
1

Distributed System 
Using Java 2 Enterprise 

Edition (J2EE)

B.Ramamurthy

Introduction
Sun Microsystems provides specifications for a 
comprehensive suite of technologies to solve large 
scale distributed system problems.
This suite is the Java 2 Enterprise Edition, 
commonly known as J2EE.
In this discussion we will discuss the architecture of 
J2EE and how it can be used to develop distributed 
multi-tiered applications.
This discussion is based on the tutorial by Sun 
Microsystems Inc.

J2EE Suite

J2EE (Java2 Enterprise Edition) offers a suite 
of software specification to design, develop, 
assemble and deploy enterprise applications.
It provides a distributed, component-based, 
loosely coupled, reliable and secure, platform 
independent and responsive application 
environment.

J2EE Suite (contd.)
Core technology: Container infrastructure, language and environment support
XML technology

The Java API for XML Processing (JAXP)
The Java API for XML-based RPC (JAX-RPC)
SOAP with Attachments API for Java (SAAJ)
The Java API for XML Registries (JAXR)

Web Technology
Java Servlets
JavaServer Pages
JavaServer Pages Standard Tag Library

Enterprise Java Bean (EJB) technology
Session beans
Entity beans

Enterprise JavaBeans Query Language
Message-driven beans

Platform services
Security
Transactions
Resources
Connectors
Java Message Service

Distributed Multi-tiered 
Applications

Services, clients (people and application) and 
data are distributed geographically across 
many platforms and many machines.
Multiple tiers:

Client-tier (browser or client-application)
Web-tier (web-server: Java Server Pages)
Business-tier (logic; Examples: Enterprise Java 
Beans)
Enterprise-Information-System (EIS) tier 
(database)

J2EE-based Application
The J2EE APIs enable distributed systems and 
applications through the following: 

Unified application model across tiers with enterprise 
beans 
Simplified response and request mechanism with JSP 
pages and servlets
Reliable security model with JAAS 
XML-based data interchange integration with JAXP 
Simplified interoperability with the J2EE Connector 
Architecture 
Easy database connectivity with the JDBC API 
Enterprise application integration with message-driven 
beans and JMS, JTA, and JNDI 



2

J2EE Technology Architecture

Server
platform JTS JMAPI JNDI JMS JDBCJAXP JAAS …

Enterprise Java Beans Components

Java Server
pages Servlets

Application clients Web clients

IIOP,
others

html

Enterprise Application Model

J2EE clients

Web clients
Dynamic web pages with HTML, rendered by web 
browsers.
Can include applets.
Communicates with server typically using HTTP.

Application clients
User interface using GUI components such as 
Swing and AWT. 
Directly accesses the business logic tier.

Web-tier Components
Client can communicate with the business 
tier either directly or through servlets ot JSP 
that are located in the web-tier.
Web-tier can help in pre-processing and 
allows distribution of the functionality.
Servlets are special classes to realize the 
request-response model (get, post of HTTP).
JSP is a developer-friendly wrapper over the 
servlet classes.

Business-tier Components

This is defined by the logic that pertains to 
the (business) application that is being 
developed.
Enterprise Java Beans (EJB) can be used to 
implement this tier.
This tier receives the data from the web-tier 
and processes the data and sends it to the 
EIS-tier and takes the data from the EIS and 
sends it to the web-tier.

Enterprise Information System 
(EIS) Tier

In general this corresponds to the database 
(relational database) and other information 
management system.
The other information management systems 
may include Enterprise Resource Planning 
(ERP) and legacy system connected through 
open database connectivity.



3

Enterprise Java Bean(EJB)
An enterprise bean is a server-side component 
that contains the business logic of an application. 
At runtime, the application clients execute the 
business logic by invoking the enterprise bean's 
methods.
Main goal of Enterprise Java Bean (EJB) 
architecture is to free the application developer 
from having to deal with the system level aspects 
of an application. This allows the bean developer 
to focus solely on the logic of the application.

Enterprise Java Bean (EJB) 
(contd.)

Deployable unit of code.
At run-time, an enterprise bean resides in an EJB 
container.
An EJB container provides the deployment 
environment and runtime environment for enterprise 
beans including services such as security, 
transaction, deployment, concurrency etc.
Process of installing an EJB in a container is called 
EJB deployment.

Enterprise Application with 
many EJBs

WebClient

ApplClient

EJB1

EJB2

EJB3

EJB4

EJB5

EJB6

Lets consider a shopping front application and figure out the
possible components (EJBs)

Roles in EJB Development
Bean developer: Develops bean component.
Application assembler: composes EJBs to form applications
Deployer: deploys EJB applications within an operation 
environment.
System administrator: Configures and administers the EJB 
computing and networking infrastructure.
EJB Container Provider and EJB server provider: Vendors 
specializing in low level services such as transactions and 
application mgt.

Types of Enterprise Java 
Beans

Session beans
Entity Beans

Bean-managed Persistence (BMP)
Container-managed Persistence (CMP)
Enterprise Javabeans Query Language

Messaging Bean
Session bean with Java Messaging features

Session Beans
For transient functions
Represents “conversational” state
Typically one per request
Data is non-persistent
Lifetime is limited by the client’s: once the 
client exits, the session bean and data are 
gone.
Simple and easy to program.
Light-weight.



