Distributed File Systems

B.Ramamurthy

9/26/2003 B.Ramamurthy 1

Introduction

Distributed file systems support the sharing
of information in the form of files throughout
the intranet.

A distributed file system enables programs to
store and access remote files exactly as they
do on local ones, allowing users to access
files from any computer on the intranet.

Recent advances in higher bandwidth
connectivity of switched local networks and
disk organization have lead high performance
and highly scalable file systems.

9/26/2003 B.Ramamurthy 2

Storage systems and their
properties

Sharing Persis- Distributed ~ Consistency Example
tence cache/replicas maintenance

Main memory X X X 1 RAM

File system X v 1 UNIX file system

Distributed file system v/ v v/ v Sun NFS

Web v v v X Web server

Distributed shared memory 4 X v v Ivy (Ch. 16)

Remote objects (RMI/ORB) v X X 1 CORBA

Persistent object store v 4 X 1 CORBA Persistent

Object Service

Persistent distributed object store v v v PerDiS, Khazana

9/26/2003 B.Ramamurthy 3

File system modules

Directory module: relates file names to file IDs
File module: relates file IDs to particular files

Access control module: checks permission for operation requested

File access module: reads or writes file data or attributes
Block module: accesses and allocates disk blocks
Device module: disk I/0 and buffering
9/26/2003 B.Ramamurthy 4

File attribute record structure

File length

Creation timestamp

Read timestamp

Write timestamp

Attribute timestamp

Reference count

Owner

File type
Access control list (ACL)

9/26/2003 B.Ramamurthy 5

UNIX file system operations

filedes = open(name, mode) |Opens an existing file with the given name.

filedes = creat(name, mode) |Creates a new file with the given name.

Both operations deliver a file descriptor referencing the open
file. The mode is read, write or both.

status = close(filedes) (Closes the open file filedes.

count = read(filedes, buffer, n) |Transfers n bytes from the file referenced by filedes to buffer.
Transfers n bytes to the file referenced by filedes from buffer.
Both operations deliver the number of bytes actually transferred
land advance the read-write pointer.

count = write(filedes, buffer, n,

pos = Iseek(filedes, offset, Moves the read-write pointer to offset (relative or absolute,
whence) depending on whence).

status = unlink(name) Removes the file name from the directory structure. If the file

has no other names, it is deleted.

status = link(namel, name2) |Adds a new name (name?2) for a file (namel).

status = stat(name, buffer) Gets the file attributes for file name into buffer.

9/26/2003 B.Ramamurthy 6

Distributed File System
Requirements

Many of the requirements of distributed
services were lessons learned from
distributed file service.

First needs were: access transparency and
location transparency.

Later on, performance, scalability,
concurrency control, fault tolerance and
security requirements emerged and were met
in the later phases of DFS development.

9/26/2003 B.Ramamurthy 7

Transparency

Access transparency: Client programs should be
unaware of the the distribution of files.

Location transparency: Client program should see a
uniform namespace. Files should be able to be
relocated without changing their path name.

Mobility transparency: Neither client programs nor
system admin program tables in the client nodes
should be changed when files are moved either
automatically or by the system admin.

Performance transparency: Client programs should
continue to perform well on load within a specified
range.

Scaling transparency: increase in size of storage and

network size should be transparent.
9/26/2003 B.Ramamurthy 8

Other Requirements

Concurrent file updates is protected (record
locking).

File replication to allow performance.

Hardware and operating system
heterogeneity.

Fault tolerance

Consistency : Unix uses on-copy update
semantics. This may be difficult to achieve in
DFS.

Security

Efficiency

9/26/2003 B.Ramamurthy 9

General File Service
Architecture

The responsibilities of a DFS are typically
distributed among three modules:

» Client module which emulates the conventional
file system interface

» Server modules(2) which perform operations for
clients on directories and on files.
Most importantly this architecture enables
stateless implementation of the server
modules.

9/26/2003 B.Ramamurthy 10

File service architecture

Client computer Server computer

on| Application

program || program

[Flat file service

Seses

9/26/2003 B.Ramamurthy 11

Client module

Flat file service Interface

Read(Fileld, i, n) -> Data |If I <i <Length(File): Reads a sequence of up to n items
— throwsBadPosition ifrom a file starting at item 7 and returns it in Data.

