DILEMMA INFERENCE ON SNePS SEMANTIC NETWORK SYSTEM

Han Yong You

Page 2

DILEMMA INFERENCE ON SNePS SEMANTIC NETWORK SYSTEM

I. INTRODUCTION

This paper presents a package of LISP functions collectively
called DILEMMA defined within the frame of MULTI {McKay & Shapiro
(1980)1, adding an extra bit to the existing capability of
inference process possessed by SNePS semantic network processing

system ([(Shapiro (197%all.

Current inference mechanisms implemented on virtulally any
semantic network systems are driven by essentially two basic
operations: matching and data exXtension. Matching operation is
to discover instances out of the database which will prove or
disprove the queried theorem, while data extension operation is
to expand the database through legitimate applications of
inference rules upon the data available at the given moment in
order to feed the matching operation with more data. We can thus
view that inferencing is a series of computations in which these
two basic operations are taking place repeatedly until either the
theorem is proved or disproved or no more data extension is
possible with the theorem yet undecided when the available data

is exhausted.

So far, a disjunctively asserted data items like

Page 3

(1) P v Q

are regarded useless as data items in the database even if P and
Q are individually a molecular constant. For instance, when one
knows that "Tom is either a first-year graduate student or a
senior undergraduate student of this department."”, the current
situation is such that that knowledge is not usable for answering

such a question like "Is Tom a student of this department?".

The goal of this research is to add an extra set of control
mechanisms to the present SNePS inference system so that it can
now utilize such disjunctively asserted data as data item, not
only as a rule if such data shows a possiblity of proving or
disproving the queried theorem in one way or another. This

technic of inference, which is traditionally called "dilemma

inference", shows itself, in fact, not so rare in an actual human
reasoning.
This paper has two folds. The first section is devoted to

an examination of the anatomy of dilemma inference in terms of
formal logic, and the latter section presents the new package as
a program object describing its major components with some
discussions on a few technical issues related to this

implementation.

II. THE LOGICAL ASPECT OF DILEMMA INFERENCE

Tt looks like to me that the intrinsic mechanism of

inference processes implemented on virtually all systems

Page 4

including SNePS is the so-called "disjunctive syllogism"” which is

depicted by (2):

(2) #P v Q.

+ Q. ,

where the meta-symbols have the following interpretations:
X.: "It is asserted that X is logically valid.";

+ X.: "It is derivable that X is logically valid.";
(indicates the range of the last meta-symbol

or +);

—_ {indicates whatever above this is in database).

If we introduce another literal P' which is logically

complementary to P (i.e., P' = ~P), then (2) can be rewritten
into (3):
(3) # ~P' v Q.

P

+ Q. ’

which is the canonical notation to express both syllogisms of

modus ponens and modus tollens which are each conventionally

represented by (4) and (5), respectively.

(4) # P' => Q.

Page 5

(5) # P' => Q.

But, the constraint that the number of the terms appearing
in the major premise has to be two seems uselessly too strong.
And similarly, the number of expressions in the minor premise
does not have to be one either (here, I will exclusively mean by
"terms" the top-level disjuncts within a disjunctive proposition,
and by "expressions" the top-level conjuncts within a conjunctive
proposition). Thus, a more generalized disjunctive syllogism is

formalized as (6):

{6) # P v P.v v P

1 2 n
* 0 ~Q, ~Qn
+ Rl v R2 v Y Rn—m

where Qi e A

n
~
v

[
[

Rk e A - (Qi),

m < n, 1 =< 1 =< m, 1 =X 3 =n, 1 =< k =< n - m.

It is immediatly recognized that representing (6) in an
implication format will be extremely cumbersome and wasty because
there exist roughly 2" number of different ways of grouping the

terms appearing in the major premise into two partitioned sets

Page 6

(one for the antecedent and another for the consequent), and
every different partition will require each unique implication of
its own. A bi-directional use of one implication can reduce that

explosive number by one half only.

