

History of the Grid	
 1980s parallel computing was used as a means of achieving high performance. Examples: Parallel virtual Machine (PVM), Message Passing Interface (MPI), and High Performance Fortran (HPF). 	
 1990s the focus shifted into coordination, distribution and collaboration, the fundamentals concepts of grid computing. 	l
 I-Way, the precursor modern day grid was demonstrated in the year 1995 in SC conference. 	
This lead to the development of	
□ grid software in Globus, Condor, Legion, and others	
services such as Network Weather Service (NWS), Storage Resource Broker (SRB)	
Protocols such as Open Grid Services Architecture (OGSA), Grid Security Infrastructure (GSI)	_
10/10/2003 B.Ramamurthy	5

Building Blocks

- Networks: grids are built on ubiquitous highperformance networks such as Internet2 Abilene, and intra-Europe GEANT network. Networks connect resources on the grid, such as the computers (nodes) and the storage.
- Computational nodes: Nodes are high performance parallel machines or clusters.
- Infrastructure software: This focuses on pulling together the network and the nodes and provides a development environment and execution platform for the applications.
- Standards: Development of key standards is critical for the successful management of the grid complexity. OGSA that provides the standard for the services on the grid is a fine example of such an effort.

10/10/2003 B.Ramamurthy

6

Trends

- Development of models of interaction between users and grid: Grid Computing environments and portals
- Access technologies: non computer means of access.
- Policies: grid resources are in different domains. Developing policies is a challenge.
- Grid economies: Building a business model around it is another interesting challenge.
- Grid will serve as the enabling technology for a broad set of applications in science, business, entertainment, health and other areas.