
 1

Analyzing and Visualizing a Large Data Set Using Grid
Bina Ramamurthy

CSE4/587 Information Structures Due Date: 4/18/2004 by mid-night.

Purpose:

1. Design and develop a solution to analyze a large set of real data from a pharmaceutical
experiment.

2. Understand the components and operation of a condor-based (High Throughput
Computing) grid (CSECCR) built using recyclable Sparc 4 machines.

3. Design and implement a Java application and submit script to execute the solution
developed in step 1.

4. Learn to use database and graphing tools with grid-based jobs.
5. Understand the process of utilizing CPU cycles offered by CSECCR grid.

Preparation:

1. Get a clear understanding of condor-based CSECCR grid you will be using for this
project. (See notes given below).

2. Understand the technology underlying Condor: its architecture and application models.
See http://www.cs.wisc.edu/condor/

3. Understand the role of submit scripts.
4. Learn to use various tools such as GnuPlot for drawing graphs of various relationships

among the data.
5. Make sure you have an account on johnlee.ccr.buffalo.edu by logging into it using secure

shell from any of the cse machines. Your username name is same as UBIT username and
the password is your person number.

Technology details:

 You will work with CSECCR grid shown in Figure 1. The grid is primarily composed of
Sun Sparc4s which form the compute nodes. The 40 compute nodes form an internal private
Class C network with a grid front end. All nodes run Solaris 8, and middleware is configured
for a ‘shared file system’ oriented job execution. There are a total of around 40 CPU’s and
the total memory is around 2.5 GB. The front end has another external interface, through
which jobs are submitted.

The grid also has various middleware solutions installed in it for educational
research. The middleware is primarily composed of NMI (NSF Middleware Initiative)
components. Middleware components installed range from Globus, Condor-G and PBS
(Portable Batch System) and NWS (Network Weather Service). PBS is for job management
and scheduling, Globus and Condor for resource management, NWS and Ganglia for
distributed resource monitoring. You shall be using Condor as your primary grid middleware.
This means that both the job management part and the resource management part of the grid
is taken care by Condor daemons. Condor has various commands which let’s you submit

 2

jobs, monitor and manipulate the job queue, assign job preferences etc as described later in
the Getting Started with CSECCR Grid.

Assignment (What to do?):

You are given a data from a gene expression experiment. The gene expressed by their DNA
after treatment with a certain drug for a set of patients is recorded and provided in the
database. This data is available at /projects/bina/PD_pt1_14.xls. This will be ported to a
relational database connected to the CSECCR grid. (You don’t have to do this. Vijay will do
this.) The data contains 14 patient’s information, different types of genes, their expression
levels at various times (1 hours, 3hours, 1 day, 1 week etc.) after treatment with some
experimental drug. This provides a “time series”. You analysis and graphing can be (i) as
simple as line drawings of gene expression over time, (ii) average of gene expression for a
specific time over patients (iii) repeated measures ANOVA, (iv) application sophisticated
algorithm such as that of Markovitz to choose best responding gene etc. It is our goal to
provide all possible analysis. It is up to the expert to interpret the analysis. For this purpose
you may provide a simple portal for visualizing the results of the analysis.

Figure 1: CSECCR Condor-based grid

Use Scenario: A scientist who has gene expression data or similar data in that domain will
populate the database with the data. He/she will then choose a set of analysis to be carried

Patient
Data
(29M)

……………….

Gatekeeper: Job
submission and
Scheduling tools

Compute nodes:
Data analysis

and graph tools

Internet:
remote job
submission

 3

out on the data. This could be selected from a menu of available analysis tool. Once the
scientist is satisfied with the selection he/she submit the job to the grid for processing. The
grid software will orchestrate the analysis of the data but organizing needed resources and
tools. On completion the scientist will be notified and he/she may review the results before
initiating further action/analysis/repeat experimentation. A portal that facilitates all the
operations/features discussed above will be an ideal solution. The requirement for the
project within the scope of this course is to submit a Java or C-based program to analyze
the data and to obtain outputs in the form of graphs (visuals).