We now clearly see that the operation of data extension in a
deductive inference process conventionally implemented on most
systems using the material implication is a proper subset of this
generalized disjunctive syllogism. The underlying idea of a
deductive inference is that, if we design a database in a certain
way abiding some constraint(s), then, when a part of the data
turns out to have a certain logical value, may we possibly
predict the logical value of some part of the rest of the data.
Two different constraints very likely useful in constructing a
database come to our mind. One constraint is to keep the overall
logical value of the whole database being inconsistant, while

another is to keep it being valid. A system which maintains the

overall logical value to be valid is called a “"truth—maintenance
system" (TMS). And a system which maintains the overall logical
value to be inconsistant may be analogously called an
"inconsistant-maintenance system" (IMS). A TMS system will crash
with even a single invalid expression connected by a logical AND
on the top level. Similarly, an IMS system will crash with even
a single consistant term connected by a logical OR on the top
level. Therefore, if the whole database is going to be
decomposed into a number of independent partitions connected all
together by an appropriate logical connective on the top level
(AND for a TMS system and OR for an IMS system), then it becomes

essential to assure that the logical value of each partitioned

Page 7

data component is also valid for a TMS system and inconsistant
for an IMS system. If a TMS system consisted of a top-level OR,
then any one valid component will make the rest of the whole
database uninteresting, and thus we can no longer find
independence relation among the top-level components. A similar
claim is also applicable to an IMS system as to top-level AND
connection. It becomes thus clear why an appropriate top-level
logical connective to integrate the whole database must be chosen
s0o as to make the database non-trivially useful depending on the
orientation of the system's truth-value maintenance. Thus, it
becomes clear that the top-level data structure of a TMS system
is a conjunction of disjunctions, while the top-level data
structure of an IMS would be, if it be ever tried, a disjunction
of conjunctions. And, we further see that, in a TMS system,

disjunctive syllogism is the fundamental tool for inference.

Then, we may easily imagine another type of tool for
inference, namely, conjunctive syllogism on an IMS system which

is depicted by (7).

(7) % P, Py ™ e P
% N0 v, v v o~
i+ Ry "R, "~ ~R__.

where the meta-symbols have the following meanings:
i# X.: "It is asserted that X is inconsistant.";
i+ X.: "It is derivable that X is inconsistant.”;

and all the others rest the same as in (6).

Page 8

Howaever, if we pretend that "consistant” and "valid" are
equivalent, and "inconsistant” and "invalid" are also equivalent
{as is in a monotonic logic), then, by replacing each of the
meta-symbols !# and !+ by a # and +, respectively, together with
a negation associated to every of them, we can equivalently

transform (7) into (8):

(8) ~1 Pl P2 . e Pn 1.
~f ~Ql v ~02 v v ~Q 1.
+ ~ [Rl R2 i e.. ™ Rn—m).

where all the conditions rest the same as in (7).

Using de Morgan's law, (8) is rewritten into (9):

(9) # ~P v ~P_. v ,... v ~P

+ ~Rlv~R2v V'an_m.

where all the conditions rest the same as in (8).

If we introduce new atoms, which are each a logically complement
of a negated atom in the set, and are each named by adding a
prime (diacritic) to the name of its complementary original atom,
then we can revwrite all the propositions using these newly

introduced atoms only, getting (10) from (9).

(10) $# P 1 Vv P 2 v v P n
~Q 1 ~Q ~Q m*
+ R v R® \4 v R? .

Page 9

where, if the complementary relation
is appropriately considered, all the conditions rest

analogously the same as in (9).

We see that (10) is syntactically identical to (6), which is a
formalization of a disjunctive syllogism on a TMS system. Hence,
we now realize that disjunctive syllogisms and conjunctive
syllogisms are isomorphic to one another in a monotonic logic.

To put this in another way, the duality of a logical model
enables us to construct an equally healthy model (as much healthy
as the original) by exclusively exchanging all conjunctions with
disjunctions and vice versa, all assertions with negations and
vice versa, and all interpretation of "valid"” with "inconsistant"
and vice versa [Kleene (1967:22)1. Thus so far, we have shown
that disjunctive syllogism may be adopted as a cannonical
notation for all inference mechanism, and that any significant
development of inference technic will probably be captured by

this cannonical representation inference mechanism.

But, I would like to point out here that it is not our
original purpose just to claim that the disjunctive
syllogism-like notation can be a cannonical representation of any
inference mechanisms. We rather want to locok into the behavior
of conventional inference mechanism with the aid of this
cannonical representation, and attempt to find out any possible

factors that we may be able to improve.