Write(Fileld, i, Data) [If 1 <i < Length(File)+1: Writes a sequence of Data to a

— throwsBadPosition ifile, starting at item i, extending the file if necessary.
Create() -> Fileld (Creates a new file of length 0 and delivers a UFID for it.
Delete(Fileld) [Removes the file from the file store.

GetAttributes(Fileld) -> AtiReturns the file attributes for the file.

SetAttributes(Fileld, Attr) |Sets the file attributes (only those attributes that are not
ishaded in).

Primary operations are reading and writing.

9/26/2003 B.Ramamurthy 12

Directory service Interface

Locates the text name in the directory and returns the
relevant UFID. If Name is not in the directory, throws an
lexception.

Lookup(Dir, Name) -> Fileld
— throwsNotFound

AddName(Dir, Name, File)
— throwsNameDuplicate

If Name is not in the directory, adds (Name, File) to the
directory and updates the file’s attribute record.
If Name is already in the directory: throws an exception.

UnName(Dir, Name)
— throwsNotFound

If Name is in the directory: the entry containing Name is
removed from the directory.

If Name is not in the directory: throws an exception.
GetNames(Dir, Pattern) -> NameSeqReturns all the text names in the directory that match the
regular expression Pattern.

Primary purpose is to provide a service for translation
text names to UFIDs.

9/26/2003 B.Ramamurthy 13

Case Studies in DFS

#We will look into architecture and
operation of SUN’s Network File System
(NFS) and CMU’s Andrew File System

(AFS).

9/26/2003

B.Ramamurthy 14

Network File System

#The Network File System (NFS) was
developed to allow machines to mount
a disk partition on a remote machine as
if it were on a local hard drive. This
allows for fast, seamless sharing of files
across a network.

9/26/2003 B.Ramamurthy 15

NFS architecture

Client computer

Server computer

A
program || program

UNIX
systemcale—t—{[[
UNIX kern Virtual file system Virtual file system

Renjgte

UNIX kernet—

Local
5
el 2l nes NFS Utux
sylsteem S ol client I server sylsteem
o= NFS
9/26/2003 B.Ramamurthy 16

NFS server operations (simplified) — 1

lookup(dirfh, name) -> fh, attr Returns file handle and attributes for the file name in the directory

dirfh.
create(dirfh, name, atir) -> Creates a new file name in directory dirfh with attributes attr and
newfh, attr returns the new file handle and attributes.

remove(dirfh, name) status Removes file name from directory dirfh.

getattr(fh) -> attr Returns file attributes of file f. (Similar to the UNIX stat system
call.)

setattr(fh, attr) -> attr Sets the attributes (mode, user id, group id, size, 2 time
aedify time of a file). Setting the size to 0 truncates the file.

read(fh, offset, count) -> attr, data Returns up to count bytes of data from a file starting at offser.
Also returns the latest attributes of the file.

write(fh, offset, count, data) -> attr Writes count bytes of data to a file starting at offset. Returns the
attributes of the file after the write has taken place.
rename(dirfh, name, todirfh, tonameChanges the name of file name in directory dirfh to toname in
> status directory to todirfh
link(newdirfh, newname, dirfh, nameCreates an entry newname in the directory newdirfh which refers to
-> status file name in the directory dirfh.

Continues on next slide

9/26/2003 B.Ramamurthy 17

NFS server operations (simplified) — 2

symlink(newdirfh, newname, string)Creates an entry newname in the directory newdirfh of type

-> status
readlink(fh) -> string
mkdir(dirfh, name, attr) ->

newfh, attr

rmdir(dirfh, name) -> status

readdir(dirfh, cookie, count) ->
entries

statfs(fh) -> fstats

symbolic link with the value string. The server does not interpret
the sring but makes a symbolic link file to hold it.

Returns the string that is associated with the symbolic link file
identified by fh.

Creates a new directory name with attributes artr and returns the
new file handle and attributes.

Removes the empty directory name from the parent directory dirfh.
Fails if the directory is not empty.

Returns up to count bytes of directory entries from the directory
dirfh. Each entry contains a file name, a file handle, and an opaque
pointer to the next directory entry, called a cookie. The cookie is
used in subsequent readdir calls to start reading from the following
entry. If the value of cookie is 0, reads from the first entry in the
directory.

