
9/3/2003 B.Ramamurthy 1

Creating a Distributed System
with RMI

B.Ramamurthy

9/3/2003 B.Ramamurthy 2

Remote Method Invocation

Remote Method Invocation (RMI) is Java’s
implementation of object-to-object
communication among Java objects to realize
a distributed computing model.
RMI allows us to distribute our objects on
various machines, and invoke methods on the
objects located on remote sites.
Source code for the demo is a modified
version of code in Chapter 20 of Deitel &
Deitel’s text Java : How to Program.

9/3/2003 B.Ramamurthy 3

RMI-based Distributed System

4.

XYZ
Implementation

Client Host Server Host

XYZ
Client Stub Stub

XYZ
interface

uses implements
1.

2.3. 3.5.

9/3/2003 B.Ramamurthy 4

Steps in RMI-based
Application

1. Design the interface for the service.
2. Implement the methods specified in

the interface.
3. Generate the stub and the skeleton.
4. Register the service by name and

location.
5. Use the service in an application.

9/3/2003 B.Ramamurthy 5

Compile and Register
Commands

Client Host Server Host

XYZ
Client Stub Skeleton

XYZ
interface

uses implements
1.

2.3. 3.5.
XYZ
Implementation

rmic
rmiregistry

Stores object by nameFinds object by name

9/3/2003 B.Ramamurthy 6

More Details

Once the object (or service) is registered, a
client can look up that service.
A client (application) receives a reference that
allows the client to use the service (call the
method).
Syntax of calling is identical to a call to a
method of another object in the same
program.

9/3/2003 B.Ramamurthy 7

Parameter Marshalling

Transfer of parameters (or marshalling)
is done by the RMI.
Complex objects are streamed using
Serialization.
RMI model of networking for distributed
system involves only Java.
No need to learn IDL or any other
language.

9/3/2003 B.Ramamurthy 8

Case Study : Temperature
Service

Lets create a distributed system using
RMI model for networking (remote
access).
Basically this program will download the
weather (temperature) information
from the site:

http://iwin.nws.noaa.gov/iwin/us/traveler.html

9/3/2003 B.Ramamurthy 9

Temperature Client/Server
Distributed Application

TempServerImpl

Client Host Server Host

TempClient TempImpl_Stub

TempServer

uses
implements

1.

2.3. 3.5.
TempImpl_Stub

rmic
4

compiles

generates

uses

9/3/2003 B.Ramamurthy 10

Defining Remote Interface

import java.rmi.*;
// the interface extends Remote interface
// any class implementing Remote can be

accessed remotely security permitting
public interface TemperatureServer extends

Remote
{ // specify methods that can be called

remotely
// each method “throws RemoteException”

}

9/3/2003 B.Ramamurthy 11

RemoteException

Any time you depend on outside entities
there is a potential for problems in
communication, networking, server crash etc.
Any exception due to these should be
handled by the services.
This feature imparts robustness to the
application.
Java mandates this feature for any RMI
service.

9/3/2003 B.Ramamurthy 12

Implementing the Remote
Interface

import java.rmi.*;
import java.rmi.server.*;
import java.net.*;
// others as needed
TemperatureServerImpl

extends UnicastRemoteObject
implements TemperatureServer {

9/3/2003 B.Ramamurthy 13

TemperatureServerImpl

This class’s constructor calls a private method
which in turn:

1. Connects to the url specified
2. Streams into a buffer the page referenced.
3. Parses the buffer to get the required data.
4. Creates an array of weather information.

9/3/2003 B.Ramamurthy 14

TemperatureServerImpl
(contd.)

It implements the service method
getWeatherInfo which simply returns
the weather data gathered.
The main method instantiates an object
for the service, and registers it with
rmiregistry.

9/3/2003 B.Ramamurthy 15

Streaming URLs

Using the openStream of java.net.URL class
you can stream in the file spefied by an
universal resource locator(url).
It can be streamed into a buffer where it can
be analyzed for information.
Any number of urls can be streamed in.
Unicast Communication : When you are
interested in a particular remote site you will
direct your net connection to that particular
site using unicast.

9/3/2003 B.Ramamurthy 16

Server Object Name

Syntax for the server object name is:
//host:port/remoteObjectName

Default port number for rmiregistry is 1099
For local host the object name:

//localhost/TempServer
For a remote host
//127.0.0.1/TempServer

9/3/2003 B.Ramamurthy 17

Name Binding

rebind method binds a server’s object
name to the object’s name as it is in the
registry.
Clients use the name in the registry.
There is also a bind() method.
But rebind is better since it binds the
most recently registered object.

9/3/2003 B.Ramamurthy 18

WeatherInfo class

It is very traditional class for keeping
the information about the temperature
at a single location.
It has data fields : cityName,
temperature, and description and get
methods for these.
An array of objects of this class is used
in the server implementation.

9/3/2003 B.Ramamurthy 19

Temperature Client

import java.rmi.*;
// import other packages
constructor calls a private method
getRemoteTemp which takes care of
lookup of remote object and access.
In this application it also displays the
information.

9/3/2003 B.Ramamurthy 20

Temperature Client (contd.)

The main method in this client can get
the IP address of the remote host as a
command line argument.
Command line argument is an array of
String of items in the command line
after the name of the application.

9/3/2003 B.Ramamurthy 21

Client Details

The name of the server object along with the
IP of the remote location is used in Naming
class’s lookup method to get an object
reference.
This object reference is then used for remote
method calls.
Observe that there is no difference between
the local and remote call.
WeatherItem class used in the Graphical
display of the weather information.

9/3/2003 B.Ramamurthy 22

Preparing the Application

1. Compile all the class using javac.
2. Generate the stub and the skeleton:
rmic -v1.2 TemperatureServerImpl
3. Then start the registry (this will be

running as a daemon)
rmiregistry &

9/3/2003 B.Ramamurthy 23

Preparing the Application

4. Run the server which will register with the
RMI registry.

Java TemperatureServerImpl &
5. Run the client.
Java TemperatureClient &
or
java TemperatureClient {IPAddress}
java TemperatureClient 192.168.0.150

9/3/2003 B.Ramamurthy 24

Summary

We discussed the various models of
distributes systems.
Java RMI was used to illustrate the
distributed system concepts.
Temperature examples shown
illustrates some of the distributed
system model discussed and all the
important RMI features.