I think there are at least two heels of Achiles embedded in
most of the currently running inference systems. One is that it

is always assumed that the negation of "valid" is necessarily

Page 10

equivalent to "inconsistant”, and vice versa, so that a system
hardly knows how it can be modest by saying "Sorry, I don't
really know. I can't really say anything.”. Thus, one possible
revolt can be not granting the monotonicity of the interpretation
of a system’'s logical value. How to construct a system that
computes deductive inferences on a non-monotonic logic appears to

be an interesting worthy problem.

But, granting the monotonicity of logic, and thus pretending
that the frame of disjunctive syllogism is the basic tool for all
deductive inferences, another taboo which was not challenged by
current systems appears to be the assumption that a minor premise
is necessarily a single term. What kind of inference can be
performed if a minor premise turns out to be a disjunction of
syllogisms, the conclusion of a unit syllogism is supposed to be

a disjunction of more than one term ?

Let Dl and D2

syllogisms like the one whose schemata was defined in (6), and

be two independently valid disjunctive

M(D), m(D), and C(D) respectively refer to major premise, minor
premise, and conclusion of a disjunctive syllogism D. And let us
define an operation * that applies on two disjunctive syllogisms

such that D, * D2 represents a new disjunctive syllogism which is

1
a composition of Dl and D2 as described in (1l1).
* = ~
(11) Dl 02 <=> % M(Dl) M(Dz).
m(Dl) v m(D2).

+ C(Dl) v C(D2)

Page 11

A careful calculation will prove that Dl * 02 is also valid
if Dl and D2 are valid individually. Further more, it can be
also shown that * operation is associative and commutative and

can be applied abitrarily many times whose result is eventually

given as shown in (12).

(12) # X ~ X I

+ Zl v 22 v v Zm ,
where Xi = Pil v P12 V V Pim(i) ,
Yj = ~le - ~Pj2 L ~Pjn<j> ,
23 Q5 VOV o VOyngo-ncg>)
where th e Aj s

t = m<j> - n<j>,
Aj = (le, Pj2’ e ij<j>} - Bj »
Bj = {ij) s
1 =< k =< n<3j> ,
1 =<1i,j =<m, n<j> =< m<3I> ,

A simple example of this expanded disjunctive syllogism is given

by (13).

(13) # (P v P) (P, v P,
~P v Py
* Py v Py,

Here in this example, we can easyily see that the major premise
has two expressions and both the minor premise and the conclusion

also have two terms, and that the terms there are each one-to-one

Page 12

associated with each expression in the major premise.

An eyeball examination tells us that (13) is nothing else

but the canonical notation of a simplex dilemma as shown by (14).

(14) # (P, => Pl) N (P, => Poo).
¥ Py, v Py
* Py v Py

where P 13 = ~Pij.

Since o0ld Greek sophists paid them a great deal of
attention, dilemmas (di- for itwo and lemma for assumption or
proposition) have been long regarded as one of the most powerful
tools for a debate and has attracted much of logicians' interest.
To describe it verbally, the format of a dilemma is that the
major premise is a conjunction of arbitrary number of
implications, and the minor premise is either a disjunction of
every antecedent or a disjunction of the negation of every
consequent. Of course, the conclusion is either a disjunction of
every consequent or a disjunction of the negation of every
antecedent. Traditionally, the terms listed in the monor premise
were called "horns" of the dilemma, and completing an exhaustive
list of all possible horns were known as an ultimate technic of
developing strong arguments using a dilemma. Two well-known
standard technics of attacking a dilemma argument were known to
be either to seek any propositions not listed in the major
premise that may produce a couter-argument unfavorable to the

dilemma argument (-- "to take horns"), or to seek some missing

Page 13

horns that may provide a counter-argument unfavorable to the
dilemma argument (-- to evade between horns). Depending on
whether a dilemma is run in modus ponens or nodus tollens, it was
called “"constructive" or "destructive", respectively. And
further, whether the conclusion of dilemma was merged into one
single term or not, the distinction between a "simplex" and a

"complex" dilemma was also made.

To my knowledge, no system has attempted to implement this
most general schemata of disjunctive syllogism which seems to me
to be able to accomodate any kind of inference mechanisms

including simple disjunctive syllogisms.