Your assignment consists of three parts: (i) design and implement a Java/C/C++ program
that reads in the data from the data source connected to the grid, (ii) interface Java/gnuplot
API and and (iii) prepare graphs for visualization. It is enough if you generate a few
representative set of graphs as a proof of concept. If you prepare the same graph for every
single data set you may run of limited disk space that may be allocated to you. You will
work in groups of not more than two people.

Analysis and Design:

Data Analysis: Study the excel file that contains the data. Some of the columns are easy to
understand and many of them of domain-specific information which is quite common with
such data collections. One of the sub tables you will be working with is the gene-
expression over a period of time. Locate this on the excel sheet and study it. In the second
worksheet of the excel workbook the averages for the same data are given. You will work
with these sets of data for specific genes of your choice. You can draw line graphs, average
line graphs, and other sophisticated graphs of your choice.

Grid side: You should design your application in Java/C/C++ and use appropriate external
and built-in API for generating graphs. Alternatively you may generate graph data files and
visualize these explicitly using appropriate tools such as gnuplot.

Client side: Ideally we would like to see a portal implemented to carry out the analysis and
visualization. Due to lack of time this aspect is left as an optional exercise.

Implementation steps and details:

1. Working with Condor-based grid: You will be given accounts on the CSECCR
grid described above. You will login and verify that you have an account. If not send
mail to bina@cse.buffalo.edu Log into the account and prepare a simple Java
program or C program and prepare job submission script for as described in the
“Getting Started” section above. Submit the job and monitor its progress using
command line operations or the web-based monitoring tool Ganglia
(http://johnlee.ccr.buffalo.edu/ganglia)

2. Working with the data source: We will convert the data available in the excel file
into a relational databse and make it accessible through jdbc/odbc interface. However

 4

this may work for Java programs. For C++/C programs you may use a simple subset
of the data in a file in your local disk space.

3. Working with graphing tool: Your java program will read the data from the data

source, process it and generate data for graphing. You may use Java 2D API or free
ware gnuplot API for Java at http://www.is.informatik.uni-duisburg.de/projects/java-
unidu/api/de/unidu/is/gnuplot/package-summary.html

4. What are we interested in? We are interested in monitoring and benchmarking the

power of the condor-grid we have assembled. We expect that you will
computationally intensive analysis of the data. An example of is repeated measure
ANOVA, the details of which can be found
http://www.utexas.edu/cc/docs/stat40.html

5. What will you learn? Working with grid-based job preparation, submission,

monitoring, and managing data for data and computationally intensive problems.

6. For Java-based job, you will need the class files (ex: helloWorld.java), shell script

with java command (hello.sh), and a submit script (hello.submit) specifying resource
requirements. You will condor_submit hello.submit to schedule the job on the grid.
See “Getting Started with CSECCR Grid”, document for details on how to prepare
and submit a job.

Submission Details:

Create a project2 directory in your project space. Copy your source code and outputs

from CSRCCR grid into this directory. Add an experience report that details how you
accomplished tasks outlined in this project. Call it ExpReport2. This report should
also outline how we can use your program to obtain your outputs.

zip -r project2.zip project2
Use the electronic submission program that corresponds to your class (cse4/587). For

instance students in cse587 will submit by typing
submit_cse587 proejct2.zip
at the Unix prompt.

 5

Getting Started with CSECCR grid
Prepared by Karthikram Ramamani

kv8@cse.buffalo.edu

A typical job for the CSECCR grid will be written a high level language, say, Java or C++,
compiled and preprocessed, if necessary to prepare the executable. A submit script is
prepared that declares all the requirements for scheduling and execution of the job. Then
the job is submitted using Condor submit command. Condor provides commands for
monitoring and controlling the executing job.

