A Multi-tier Approach to Prepare our Workforce for Grid Technology

Bina Ramamurthy
CSE Department
University at Buffalo (SUNY)
201 Bell Hall, Buffalo, NY 14260
716-645-3180 (108)
bina@cse.buffalo.edu
http://www.cse.buffalo.edu/gridforce
Partially Supported by NSF DUE CCLI A&I Grant 0311473

Introduction
We present an adaptation of the upcoming grid technology in CS-based curriculum.
Courses span multiple tiers:
- CS undergraduate senior level (CSE486, CSE487)
- CS graduate entry level (CSE586, CSE587)
- Entry level scientists and engineers
- Seminars to industry
Goal is to improve technical preparedness of our workforce for grid technology.

Topics for Discussion
- What is grid technology? (General, Technical)
- Why grid technology?
- Adaptation of Grid Technology to CS Curriculum
- GridForce Project
- Courses: Curriculum CSE4/586, CSE4/587
- Lab Exercises: problem, approaches to solution, code base for solution
- Fundamental concepts covered
- Technologies and tools covered
- Preliminary Assessment of Effectiveness of Adaptation
- Grid infrastructure
 - Reusing old hardware (SparcGrid)
 - Grid with newer hardware (LinuxGrid)
- Industrial outreach
- Challenges in Adaptation
- Significant contributions of Gridforce

Software Trends

Grid Technology
- Emerging enabling technology.
- Natural evolution of distributed systems and the Internet.
- Middleware supporting network of systems to facilitate sharing, standardization and openness.
- Infrastructure and application model dealing with sharing of compute cycles, data, storage and other resources.
- Promoted by NSF through its Network Middleware Initiative (NMI version 4).
- Publicized by prominent industries as on-demand computing, utility computing, etc.
- Move towards delivering "computing" to masses similar to other utilities (electricity and voice communication).

Adaptation of Grid Technology to CS-Curriculum
- Introduce grid technology into the CS undergraduate curriculum.
 - Goal: Design and deploy grid services and applications. Study grid application models.
 - Focus on lab exercises to illustrate fundamental grid concepts, and development of grid services and applications.
- Conduct seminars to industry.
 - Goal: Overview of grid technology landscape and its alignment to common technologies and application models.
- Examine case-studies to expose potential uses of grid.
- Introduce grid to potential users of grid.
 - Goal: Publicize the usage models of grid.
- Use grid infrastructure for entry level courses in Sciences and Engineering.
GridForce

Our adaptation is evolving into a comprehensive framework we call GridForce (Grid For Collaboration and Education):
- Course curriculum,
- Laboratory exercises (labs),
- Infrastructure to support labs,
- Research projects,
- Industrial outreach.

GridForce Project Framework

GridForce is a comprehensive framework to adapt grid computing into undergraduate curriculum.

Courses: CSE/586 Distributed Systems

Learning outcome: fundamental concepts of distributed systems and grid.

Lab exercises to support concepts:
- Three-tier client server system using Web Services.
- A simple grid framework.
- Design and implementation of a grid service.

Prerequisites: Data structures and algorithms, object-oriented design and development, working knowledge of Java.

Courses: CSE 4/586: Lab Exercises

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Topic</th>
<th>Learning Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab1</td>
<td>Web services</td>
<td>To understand the alignment of the grid technology to Web Services, WS Definition Language (WSDL) and service description using WSDL.</td>
</tr>
<tr>
<td>Lab2</td>
<td>Grid Infrastructure</td>
<td>A Web services based grid.</td>
</tr>
<tr>
<td>Lab3</td>
<td>Grid Programming</td>
<td>Design and implement a grid-base service using Globus 3.0.2</td>
</tr>
</tbody>
</table>

Lab1: Web Services

Lab2: Web Services-based Grid
Courses: CSE4/587: Information Structures

- Learning outcome: understand grid infrastructure and grid architecture, design and deploy grid services and grid applications.
- Lab exercises support:
 - Grid application in high performance area.
 - Service-oriented grid application.
- Prerequisites: Data structures and algorithms, object-oriented design and development, working knowledge of Java, fundamentals of client/server architectures.