Returns file system information (such as block size, number of
free blocks and so on) for the file system containing a file fh.

9/26/2003

B.Ramamurthy 18

Local and remote file systems accessible
on an NFS client

Server 1 Client Server 2
(root)

NIV
NN N

people students . x ' staff users

NFS Revisited

#From A.Tannenbaum'’s text

#Three aspects of NFS are of interest:
the architecture, the protocol, and the
implementation.

9/26/2003 B.Ramamurthy 20

// \\\ mount mount // \\\
big jon bob ... jim ann jane joe
Note: The file system mounted at /usr/students in the client is actually the sub-tree located at /export/people in Server]
the file system mounted at /usr/staff in the client is actually the sub-tree located at /ufs/users in Server 2.
9/26/2003 B.Ramamurthy 19

Allows an arbitrary collection of clients and
servers to share a common file system.

In many cases all servers and clients are on
the same LAN but this is not required.

NFS allows every machine to be a client and
server at the same time.

Each NFS server exports one or more
directories for access by remote clients.

See example enclosed.

9/26/2003 B.Ramamurthy 21

NFS Protocol

One of the goals o NFS is to support a
heterogeneous system, with clients and
servers running different operating systems
on different hardware. It is essential the
interface between clients and server be well
defined.

-NFS accomplishes this goal by defining two
client-server protocol: one for handling
mounting and another for directory and file
access.

Protocol defines requests by clients and

responses by servers.
9/26/2003 B.Ramamurthy 22

Mounting

Client requests a directory structure to
be mounted, if the path is legal the
server returns file handle to the client.

#Or the mounting can be automatic by
placing the directories to mounted in
the /etc/rc: automounting.

9/26/2003 B.Ramamurthy 23

File Access

NFS supports most unix operations except
open and close. This is to satisfy the
“statelessness” on the server end. Server
need not keep a list of open connections. See
the operations listed in slides 17, 18.

(On the other hand consider your database
connection... you create an object, connection
is opened etc.)

9/26/2003 B.Ramamurthy 24

Implementation

After the usual system call layer, NFS specific
layer Virtual File System (VFS) maintains an
entry per file called vnode (virtual I-node) for
every open file.

Vnode indicate whether a file is local or
remote.
= For remote files extra info is provided.

» For local file, file system and I-node are specified.

= Lets see how to use v-nodes using a mount, open,
read system calls from a client application.

9/26/2003 B.Ramamurthy 25

Vnode use

#To mount a remote file system, the sys admin
(or /etc/rc) calls the mount program
specifying the remote directory, local
directory in which to be mounted, and other
info.

If the remote directory exist and is available
for mounting, mount system call is made.

Kernel constructs vnode for the remote
directory and asks the NFS-client code to
create a r-node (remote I-node) in its internal
tables. V-node in the client VFS will point to
local I-node or this r-node.

9/26/2003 B.Ramamurthy 26

Remote File Access

When a remote file is opened by the client, it
locates the r-node.

It then asks NFS Client to open the file. NFS
file looks up the path in the remote file
system and return the file handle to VFS
tables.

The caller (application) is given a file
descriptor for the remote file. No table entries
are made on the server side.

Subsequent reads will invoke the remote file,
and for efficiency sake the transfers are
usually in large chunks QK).

9/26/2003 B.Ramamui 27

Server Side of File Access

When the request message arrives at the NFS
server, it is passed to the VFS layer where
the file is probably identified to be a local or
remote file.

Usually a 8K chunk is returned. Read ahead
and caching are used to improve efficiency.

Cache: server side for disk accesses, client
side for I-nodes and another for file data.

Of course this leads to cache consistency and
security problem which ties us into other
topics we are discussing.

9/26/2003 B.Ramamurthy 28

Distribution of processes in the Andrew

File System
Workstations Servers
}UserVenus\
program Vice
[unixiemel |
=]
UNIX kernel
Venus~_ g @ @
User
el Network
UNIX kernel
=
Vice
3Uservenus\
rogram UNIX kernel

= =sss

9/26/2003 B.Ramamurthy 29

Summary

#Study Andrew Files System (AFS): how?
#Architecture

#APIs for operations

#Protocols for operations
#Implementation details

9/26/2003 B.Ramamurthy 30

