
1

9/26/2003 B.Ramamurthy 1

Distributed File Systems

B.Ramamurthy

9/26/2003 B.Ramamurthy 2

Introduction
Distributed file systems support the sharing
of information in the form of files throughout
the intranet.
A distributed file system enables programs to
store and access remote files exactly as they
do on local ones, allowing users to access
files from any computer on the intranet.
Recent advances in higher bandwidth
connectivity of switched local networks and
disk organization have lead high performance
and highly scalable file systems.

9/26/2003 B.Ramamurthy 3

Storage systems and their
properties

Sharing Persis-
tence

Distributed
cache/replicas

Consistency
maintenance

Example

Main memory RAM

File system UNIX file system

Distributed file system Sun NFS

Web Web server

Distributed shared memory Ivy (Ch. 16)

Remote objects (RMI/ORB) CORBA

Persistent object store 1 CORBA Persistent
Object Service

Persistent distributed object store PerDiS, Khazana

1

1

1

9/26/2003 B.Ramamurthy 4

File system modules

Directory module: relates file names to file IDs

File module: relates file IDs to particular files

Access control module: checks permission for operation requested

File access module: reads or writes file data or attributes

Block module: accesses and allocates disk blocks

Device module: disk I/O and buffering

9/26/2003 B.Ramamurthy 5

File attribute record structure
File length

Creation timestamp

Read timestamp

Write timestamp

Attribute timestamp

Reference count

Owner

File type

Access control list (ACL)

9/26/2003 B.Ramamurthy 6

UNIX file system operations
filedes = open(name, mode)
filedes = creat(name, mode)

Opens an existing file with the given name.
Creates a new file with the given name.
Both operations deliver a file descriptor referencing the open
file. The mode is read, write or both.

status = close(filedes) Closes the open file filedes.
count = read(filedes, buffer, n)
count = write(filedes, buffer, n)

Transfers n bytes from the file referenced by filedes to buffer.
Transfers n bytes to the file referenced by filedes from buffer.
Both operations deliver the number of bytes actually transferred
and advance the read-write pointer.

pos = lseek(filedes, offset,
whence)

Moves the read-write pointer to offset (relative or absolute,
depending on whence).

status = unlink(name) Removes the file name from the directory structure. If the file
has no other names, it is deleted.

status = link(name1, name2) Adds a new name (name2) for a file (name1).
status = stat(name, buffer) Gets the file attributes for file name into buffer.

2

9/26/2003 B.Ramamurthy 7

Distributed File System
Requirements

Many of the requirements of distributed
services were lessons learned from
distributed file service.
First needs were: access transparency and
location transparency.
Later on, performance, scalability,
concurrency control, fault tolerance and
security requirements emerged and were met
in the later phases of DFS development.

9/26/2003 B.Ramamurthy 8

Transparency
Access transparency: Client programs should be
unaware of the the distribution of files.
Location transparency: Client program should see a
uniform namespace. Files should be able to be
relocated without changing their path name.
Mobility transparency: Neither client programs nor
system admin program tables in the client nodes
should be changed when files are moved either
automatically or by the system admin.
Performance transparency: Client programs should
continue to perform well on load within a specified
range.
Scaling transparency: increase in size of storage and
network size should be transparent.

9/26/2003 B.Ramamurthy 9

Other Requirements
Concurrent file updates is protected (record
locking).
File replication to allow performance.
Hardware and operating system
heterogeneity.
Fault tolerance
Consistency : Unix uses on-copy update
semantics. This may be difficult to achieve in
DFS.
Security
Efficiency

9/26/2003 B.Ramamurthy 10

General File Service
Architecture

The responsibilities of a DFS are typically
distributed among three modules:

Client module which emulates the conventional
file system interface
Server modules(2) which perform operations for
clients on directories and on files.

Most importantly this architecture enables
stateless implementation of the server
modules.

9/26/2003 B.Ramamurthy 11

File service architecture
Client computer Server computer

Application
program

Application
program

Client module

Flat file service

Directory service

9/26/2003 B.Ramamurthy 12

Flat file service Interface

Read(FileId, i, n) -> Data
— throwsBadPosition

If 1 ≤ i ≤ Length(File): Reads a sequence of up to n items
from a file starting at item i and returns it in Data.