4

Entity Bean

“Transactional” in behavior
Can be shared among clients
Persistent: data exists permanently after 
client quits.
Corresponds to a row a relational database.
The persistence (storing into the database) 
can be automatically done by the “container” 
(CMP) or explicitly by the bean (BMP)

Entity Bean (contd.)
Data is at the heart of most business 
applications.
In J2EE applications, entity beans represent the 
business objects that need persistence (need to 
be stored in a database.)
You have choice of bean-managed persistence 
(BMP) and container-managed persistence 
(CMP).
In BMP you write the code for database access 
calls. This may be additional responsibility but it 
gives control to the bean developer.

Message-Driven Bean
A message driven bean is an enterprise bean that 
allows J2EE applications to process messages 
asynchronously.
It acts as a JMS listener, which is similar to an event 
listener except that it receives messages instead of 
events.
The messages can be sent by any J2EE 
component: an application client, another enterprise 
bean, or a web component, or a non-J2EE system 
using JMS.
Retain no data or conversational state.

The life cycles of enterprise 
beans

An enterprise bean goes through various 
stages during its lifetime. Each type has 
different life cycle.

Life Cycle Differences
Session Bean

Object state:
Maintained by container

Object Sharing:
No sharing: per client

State Externalization:
State is inaccessible to other programs

Transactions:
Not recoverable

Failure Recovery:
Not guaranteed to survive failures

Entity Bean

Maintained by DB

Shared by multiple client

Accessible to other programs

State changed transactionally and is 
recoverable.

Survives failures and restored when the 
container restarts.

Session bean

PassiveReady

Does not Exist

create remove

passivate

activate

Does not Exist

Ready

create remove



5

Message-driven Bean and 
Entity-Bean Lifecycle

Does not Exist

Ready

create remove

onMessage

Does not Exist

Pooled

setContext unsetContext

Ready

ejbActivate ejbPassivate
create remove

Business Entities, Processes 
and Rules 

EJB Applications organize business rules into 
components.
Components typically represent a business entity or 
business process.
Entity: is an object representing some information 
maintained in the enterprise. Has a “state” which 
may be persistent.
Example: Customer, Order, Employee,
Relationships are defined among the entities: 
dependencies.

Process
Is an object that typically encapsulates an interaction of a 
user with business entities.
A process typically updated and changes the state of the 
entities.
A business process may have its own state which may exist 
only for the duration of the process; at the completion of the 
process the state ceases to exist.
Process state may be transient or persistent.
States ate transient for conversational processes and 
persistent for collaborative processes. 

Rules

Rules that apply to the state of an entity 
should be implemented in the component that 
represents the entity.
Rules that apply to the processes should be 
implemented in the component that 
represents the processes.

Choosing Entity or Session 
Bean

Entity (business entity) is typically implemented as entity 
bean or a dependent object of an entity bean.
Conversational (business) process as a session bean.
Collaborative bean as an entity bean.
Any process that requires persistence is implemented as an 
entity bean.
When exposure to other applications are not needed for an 
entity or process (local/private process) then they are 
implemented as bean dependent objects. 

Contents of an Enterprise 
Bean

Interfaces: The remote and home interface for 
remote access. Local and local home accesses 
for local access.
Enterprise bean class: Implements the methods 
defined in the above interfaces.
Deployment descriptor: An XML file that specifies 
information about the bean such as its type, 
transaction attributes, etc.
Helper classes: non-bean classes needed by the 
enterprise bean class such as utility and 
exception classes.



6

Enterprise Bean Parts

<<Home Interface>>
AccountHome

create()
find()
remove()

<<Remote Interface>>
Account
debit()
credit()
getBalance()

<<Enterrpise Bean class>
AccountBean
ejbCreate()
ejbFind()
ejbRemove()
debit()
credit()
getBalance()

Deployment Descriptor
name = AccountEJB
class = AccountBean
home = AccountHome
remote = Account
type = Entity
transaction = required
…..

Container Services
A container interfaces the programmatic 
components such as EJBs to the declarative 
components.
Container services include security, transaction 
management, naming services, and remote 
connectivity. 
The fact that the J2EE architecture provides 
configurable services means that application 
components can behave differently based on where 
they are deployed.
The concept of “deployable units” and “containers” 
where they can be deployed is central to J2EE.

Compilation and Deployment

Compilation (building the executables) uses 
build tool such as Apache Ant.
The components of the various tiers are 

packaged: .jar, .war, .ear
Declarative resources are added.
A deploy tool or management tool is used to 
deploy the packaged units into a J2EE server 
(container).

Summary
J2EE environment provides a framework for 
bundling together the components into an 
application and provide the applications 
necessary common services such as 
persistence, security, mail, naming and 
directory service etc.
Next class we will look a complete running 
example.
Browse through:

http://java.sun.com/j2ee/faq.html
http://java.sun.com/blueprints/guidelines/designing_enterprise_
applications_2e/index.html#chapters
http://java.sun.com/developer/onlineTraining/J2EE/Intro2/j2ee.html


