
1

4/12/2004 BR 1

Software Development using
MacroMedia’s JRun

B.Ramamurthy

4/12/2004 BR 2

Objectives

To study the components and working
of an enterprise java bean (EJB).
Understand the features offered by
Jrun4 environment.
To be able to deploy and execute
application using JMC of Jrun4.
Analyzing a problem and arriving at a
component-based solution.

4/12/2004 BR 3

Topics for Discussion

General introduction to Enterprise EJB
JRUN 4 application server from
Macromedia
Demos on JRUN 4
From problem statement to J2EE
“components” via use case analysis

4/12/2004 BR 4

Enterprise Application Model

4/12/2004 BR 5

J2EE Application Programming Model
for Web-based applications

Web
client

Web
Application

Database
Server

Enterprise
Java Beans

EJB containerWeb Container

Business LogicWeb Service

4/12/2004 BR 6

J2EE Application Programming Model
for Three-tier Applications

Presentation
Components Database

Server

Enterprise
Java Beans

EJB containerApplication
Container

Business Logic

2

4/12/2004 BR 7

EJB Component Model
Business logic can be encapsulated in EJB
components.
The EJB component model simplifies the
development of middleware applications
by providing automatic support for
services such as transactions, security,
database connectivity, and more.

4/12/2004 BR 8

What are EJBs?
Enterprise JavaBeansTM is the server-
side component architecture for the
J2EETM platform. EJBTM enables rapid
and simplified development of
distributed, transactional, secure and
portable Java applications.
An EJB is a collection of Java classes,

and a XML file (deployment descriptor)
bundled into a single unit.
Java classes in this bundle follow

certain rules and provide specific
callbacks for the containers.

4/12/2004 BR 9

EJB Types

There are three major types of EJBs:
Session: Represents conversational/transient
state; stateless and stateful
Entity bean: Represents a persistent relation in
the relational DB. Bean-managed persistence
(BMP), container-managed persistence (CMP)
Message-driven: Alternative to remote method
call: asynchronous and used for realizing loose
coupling among systems. Uses messaging
middleware.

Lets look at Ed Roman’s view of the EJB
technology.

4/12/2004 BR 10

Examples of Session beans
calling entity beans

Purchase orderPurchase order
router

Bid, itemAuction broker
ProductCatalog engine
Order, line itemOrder entry form

Credit cardCredit card
authorizer

Bank accountBank teller
Entity beanSession bean

4/12/2004 BR 11

Simple Distributed Objects

Remote interface

Client

Stub Skeleton

Distributed
object

Remote interface

network

As in CORBA,
RMI-IIOP, DCOM

4/12/2004 BR 12

Explicit Middleware (CORBA-
like)

Client

Stub Skeleton

Distributed
object

Remote interface

network

Transaction
Service

Security
Service

Database
Driver

API

API

3

4/12/2004 BR 13

Implicit Middleware (Through
declarations as in J2EE)

Client

Stub Skeleton

Request
Interceptor

Remote interface

network

Transaction
Service

Security
Service

Database
Driver

API

API

Distributed
object

4/12/2004 BR 14

Implicit VS Explicit services

We used to include the services such as transaction,
security, data base drivers, etc. programmatically
making every programmer learn the inner details all
the possible services needed in an application.
Now we can declare what we want and let the
container take care of carrying it out.
Container is the silent partner: container’s glue code
tools are responsible for transforming an enterprise
into a fully managed, distributed server-side
component.
Declaration is done through a XML deployment
descriptor.

4/12/2004 BR 15

Parts of EJB
EJB class that implements the business
methods and life cycle methods; uses other
helper classes and libraries to implement.
Client-view API: consists of EJB home
interface and remote interface.

Home interface: controls life cycle : invokes Home
Object methods: create, remove, find methods
Remote interface: to invoke the EJB object methods

4/12/2004 BR 16

Parts of EJB (contd.)

Deployment Descriptor: XML document for
bean assembler and deploy tool;

A declaration about EJB environment needed for
customizing the bean to the operating
environment.
Container Runtime services that can be declared
include: transactions, security,distribution,load
balancing, multithreading, persistence, failure
recovery, resource pooling, state management,
clustering..