Write(FileId, i, Data)
— throwsBadPosition

If 1 ≤ i ≤ Length(File)+1: Writes a sequence of Data to a
file, starting at item i, extending the file if necessary.

Create() -> FileId Creates a new file of length 0 and delivers a UFID for it.
Delete(FileId) Removes the file from the file store.
GetAttributes(FileId) -> AttrReturns the file attributes for the file.
SetAttributes(FileId, Attr) Sets the file attributes (only those attributes that are not

shaded in).

Primary operations are reading and writing.

3

9/26/2003 B.Ramamurthy 13

Directory service Interface

Lookup(Dir, Name) -> FileId
— throwsNotFound

Locates the text name in the directory and returns the
relevant UFID. If Name is not in the directory, throws an
exception.

AddName(Dir, Name, File)
— throwsNameDuplicate

If Name is not in the directory, adds (Name, File) to the
directory and updates the file’s attribute record.
If Name is already in the directory: throws an exception.

UnName(Dir, Name)
— throwsNotFound

If Name is in the directory: the entry containing Name is
removed from the directory.
If Name is not in the directory: throws an exception.

GetNames(Dir, Pattern) -> NameSeqReturns all the text names in the directory that match the
regular expression Pattern.

Primary purpose is to provide a service for translation
text names to UFIDs.

9/26/2003 B.Ramamurthy 14

Case Studies in DFS

We will look into architecture and
operation of SUN’s Network File System
(NFS) and CMU’s Andrew File System
(AFS).

9/26/2003 B.Ramamurthy 15

Network File System

The Network File System (NFS) was
developed to allow machines to mount
a disk partition on a remote machine as
if it were on a local hard drive. This
allows for fast, seamless sharing of files
across a network.

9/26/2003 B.Ramamurthy 16

NFS architecture

UNIX kernel

protocol

Client computer Server computer

system calls

Local Remote

UNIX
file

system

NFS
client

NFS
server

UNIX
file

system

Application
program

Application
program

NFS

UNIX

UNIX kernel

Virtual file systemVirtual file system

O
th

er
fil

e
sy

st
em

9/26/2003 B.Ramamurthy 17

NFS server operations (simplified) – 1
lookup(dirfh, name) -> fh, attr Returns file handle and attributes for the file name in the directory

dirfh.
create(dirfh, name, attr) ->

newfh, attr
Creates a new file name in directory dirfh with attributes attr and
returns the new file handle and attributes.

remove(dirfh, name) status Removes file name from directory dirfh.
getattr(fh) -> attr Returns file attributes of file fh. (Similar to the UNIX stat system

call.)
setattr(fh, attr) -> attr Sets the attributes (mode, user id, group id, size, access time

andmodify time of a file). Setting the size to 0 truncates the file.
read(fh, offset, count) -> attr, data Returns up to count bytes of data from a file starting at offset.

Also returns the latest attributes of the file.
write(fh, offset, count, data) -> attr Writes count bytes of data to a file starting at offset. Returns the

attributes of the file after the write has taken place.
rename(dirfh, name, todirfh, toname)

-> status
Changes the name of file name in directory dirfh to toname in
directory to todirfh.

link(newdirfh, newname, dirfh, name)
-> status

Creates an entry newname in the directory newdirfh which refers to
file name in the directory dirfh.

Continues on next slide .
9/26/2003 B.Ramamurthy 18

NFS server operations (simplified) – 2
symlink(newdirfh, newname, string)

-> status
Creates an entry newname in the directory newdirfh of type
symbolic link with the value string. The server does not interpret
the string but makes a symbolic link file to hold it.

readlink(fh) -> string Returns the string that is associated with the symbolic link file
identified by fh.

mkdir(dirfh, name, attr) ->
newfh, attr

Creates a new directory name with attributes attr and returns the
new file handle and attributes.

rmdir(dirfh, name) -> status Removes the empty directory name from the parent directory dirfh.
Fails if the directory is not empty.

readdir(dirfh, cookie, count) ->
entries

Returns up to count bytes of directory entries from the directory
dirfh. Each entry contains a file name, a file handle, and an opaque
pointer to the next directory entry, called a cookie. The cookie is
used in subsequent readdir calls to start reading from the following
entry. If the value of cookie is 0, reads from the first entry in the
directory.

statfs(fh) -> fsstats Returns file system information (such as block size, number of
free blocks and so on) for the file system containing a file fh.