Preparing the executables:

For java program, compile the programs using javac. No special preprocessing is needed.
Prepare a submit script and shell script using the sample scripts provided in your home
directory.
For C/C++ programs, compile using
condor_compile gcc sourceName –lm –o executableName

Job Submissions via Condor:

The condor_submit command is used to submit jobs to the Condor scheduler. The
argument to the command is a submit script file which specifies the job preferences.
Matchmaking in Condor is done on the basis of this submit file or ClassAds. You will
find example submit files in your home directory. Modify it as per your needs. Certain
attributes are mandatory for proper job submissions, so go through the Condor manuals
before you make any considerable changes to the submit files. The load on the cluster at
any given time can be monitored using Ganglia Distributed Monitoring, by connecting to
the apache server at http://johnlee.ccr.buffalo.edu/ganglia

Any error conditions that arise while executing your jobs are logged in the log file you
specify. If your jobs are go into idle state for long periods, check your submit files for
incompatibilities. ‘condor_q –analyze’ command gives the analysis of the submitted job.

Condor Quick Reference:

condor_compile
 The condor_compile command assists in linking jobs with the Condor libraries so
that Condor features like migrating and check-pointing are made use of. For your Java
project you need not make use of condor_compile.

condor_q
 The condor_q command displays the Condor job queue at the instant. The job id,
running time, job status etc are displayed. The command has various options which make
the output more descriptive. (Go through Condor manual for preferences)

 6

condor_rm
 This command along with the job id, removes the specified job out of the queue.
Use this command to delete your jobs from the queue.

condor_status
 This command displays the hosts running Condor, their status
(Claimed/Unclaimed), host info. Command has options for displaying host specific
information like machineAds, architecture etc.

condor_submit
 This command is used to submit jobs to Condor. Takes as argument a submit file,
which specifies the ClassAd (User Job Preferences).

condor_history
 Lists the history of jobs submitted to Condor along with their exit status.

condor_hold & condor_release
 These commands hold and release the job specified respectively.

Sample Condor Submission.

Any condor submission will require a submit script which specifies your job classAd (job
preferences). Samples submit script is given below. Note that “kv8” has to be replaced by
your username.

*Executable = /home/kv8/submit.sh
Output = /home/kv8/submit.out
Log = /home/kv8/submit.log
Error= /home/kv8/submit.error
*Universe = java
*Requirements= Arch == "SUN4x"
*Rank = Memory >= 30
*Arguments= helloworld
*Queue
*indicates the attribute is mandatory

Submit script above says the execution universe is a java universe, class name is
helloworld, specifies the executable to move, the job requirements and the rank. You also
request the job to be queued for submission. A sample submit.sh for above job would be:

#!/bin/sh
java helloworld

 7

Note that all references to files are absolute paths. Please avoid using relative path names
in your submit scripts. Go through the Condor manual at http://cs.wisc.edu/condor for
detailed information on Condor.

CSECCR Grid Etiquettes:

The server you log into is johnlee.ccr.buffalo.edu. Your username will be your UB IT
NAME and your initial password will be your UB person number. Make sure you change
the password immediately after you log in.

Considering the infrastructure of the Grid, during times of heavy load, the grid is bound
to be slow. Make sure you don’t submit too many jobs at a time and flood the job queue.
When your job finishes running, you will be notified about the exit status of the jobs via
email. You can monitor the status of your jobs in the queue using Condor commands.
Feel free to remove your jobs from the queue if you don’t need them. We would certainly
appreciate saving computational cycles.

PLEASE wait for your jobs submissions to finish, before you fire up other jobs. This
would ensure smooth network traffic and optimal performance for all users. During times
of high network traffic, redundant jobs from a user shall be paused or removed if
necessary.

Use JohnLee strictly for job submissions only. Do not log into other servers from
JohnLee or initiate Netscape connections. Your disk quota is a hard limit of 25 MB
only. Avoid using relative path names in any job submission scripts you write.
Please specify files using absolute path names, wherever you use them.

