Introduction to Machine Learning
Involves teaching computer programs to improve their performance through guided training and unguided experience. Takes both symbolic and numerical approaches. Topics include concept learning, decision trees, neural nets, latent variable models, probabilistic inference, time series models, Bayesian learning, sampling methods, computational learning theory, support vector machines, and reinforcement learning.
None presently available.
CSE 250; EAS 305 or MTH 309; permission of instructor