1II. IMPLEMENTATION OF DILEMMA INFERENCE

We pointed out already that dilemma is a special type of
inference mechanism which may be viewed as a set of parallelly
processed simplex disjunctive syllogisms among which a special
inter-relationship * operation holds as defined. 1In most
situation, however, we would not really appreciate this too
complex process just in order to obtain a set of disjunctive
conclusion with which one can hardly do anything. But, if in
some situation, the conclusion happens to be merged into one
single term (which is the case of a simplex dilemma), then we
find that having the dilemma inference machanism available will

sometimes enable a system to derive a conclusion which one would

Page 14

normally want but could not get. Two examples of typical
benefits we can get through this dilemma inference are shown by

{15) and by (16).

(15) # (¥x)(Animal(x) => Breathe(x))
(¥y)(Plant(x) => Breathe(x))

(¥2)(Alivel(z) => Animal(z) v Plant(z})

+ (¥w){(Alive(w) => Breathe(w))

(16) # On(blockl, block2}.
Onl(block2, block3).
Red(blockl).
Red(block3).

Red(block2) v Bluelblock3).

+ (Ix3dy)(Red{x) ~ Bluel(y) ~ On{(x,y)).

where all the predicates in (15) and (16) are dummy symbols for
some appropriate n-ary predicates (But, readers are not
discouraged to make a possible association for each of these with

any tangible interpretation they may like to imagine).

The example (15) shows that dilemma inference can be used to
derive new inference rules ("patterns”" in a network term) which
is not supprising since dilemma inference is a meta-mechanism
which is ablout rule schematas. The example shown by (16), which
is one of the famous problems in AI community known as “"three-box

problem"” sheds another interesting point. The conclusion in the

Page 15

process (16) asserts that there exist some x and some y such that
the formula in the conclusion has an actual instanciation.
Usually, a formula with unbound variable or a disjunctively
asserted assertion is worthless for a final use. However, we
notice that the conclusion drawn in (16) is already usable enough
to answer a query that simply asks whether or not there exists
such an instance not necessarily demanding to learn the exact
binding situation. However, there may be someone who may wonder
if (16), with a disjunctive assertion still in the conclusion, is
within the frame of a simplex constructive dilemma which requires
its conclusion to be a merged single term. We believe that it is
s0, but in one level higher order, though. To prove it, let us

define P and E such that

(17) P(x,y) <=> On(x,y} " Red(x) ~ Bluel(y) , and

E(q) <=> (dxdy) (qix,y)).

Certainly, E(P) will have an interpretation that says "there is
at least one instance of P, a binary predicate."”. With this

definition, we can then rewrite (16) into (18).

(18) # P(blockl, block2) => E(P).
4 P(block2, block3) => E(P).

P(blockl, block2) v P(block2, block3)}.

+ E(P).

Notice that (18) conforms precisely the schemata of simplex
constructive dilemma, but where a predicate P is used as an

argument of a new higher order predicate E.

Page 16

First of all, it will be a good procedure to describe very
briefly the present status and the nature of SNePS semantic
network procesing system being maintained at the Department of
Computer Science at State University of New York at Buffalo.
SNePS can hold semantic information represented in the net as a
set of associated network, and can perform backward inference for
a specific theorem queried while a limited depth of forward
inference may be also done. Inference mechanisms being used
includes resource limited inference and ANDOR computation
[Shapiro (1979b)] on top of the standard material implication.
These various inference mechanisms are run in multi-processing

mode in which a maximum data sharing becomes possible.

One of the conceivable ways of approaching to the
implementation of dilemma inference to SNePS could be a
utilization of already available inference mechanisms with a
little addition of extra control. Among others, AND-IMPLICATION
mechanism may appears to be very plausible. It proves a given
theorem only when all the antecedents are proved. Considering
that a dilemma inference proves a theorem only when the theorem
is proved with every horn, we can realize that there is an
AND-IMPLICATION's nature in a dilemma inference. From this, we

can obviously derive a rule (19) which says:
(19) (H & 7)) = T,

where H is a set of all horns, and T is & queried theorem, This

rule represented by (19) is a tautology no matter what 7T happens

Fage 17

to bhe., Thus, adding this ruie to the database does not cause any
problem as far as the truth-maintaining business i concerned,
Due to this rule, thenm we may initiate AND-IMPLICATION mechanism,
and wait until this process returns an answer? If
AND-IMPLICATION proves T, then by the rule (1%}, we do prove T,
Fut, a close examination shows us that this is not a solution by
any means, Fecause the disjunctively asserted data will not be
ytilized by the AND-IMFLICATION process, the rule has no
significance at all as far as dilemma inference is concerned, It