Courses: CSE4/587: Lab Exercises

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Topic</th>
<th>Learning Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab1</td>
<td>Commercial Application</td>
<td>Study requirements of a commercial domain and implement an application.</td>
</tr>
<tr>
<td>Lab2</td>
<td>High performance Application</td>
<td>Study requirements of scientific/business domain and implement compute intensive application.</td>
</tr>
<tr>
<td>Lab3</td>
<td>Defining a high-level grid service</td>
<td>Workflow service, a business process, improvements to QoS.</td>
</tr>
</tbody>
</table>

Fundamental Knowledge Areas

- From ACM Curricula 2001:
 - NC1: Net-centric computing: Distributed Systems
 - NC5: Building web applications
 - SE2: Using APIs
 - SE3: Software tools and environments
 - SE9: Component-based Programming
 - SE12: Specialized system development
 - CN4: High Performance computing

Tools and Technologies covered

- Technologies include:
 - XML and SOAP
 - Web services (service definition, implementation and deployment)
 - Java 2 Enterprise Edition (Enterprise Java Beans)
 - Globus Toolkit 3.0.2 (GT3)
- Tools include:
 - UML (Unified Modeling Language) for design representation
 - Apache Ant: XML-based build tool
Outcome Assessment

- End of the course questionnaire is used to assess the effectiveness of the courses.
 - prepared by an external consultant (Dr. Neal of Erie Community College)
 - Mainly multiple choice questions with a few short answer questions.
- The overall effectiveness of the CSE4/586 course as measured by the average of ratings for the 42 questions. (1 - best to 5 - worst) is shown.

Effectiveness of Adaptation (CSE486/586)

- Survey with 42 multiple choice questions pertaining to coverage of grid in CSE4/586.
- Average rating among 20 students who took the survey is shown.

External evaluator identified 7 areas for improvement.

- Two of these pointed to unavailability of grid programming infrastructure for students to use.
- We have remedied this situation with more than one grid lab infrastructure.

Infrastructure: LinuxGrid

- Goal: To facilitate development of service-oriented applications for the grid.
- Two major components: Staging server and Production grid server.
- Grid application are developed and tested on staging server and deployed on a production server.
 - Production grid server:
 - Three compute nodes with Red Hat Linux and Globus 3.0.2 instance.
 - One utility gateway node with Free BSD and Globus 3.0.2.
 - Lab 1 will be deployed on the staging server, Lab 3 on the production grid.

Infrastructure: SparcGrid

- Goal: To run jobs submitted in a distributed manner on a Condor-based computational cluster Condor.
- Composed of 50 Sun recyclable used Sparc4 machines, which form computational nodes, headed by a front-end Sun server.
- The installation scripts are custom-written facilitating running of jobs in a distributed manner.
 - Partially supported by Center for Computational Research (CCR).
- Lab 2 will be developed, deployed and tested on this infrastructure.
Industrial Training Tier

- In collaboration with The Center for Industrial Effectiveness (TCIE) of University at Buffalo (UB).
- A Two-hour breakfast seminar introducing grid technology to business decision makers and potential adopters.
- Topics include:
 - Grid application domains
 - Grid application models
 - How relate grid to currently used technologies and
 - Details of the grid infrastructures currently operational at UB.

Resources for Adoption

- GridForce is modular that all or parts of it can be adopted by educators and practitioners.
- Course curriculum, project descriptions, solutions and lecture material are available online at www.cse.buffalo.edu/gridforce

Challenges in Adapting Grid Technology

- Adding to existing curriculum.
 - Solution: Addressed through labs.
- Adapting to versions of software and toolkits.
 - Solution: Discuss differences, however work with the latest version.
- Managing students with deficiencies in their technical background.
 - Solution: Special coverage during recitations.
- Maintaining grid infrastructure for hands-on labs.
 - Solution: Include a system administration support person in the implementation of curriculum.
- Lack of appropriate text books.
 - Solution: Good area for anybody with expertise to write a book.

Contributions

- Expected number of students directly impacted: 200+ per year. With proper dissemination this will be much higher.
- Comprehensive framework covering grid technology in course curriculum, lab exercises, infrastructure to support labs, and applied research.
- Coverage addressing needs at various levels: undergraduate, graduate to industrial workforce and decision makers.
- Offers a model for adaptation of ever changing technology landscape.