4 < 0 q4 > 0

r1

r3

u1 = 0 u2 = 1
u1 = r1 u2 = 1
u1 = r1 u2 = 1
u1 = r1 u2 = r3
u1 = r1 u2 = r3

Liang-Barsky versus Cohen-Sutherland
Liang-Barsky computes fewer intersections for a line needing

clipping
 But doens't have a trivial accept

If most lines can be trivially accepted or rejected,
Use Cohen-Sutherland

else
Use Liang-Barsky

Clipping Circles
Can approximate with 2 rectangles for trivial accept and reject

Outer used for?

Inner used for?

Can make better approximations using polygons

walters@buffalo.edu CSE 480/580 Slide 9