is just like your saying that if you prove it then it is proved,

Liscussing ANDO-OR tree problem solving technic, Nilsson
(1926) illustrated tnat the three-box problem is & very peculiar
kind of a graph—like AND tree problem where there are two roots
at both of which the control paths should communicate, UCne root
is the node representing the given goal while another is the node
that provides the disjunctive instance leading to a solution via
‘reasoning-by—-cases” strategy. It is arn AND tree because every
branch of the disjunctive instance must succeed in proving the
theorem in order to prove the theorem, In an ordinary AND-OHF tree
problem solving, the goal node creates descendent AND or OR
nodes, and lets them run to see who brings back which anwer,
However, in this peculiar situation that he called the case of
reasoning-by—-cases strategy, an AND tree is created from the node
that represents the disjunctive assertion, and the goal node can
make a decion when the AND tree created by someone else reports
to him that every branch has been successfully terminated, Thus,
he stated that the key to the solution of this strategy is

somehow to make it possibie for the two critical nodes to

Page 18

communicate. This matter could be resolved pretty easily on
SNePS running on MULTI. When a top level inference mechanism
finds a disjunctive assertion which seemingly has a potentiality
of proving the theorem in a reasoning-by-cases fashion, the top
level inference driver sets up a specialist who will take care of
the dilemma inference case. Upon being set up, the specialist
creates each case handler for every horn resolution, and
instructs each of them to report to himself, and then waits until

all horns sends him a message of success.

The real harder problem of a dilemma inference rather lies
in the way how each of the horn attackers can resolves his own
problem. Each horn attacker is of course expected to call for
the help of inference specialist forming a daisy-chain recursion
in order to solve his horn resolution problem with his particular
horn assumption. In a data-sharing system like present SNePS
running on MULTI, a horn assumption may not safely be added to
the database as if it were real to everybody since it will mess

up all other innocent processes sharing the data.

Thus, the way how the horn assumption is handled for each
horn resolution seems to be the real core of the solution to

dilemma inference (or reasoning-by-cases).

The solution which is adopted by this implimentation is to
let the horn attacker reshape his own theorem derived from the
original theorem that the dilemma process boss has been asked
about. Each horn attacker is asked to prove the grand theoren

with one's own horn assumption taken granted. A different

assumption leaves a different subtheorem to be proved. For

Page 19

instance, if the horn assumption were the original theorem
itself, then that particular horn attacker does not have to do
anything. His duty is none from the very beginning. All he has
to do is to report that with his horn assumption, the theorem is
proved. Reshaping of theorem clearly does not affect the
database, and makes a change onto the theorem ultimately to be
proved, thus raising the possibility of the theorem's being

proved.

3. Erogram description

On top of number of supporting lisp functions, this program
package consists of four newly defined MULTI processes and two
pre—-existing processes slightly modified so that this package can
be coupled to the present SNePS inference package. Each process

is described as follows:
INFER

This is a pre-existing process which cranks the main piston
of inference machinary. This was modified so that it collects
available and relevant horn sets for a given theorem to be
proved. Dilemma inference is triggered only when the global
switch <DILEMMA> is set to T, which is the default value at the
top-most top level. If any horn sets are collected, INFER
creates D-INFER and D-ANSCAT with the help of a lisp function

<dilemma-infer>.
TOPMOST-TOPINE

This pre-existing process was modified so that it can

Page 20

receive disjunctive answers obtained throuhgh dilemma inference
via a different process registor. The reason it does not use the
normal message channel is in order not to cause the disjunctive
answer to be permenantly built as other type of answers are. The
deep reason why a disjunctive answer must not be permenantly
built is that a dilemma inference cannot determine the number
value for MAX arc. The routine assigns the maximum value for MAX
for the sake of the largest generality, but certainly the system
does not want it to serve as inference rules for any further

inference.

D-INFER and D-ANSCAT

D-INFER creates appropriately many horn attackers
ATTACK.HORN and one D-ANSCAT. ATTACK.HORN's are each given a
horn to be disjunctively proved, and D-ANSCAT collects the
answers coming from individual ATTAC.HORN's. When all horn
aresuccessfully finished, D-ANSCAT send the anwer (disjunctively

bound binging set) to whoever ordered the dilemma inference work.

