

secur	rity need	S		
	1965-75	1975-89	1990-99	Current
Platforms	Multi-user timesharing computers	Distributed systems based on local networks	The Internet, wide- area services	The Internet + mobile devices
Shared resources	Memory, files	Local services (e.g. NFS), local network	Email, web sites, Internet commerce	Distributed objects, mobile code
Security requirements	User identification a authentication	Reprotection of service	Strong security for commercial transactions	Access control for individual objects, secure mobile code
Security management environment	Single authority, single authorization database (e.g. /etc/ passwd)	Single authority, delegation, repli- cated authorization databases (e.g. NIS)	Many authorities, no network-wide authorities	Per-activity authorities, groups with shared Responsibilities, mass authentication
9/29/2003		B.Ramamurthy		4

Famil in sec	iar na curity	mes for the protagonists protocols	
	Alice Bob Carol Dave	First participant Second participant Participant in three- and four-party protocols Participant in four-party protocols	
	Eve	Eavesdropper Malicious attacker	
	Sara	A server	
0/20/2002			

Cryp	tography potations	
K	Alion's secret key	
Ka Ka	Boh's secret key	
K.	Secret key shared between Alice and Bob	
K ₄	Alice's private key (known only to Alice)	
KA	Alice's public key (published by Alice for all to read)	
, {M	κ MessageMencrypted with keyK	
[M]	K MessageMsigned with keyK	
0/20/2002		-
9/29/2005	B.Ramamuluiy	

TEA Enc	ryption Function	
void encrypt(unsigned	l long k[], unsigned long text[]) {	c
unsigned long	y = text[0], z = text[1];	
unsigned long	delta = 0x9e3779b9, sum = 0; in	nt n;
for (n= 0; n <	<i>32; n++) {</i>	
sum +=	= delta;	
y += (i) $z += (i)$	$(z << 4) + k[0]) \wedge (z+sum) \wedge ((z + y)) \wedge (y << 4) + k[2]) \wedge (y+sum) \wedge ((y + y))$	>> 5) + k[1]); >> 5) + k[3]);
text[0] = y; te	$ext[1] = z; \qquad \}$	
9/29/2003	B.Ramamurthy	11

TEA deci	yption function	
unsigned long v	nea long $k[j]$, unsigned long text[j]) y = text[0], z = text[1];	{
unsigned long a	delta = 0x9e3779b9, $sum = delta < -$	< 5; int n;
for $(n = 0; n < 3)$	32; n++) {	
z -= ((y <<	$4) + k[2]) \wedge (y + sum) \wedge ((y >> 5) +$	- k[3]);
y -= ((z <<	$4) + k[0]) \wedge (z + sum) \wedge ((z >> 5) +$	<i>k[1]);</i>
sum -= delta	ι;	
$\int_{text}^{b} text[0] = y; tex$	t[1] = z;	
9/29/2003	B.Ramamurthy	12

TEA in use	9		
→ void tea(char moa /* mode is 'e' for char ch, Text[while(!feof(inf	le, FILE *infile, FILE encrypt, 'd' for decryp 8]; int i; file)) {	*outfile, unsigned long k[]) { t, k[] is the key.*/	
i = fread(1 Text */	Text, 1, 8, infile);	/* read 8 bytes from infile int	0
if (i <= 0) while (i < switch (mo case 'e':	break; 8) { Text[i++] = ' ';} 5de) {	-/* pad last block with spaces	*/
encryp case 'd':	nt(k, (unsigned long*)	Text); break;	
decryp	nt(k, (unsigned long*)	Text); break;	
fwrite(Tex. outfile */	t, 1, 8, outfile);	/* write 8 bytes from Text to	
9/29/2003	B.Ramamurt	ny	13

RSA Encryption	
 Go find a key-pair e, d: Choose two large prime numbers, P and Q (each greater than 1) form: N = P x Q Z = (P, U) = (Q, U) 	0100), and
2. For <i>d</i> choose any number that is relatively prime with <i>Z</i> (that is has no common factors with <i>Z</i>). We illustrate the computations involved using small integer and Q :	, such that <i>d</i> values for <i>P</i>
P = 13, Q = 17 - 5N = 221, Z = 192 d = 5 3. To find <i>e</i> solve the equation:	
$e x d = 1 \mod Z$ That is, $e x d$ is the smallest element divisible by d in the series Z^{4} 3Z+1,, $e x d = 1 \mod 192 = 1, 193, 385,$	+1, 2 <i>Z</i> +1,
$\begin{array}{c} 385 \text{ is divisible by } d \\ 9/29/2008 = 385/5 = 77 \\ \text{B.Ramamurthy} \end{array}$	14

How can wisender"?	you authenticat	te
 (In real life concept of s Instead of s Atlanta will Atlanta's pr 	you will use signatures signatures is introduced sending just a simple m send a signed message ivate key:	: the l.) essage, e signed by
 E(B,E(M,a) Buffalo will)) first decrypt using its p	rivate kev
and use Atlasigned mes	anta's public key to dec sage:	rypt the
E(b, E(B,E)	$(M,a)) \rightarrow E(M,a)$	
E(A,E(M,a) 9/29/2003)) → M B.Ramamurthy	17

Digital Sigi	iduies
 Strong digital requirements needed to vertex 	l signatures are essential of a secure system. These are erify that a document is:
Authentic : so	ource
Not forged :	not fake
Non-repudiat deny that the	ble : The signer cannot credibly e document was signed by them.

Subject	Distinguished Name, Public Key
Issue	Distinguished Name, Signature
Period of validity	Not Before Date, Not After Date
Administrative information	Version, Serial Number
Extended Information	
Certificates are widely Subjects.	used in e-commerce to authenticate
A Certificate Authority	is a trusted third party, which certifies
Public Key's do truly be	elong to their claimed owners.
Certificate Authorities:	Verisign, CREN (Corp for Educational
Research Networking),	, Thawte
Research Networking), See also Netscape SSL	. Thawte 2.0 Certificate format:
http://wp.netscape.com/	eng/security/ssl 2.0 certificate.html#SSL2ce

Header	Message	Notes
1. A->S:	A, B, N _A	A requests S to supply a key for communication with B.
2. S->A:	$\begin{array}{l} \{N_A, B, K_{AB'} \\ \{K_{AB'}, A\}_{KB}\}_{KA} \end{array}$	S returns a message encrypted in A's secret key, containing a newly generated key K_{AB} and a 'ticket' encrypted in B's secret key. The nonce N_A demonstrates that the message was sent in response to the preceding one. A believes that S sent the message because only S knows A's secret key.
3. A->B:	$\{K_{AB}, A\}_{KB}$	A sends the 'ticket' to B.
4. B->A:	$\{N_B\}_{KAB}$	B decrypts the ticket and uses the new key K_{AB} to encrypt another nonce N_B .
5. A->B:	$\{N_B - 1\}_{KAB}$	A demonstrates to B that it was the sender of the previous message by returning an agreed transformation of N_{p} .

Component	Description	Example
Key exchange method	the method to be used for exchange of a session key	RSA with public-key certificates
Cipher for data transfer	the block or stream cipher to bused for data	DEA
Message digest function	for creating message authentication codes (MACs)	SHA