4/12/2004 BR 17

Creating a EJB-jar file

Local
Interfaces

Vendor
Specific
Files

Remote
Interfaces

Deployment
Descriptor

Enterprise
Bean

Classes

Home
interfaces

Ejb
Jar
file

Jar file creator

4/12/2004 BR 18

Step 1: Retrieve Home Object
reference using JNDI

EJB Container/Server

EJB Object

Home
Object

Client code
As servlets,
applets

Remote
interface

Enterprise
Beans

JNDI

1: Retrieve
HomeObject
Reference

2: Return
Home
Object Ref.

4

4/12/2004 BR 19

Step 2: Retrieve EJBObject using
Home Interface and Objects

EJB Container/Server

EJB Object

Home
Object

Client code
As servlets,
applets

1:create

2:Create EJBObject

3: Return
EJBObject Reference

Remote
interface

Enterprise
Beans

4/12/2004 BR 20

Step 3: Invoke Business Methods Using
Remote Interface and EJB Objects

EJB Container/Server

EJB Object

Client code
As servlets,
applets

Remote
interface

Enterprise
Bean

1: call a method

Transaction,
Security,

Persistence
services2: call middleware API

3: call a bean

4: method returns

5: return result

4/12/2004 BR 21

JRUN4

JRun (J2EE) Server can be started,
stopped, refreshed, and status checked
three different ways,

From command line
Using a JLauncher
Using a web-based JRun Management
Console (JMC)

Demo1: Jrun4 Environment

4/12/2004 BR 22

JRun4 Development Version
Comes with three servers: admin, default and sample
Admin: is reserved for running administrative tools
such as JMC. So you are advised not to do any
application development on this. At port 8000.
Samples: has many applications already deployed for
you to study the working code for various J2EE
technologies. At port 8200.
Default: is where we will do most of our development
and deployment. At port 8100.
Demo2: Lets study the application “compass” served
by the “samples” server.

4/12/2004 BR 23

Demo 3: Add a server
“tutorial” at port 8101

Add a server tutorial. We can do hot deployment by
copying over the compass application.
Also see how the data access to the pointbase data
base is declaratively added to the server using the
JMC.
Look around the other features offered by JMC.
Observe how easy it is to delete, refresh, and stop a
server using the various iconized buttons.
Study the explorer window on the left pane of JMC to
see the various declarative customization possible for
your applications.

4/12/2004 BR 24

Compass Online Vacation
Reservation System

1. User logon for authentication using a registered
user id and password.

2. Application home provides a list of trips you can
choose from. Click the name of a trip to get details
about that trip

3. Trip details provides details about the selected
trip. Click the book button to book the trip.

4. Reservation allows you to enter payment
information. Select a credit card type, specify a
credit card number and the expiration date.

5. Confirmation displays your confirmation number
if the reservation was successful, and an error
message if a problem occurred.

5

4/12/2004 BR 25

Compass Application: Use Case Diagram

Logon

Display List of Trips

 Display Details of chosen trip

Traveler

Display Conformation/Denial

Make Reservation

Credit Card Info

record information

Validate Credit card

Place Order

4/12/2004 BR 26

Compass Application: From
Use Cases to Component List

Use JSP for all web user interface: Logon.jsp,
home.jsp, Triplist.jsp, Atrip.jsp, Reservation.jsp
(includes confirmation/denial use case),
creditcard.jsp
Data access for non-conversational JSP can be direct.
For reservation and credit card we have a
conversation with the user, so will have a stateless
session bean ReservationBean and CreditCardBean.
These two are remotely accessible beans.
Finally all the information gets conveyed to a entity
bean OrderBean for storing the order information.
This could be a “local” bean not (remotely) accessible
to the client.

4/12/2004 BR 27

Business Entities, Processes
and Rules

EJB Applications organize business entities, processes
and rules into components.
Entity: is an object representing some information
maintained in the enterprise. Has a “state” which
may be persistent.

Example: Customer, Order, Employee
Process: Is an object that typically encapsulates an
interaction of a user with business entities. A process
typically updated and changes the state of the
entities.

Example: Sales, pricing, place order, reservation
Rules: constraints on the state of the entities.