ATTACK .HORN AND HORN-ANSCAT

ATTACK.HORN reshapes the local theorem related to the horn
assumption, and initiate INFER recursively to resolve the horn.
In this embedded call to INFER, the switch <dilemma> is set to
NIL such that too much costing dilemma inference may not be
triggered within the embedded level. HORN-ANSCAT catches answers

from ATTACK.HORN's clients and sends it to D-ANSCAT.

Page 21

References

Kleene, S. C. (1967) Mathematical Logic. New York: Jojn Wiley.

McKay, D. P. & Shapire, 5. C. (1980) MULTI -- A LISP based
multiprocessing system. Dept./Comp. Sci. SUNY at Buffalo.

Technical Report #164.

Nilsson, N. J. (1980) Principles of Artificial Intelligence. Palo
Alto: CA: Tioga.

Shapiro, 8. C. (1979a) The SNePS semantic network processing

system. In Findler ed., Associative Networks: Represepntation
and Use of Knowledge by Computars: 179-203. New York:

Academic Press.

Shapiro, S. C. (1979b) Using non-standard connectives and
quantifiers for representing deduction rules in a semantic
network. Presented at "Current Aspects of AI research", a

gseminar at Electrotechical Lab. Tokyo. Aug. 1979.

ENTERING ECHO DECEMBER 22, 1981 2348 Ak

TCINPUT DILMAD
(INFER GATHER.HORNS WORTH-DIL? D-HORNT NO-FREEVAR? NON-NILS ATOMOLECULE?
DILEMMA-INFER DILEMMA D-INFER ALL-HORNSY ATTACK.HORN HORN-TORN-CE UNTOR
N-CQ SELECT.HORNS SORT.HORNS PACK~IN PUTIN-BRSKET SET.PREG EQUISET HORN-
ANSCAT D-ANSCAT RECORDLUOANS DILEM~RPT DRAFT.D-ANS TOPHOST-TOPINF DEDUCE=
B~-SENID
TLINEYS MEMO)
(SNEPS FILE LOALEID
TDILEMMA
T
T{ENEPS)
SNEPS
#%{DESCRIBE (M1 M2 M3 M4 MDH M& M7 MB MY Mio Mil))
(M1 (0BJ (BLOCKZ)) (SURJ (BLOCKL)) (REL (0N)))
(M2 (OBJ (BLOCKI)) (SUBJ (BLOCKZ2)) (REL (0N)
{M3 (0BJ (BLOCK12)) (SUBJ (BLOCK11)) (REL (0N
(M4 (COLOR (RED) (P.OWN (BLOCK1))
(M5 {COLOR (BLUE)) (P.OWN (BLOCKIY)
(Mé& (COLOR (REDN) (P.OWN (BLOCKZY))
(M7 (COLOR {BLUE)) (P.OWN (BLOCKZ2)))
(M8 (ARG (M7 (COLOR (BLUE)) (P.OWN (BLOCKI)))
(Mé& (COLOR (RED)) (P.OWN (BLOCKZ))))
{MAX (1)
{(HIN (123)
(M7 (COLOR {(BLUEJ) (P.OWN (BLOCK11)))
(Mie {(COLOR (REU)) (P.OMN (BLOCK1Z)))
(Hi 1)
{ DUNPED)
&7 MEBECS

(DEDUCE P.LOWRN BLOCKZ2 COLOR ZX)

FOR & DILEMMA INFERENCE,
WE KNOW
(M8 (ARG (K7 (COLOR (BLUE)) (P.OWN (BLOCKZ)))
(Mé& (COLOR (RED)) (P.OWN (BLOCKZ))))
{(MAX (1))
(HIN (10 0)

HERE, WE INFER A DISJUNCTIVE ANSKER
(T&7 (ARG (T8& (COLOR (BLUE)) (P.OWN (BLOCKZ)))
(785 (COLOR (RED) (P.LOWN (BLOCKZI) ¥
(HIN (1))
(MAX (2)))

NIL
882 MSECS

#% (DEDUCE MIN 3 HAX 3 ARG ¢

* {TBUILD SUBJ %X 0BJ Z4Y REL ON)
* {TBUILD P.OWN %X COLOR REDD

® {TRUILD PLOWN %Y COLOR BLUE)Y)