4

9/26/2003 B.Ramamurthy 19

Local and remote file systems accessible
on an NFS client

jim jane joeann

usersstudents

usrvmunix

Client Server 2

. . . nfs

Remote

mount
staff

big bobjon

people

Server 1

export

(root)

Remote

mount

. . .

x

(root) (root)

Note: The file system mounted at /usr/students in the client is actually the sub-tree located at /export/people in Server
the file system mounted at /usr/staff in the client is actually the sub-tree located at /nfs/users in Server 2.

9/26/2003 B.Ramamurthy 20

NFS Revisited

From A.Tannenbaum’s text
Three aspects of NFS are of interest:
the architecture, the protocol, and the
implementation.

9/26/2003 B.Ramamurthy 21

NFS Architecture

Allows an arbitrary collection of clients and
servers to share a common file system.
In many cases all servers and clients are on
the same LAN but this is not required.
NFS allows every machine to be a client and
server at the same time.
Each NFS server exports one or more
directories for access by remote clients.
See example enclosed.

9/26/2003 B.Ramamurthy 22

NFS Protocol
One of the goals o NFS is to support a
heterogeneous system, with clients and
servers running different operating systems
on different hardware. It is essential the
interface between clients and server be well
defined.
NFS accomplishes this goal by defining two
client-server protocol: one for handling
mounting and another for directory and file
access.
Protocol defines requests by clients and
responses by servers.

9/26/2003 B.Ramamurthy 23

Mounting

Client requests a directory structure to
be mounted, if the path is legal the
server returns file handle to the client.
Or the mounting can be automatic by
placing the directories to mounted in
the /etc/rc: automounting.

9/26/2003 B.Ramamurthy 24

File Access

NFS supports most unix operations except
open and close. This is to satisfy the
“statelessness” on the server end. Server
need not keep a list of open connections. See
the operations listed in slides 17, 18.
(On the other hand consider your database
connection… you create an object, connection
is opened etc.)

5

9/26/2003 B.Ramamurthy 25

Implementation

After the usual system call layer, NFS specific
layer Virtual File System (VFS) maintains an
entry per file called vnode (virtual I-node) for
every open file.
Vnode indicate whether a file is local or
remote.

For remote files extra info is provided.
For local file, file system and I-node are specified.
Lets see how to use v-nodes using a mount, open,
read system calls from a client application.

9/26/2003 B.Ramamurthy 26

Vnode use
To mount a remote file system, the sys admin
(or /etc/rc) calls the mount program
specifying the remote directory, local
directory in which to be mounted, and other
info.
If the remote directory exist and is available
for mounting, mount system call is made.
Kernel constructs vnode for the remote
directory and asks the NFS-client code to
create a r-node (remote I-node) in its internal
tables. V-node in the client VFS will point to
local I-node or this r-node.

9/26/2003 B.Ramamurthy 27

Remote File Access
When a remote file is opened by the client, it
locates the r-node.
It then asks NFS Client to open the file. NFS
file looks up the path in the remote file
system and return the file handle to VFS
tables.
The caller (application) is given a file
descriptor for the remote file. No table entries
are made on the server side.
Subsequent reads will invoke the remote file,
and for efficiency sake the transfers are
usually in large chunks (8K).

9/26/2003 B.Ramamurthy 28

Server Side of File Access

When the request message arrives at the NFS
server, it is passed to the VFS layer where
the file is probably identified to be a local or
remote file.
Usually a 8K chunk is returned. Read ahead
and caching are used to improve efficiency.
Cache: server side for disk accesses, client
side for I-nodes and another for file data.
Of course this leads to cache consistency and
security problem which ties us into other
topics we are discussing.

9/26/2003 B.Ramamurthy 29

Distribution of processes in the Andrew
File System

Venus

Workstations Servers

Venus

VenusUser
program

Network

UNIX kernel

UNIX kernel

Vice

User
program

User
program

Vice
UNIX kernel

UNIX kernel

UNIX kernel

9/26/2003 B.Ramamurthy 30

Summary

Study Andrew Files System (AFS): how?
Architecture
APIs for operations
Protocols for operations
Implementation details