Example: overDraft, creditLow, validity
4/12/2004 BR 28

Choosing the type of Bean
Entity (business entity) is typically implemented as
entity bean or a dependent object of an entity bean.
Conversational (business) process as a session bean.
Collaborative bean as an entity bean.
Any process that requires persistence is implemented
as an entity bean.
When exposure to other applications are not needed
for an entity or process (local/private process) then
they are implemented as bean dependent objects.
You may use local EJBs for this purpose if container
services are needed.

4/12/2004 BR 29

Review
We studied the basics of Enterprise Java
Beans. We will develop on these concepts
further in the next lectures.
We also looked JRUn4 environment: its
JLauncher, JRun Management Console (JMC),
and servers and deployment of applications.
We looked at how to analyze a problem to
arrive at a set of components (web
components and different types of ejb
components).

4/12/2004 BR 30

On To EJBs

Understand the parts of the EJBs
Package the EJBs and deploy them
Design web application to access the EJBs
Understand the various descriptors and
directory structure
Understand local naming conventions and
JNDI naming conventions

6

4/12/2004 BR 31

Designing Components
Designing components: esp. enterprise java
beans: session beans: stateless and stateful.
Connecting web component to an EJB.
Enterprise application (ear) directory
structure and naming conventions; hot
deploy.
XYZ-INF : META-INF, WEB-INF, SERVER-INF,
web.xml, ejb-jar.xml, jrun.xml.
Analyzing compass application of the samples
server; JNDI and java naming.

4/12/2004 BR 32

Contents of an Enterprise
Bean

Interfaces: The remote and home interface
for remote access. Local and local home
accesses for local access.
Enterprise bean class: Implements the
methods defined in the above interfaces.
Deployment descriptor: An XML file that
specifies information about the bean such as
its type, transaction attributes, etc.
Helper classes: non-bean classes needed by
the enterprise bean class such as utility and
exception classes.

4/12/2004 BR 33

Naming Conventions

LocalAccountLocal<name>Local interface

LocalAccountHomeLocal<name>HomeLocal home interface

Account<name>Remote interface

AccountHome<name>HomeHome interface

AccountBean<name>BeanEnterprise bean
class

Account<name>EJB JAR display
name (DD)

Account-ear<name>-earDirectory Name

ExampleSyntaxItem

4/12/2004 BR 34

Session Beans

Tuition Need Calculator application.
It takes in many numbers and uses handful
of formulae to come up a dollar amount for
financial need for attending a given
college.
We will implement this using a session
bean.

4/12/2004 BR 35

Directory Structure for Need
Calculator examples

Jrun4

servers

admin default samples tutorial

NeedCalculator-ear

NeedCalculator-war

SERVER-INF

Calculator

META-INF NeedCalculator

META-INF

CalculatorHome Calculator
CalculatorBean

…

…
WEB-INF index.jsp

…

4/12/2004 BR 36

INF Directories
Contain the descriptor files
Descriptor files are in XML

Can be auto-generated by tools.
SERVER-INF has configuration of the server such as
users, security.
META-INF directory for ejb has ejb-jar.xml (ejb
specific details) and jrun-ejb-jar.xml (ejb services
specific details)
WEB-INF directory for web applications has web.xml
and jrun-web.xml.
In general, xyz.xml and jrun-xyz.xml separate the
application-server dependent and independent
descriptors respectively.

7

4/12/2004 BR 37

Session Beans
Session beans implement the “façade” design
pattern, typically facilitating the data transfer
between the user interface and the business logic
beans (possible entity beans).
These are conversational as opposed to entity
beans being transactional.
Stateless session beans don’t remember anything
about the user data so can be freely shared.
Lets say we have 5000 users accessing your system,
instead of 5000 sessions running, 50 stateless
sessions can be shared among the users.

4/12/2004 BR 38

Home Interface:
CalculatorHome.java
package NeedCalculator;

import javax.ejb.EJBHome;

import java.rmi.RemoteException;

import javax.ejb.CreateException;

import java.util.Collection;

public interface CalculatorHome extends EJBHome

{

public Calculator create() throws
RemoteException, CreateException;

}

4/12/2004 BR 39

Remote Interface:
Calculator.java

package NeedCalculator;

import javax.ejb.EJBObject;

import java.rmi.RemoteException;

public interface Calculator extends EJBObject

{

public double calc (double cost, double avail) throws

java.rmi.RemoteException;

}

4/12/2004 BR 40

Session Bean:
CalculatorBean.java

package NeedCalculator;

import javax.ejb.SessionBean;

import javax.ejb.SessionContext;

import javax.ejb.CreateException;

public class CalculatorBean implements SessionBean

{ private SessionContext context;

public double calc (double cost, double avail) {

return (cost – avail); }

public CalculatorBean() {}

4/12/2004 BR 41

CalculatorBean (contd.)
public void ejbCreate() throws CreateException { }

public void setSessionContext(SessionContext context) {

this.context = context; }

public void ejbRemove() { }

public void ejbActivate() {}

public void ejbPassivate() {}

public void ejbPostCreate() {}

}

4/12/2004 BR 42

Descriptor (ejb-jar.xml)
<ejb-jar>

<enterprise-beans>

<session>

<display-name>Calculator</display-name>

<ejb-name>Calculator</ejb-name>

<home>NeedCalculator.CalculatorHome</home>

<remote>NeedCalculator.Calculator</remote>

<ejb-class>NeedCalculator.CalculatorBean</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

<security-identity>

<use-caller-identity />

</security-identity>

</session>

</enterprise-beans>

</ejb-jar>

8

4/12/2004 BR 43

Can do it manually using templates of
previous applications.
Can use JWizard that will automatically
generate the XML descriptors.
Can use XDocLet which will automatically
generate files and regenerate to reflect any
changes.
Other methods from a integrated
development environment such as Sun
Studio, and IntelliJ.

Creating the files

4/12/2004 BR 44

Deployment

Hot deploy: This is most convenient way to
deploy the components. Lets try this with
compass example.
Create the standard directory structure either
manually or using tools. Place the files in the
appropriate directories.
Start the server or restart the server.
If there are errors, correct them, recompile
and restart/redeploy.

4/12/2004 BR 45

Web Application to test the
NeedCalculator

We will write a very simple JSP file called
index.jsp that:

1. Resolves the JNDI name from the initial context
to create the home directory.

2. Narrows and casts the object reference obtained
in the above steps to the home object of the
NeedCalculator.

3. Creates the EJbObject representing the remote
interface of the Calculator.

4. Invokes the calc method on the reference
obtained in step3.

4/12/2004 BR 46

NeedCalculator-war/index.jsp
<%@ page import="NeedCalculator.*" %>

<html>

<head>

<title>Need Calculator</title>

</head>

<body>

<%

try {

javax.naming.InitialContext ctx = new javax.naming.InitialContext();

Object obj = ctx.lookup("java:comp/env/ejb/Calculator");

4/12/2004 BR 47

Web Application (contd.)
CalculatorHome home =
(CalculatorHome)javax.rmi.PortableRemoteObject.narrow(ob
j, CalculatorHome.class);

Calculator needCal = home.create();

double d= needCal.calc(10000, 5000);

out.println("Your Need is = $" + d);

%>

Thank you.Your need has been calculated.

<%

} catch (Exception e) {

%>

Sorry, unable to calculate need. 4/12/2004 BR 48

WEB-INF/web.xml
<welcome-file-list>

<welcome-file>index.jsp</welcome-file>

</welcome-file-list>

<ejb-ref>

<description>Calculator session bean</description>

<ejb-ref-name>ejb/Calculator</ejb-ref-name>

<ejb-ref-type>Session</ejb-ref-type>

<home>NeedCalculator.CalculatorHome</home>

<remote>NeedCalculator.Calculator</remote>

</ejb-ref>

9

4/12/2004 BR 49

JNDI Names

• This application uses ejb-refs so that clients can always locat the
ejb under the java:comp/env environment naming context (ENC).

• The jrun-web.xml file maps the ejb-ref-name to the actual JNDI
location.

• Clients can then lookup the EJB using either the actual JNDI
location or java:comp/env/*ejb-ref-name*

• If there is no tags corresponding to ejb-ref then lookup will be to
the actual name “Calculator” of the java naming service.

4/12/2004 BR 50

JNDI Names (contd.)

Java:jndiname
java

comp
env

ejb jdbc jms

Ejbs
Data sources Message queues + topics

java:comp/env/ejb/Calculator
java:comp/env/jdbc/compass
java:comp/env/jms/newsQueue