FOR A DILEMMA INFERENCE,
WE KNOW
(M8 (ARG (M7 (COLOR (BLUE)) (P.OWN (BLOCKI))
{M& (COLOR (RED)) (P.OWN (BLOCKZ) YD)
(MAX (1))
(MIn (100

H AURN IRIGLERS INFER TU PRUVE 1113
A HORN TRIGGERS INFER TO PROVE Tilé
HERE, WE INFER A DISJUNCTIVE ANSKER
{T153
(:SVAR (@102 (VAR (T))) {(Q1el (VAR (1)3))
(ARG
(T132
(HRG
{7151 (REL (ON})
(OBJ (BLOCKZN
(:5VAR (Q160 (VAR (Ti)))
(5UBJ (G100 (:VpR (7)))
(TiSQ (COLOR (REDD) (:8VAR (Q120 (VAR (1))} (P.OWN (Q192€ (VAR (T)
1)
(7147 (COLOR {(BLUE)) (P.OWN (BLOCKZ2)1))
(ISVAR (Q10@ (:VAR (T))1))
(MAX (3))
(HIN (32))
(7148
{IS5VAR (Ql@al (svaR (11
{ARG
(T147 (REL (ON)
(:EVAR (@191 (vAR (TN)
(OBJ (R1le1 (VAR (T1)))
(GUBJ (BLOCK2)))
{T14& (COLOR (RED) (PLOWN (BLOCKZ)))
(7145 (COLOR (BLUE)) (iSVAR (Q121 (VAR (T) 1)) (P.OWN (Q1el (VAR (T
N
(MRX {3}
(HIN (33)))
(HIN 1))
{MAX (23))

NIL
2259 MSECS
% (LISP)

END &SNEPS
TLGRIND DILMA XREF ALPHA 7€)

DItMA 22 DECEMBER 1981 2.52.24
CREATED: 14 DECEMBER 1781 21.31.24
LAST MODIFIED: 22 DECEMBER 19781 2.15.28
CHANGES MADE TO: DEDUCE# D-ANSCART ATTACK.HORN ALL~-HORNSTY

F R 06 06 9696 0 3036 0 02606 06 2630 0 6 36 3036 0 3606 06 36 36 00 T3 06 06 36 06 11036 36 636 30 6 6 36 6 6 06 96 36 36 96 96 96 36 6 36 060696 30 96 0 2
% LALL~HORNS?I TESTS IF OR NOT EACH HORN INFERENCE HAS BEEN FINISHED
¥ WITH EVERY HORN IN THE HORN-SET BEING MALDE A5 AN ASSUMPTION.

HORN AS AN ASSUMPTION HOLDS.

L

HYY ~- 13/21/81

ALL-HORNGT
VALLE

THE ASKED QUERY IS DISJUNCTIVELY ANSWERED ONLY WHEN THE INFERENCE FOR EVERY

(LAMBDA (REG NHORN) (AND (EQ (LENGTH REG) NHORN) (NON-NILS (MAPCAR REG CDR))))

PLIST
NIL

HRENERRAREE KRR AREARLERERERERRREEERAREERX KRR R L ERARRERRARRRERANRE

FOLHWIVRVLELILE Y S Hos LE OR NOT A GIVEN NOUE <NDE:> DOMINATES RTOMIC NODES ONLY.
* HYY -- 12/21/81

ATOMOLECULE?
VALUE
(LAMBDA (NDE)
(NON-NILS (MAPCAR (DOWNSET NDE)
(LAMBOA (ARGT)
(OR (NUMBERP (CDR ARGT)) (NULL (DOWNSET (CDR ARGTI»))3))
)

PLISTY
NIL

FRM RS H R IE KNI F R AF IR R IH NI I K13 I35 9066336 36 56 36 56 96 36 96 56 96 9696 06 06 2696 3636 96 36 96 36 3636 96 3¢ 36 6 3¢
¥ PROCESS LATTACK.HORNI TAKES CARE OF THE INFERENCE OF THE GIVEN C@ WITH

% THE ASEUMPTION THAT THE HORN IS TRUE. THUS, THE NEW CQ' TO BE PROVED
¥ IS "CQ - HORN" WITH THE BINGING PROVIDED BY THE HORN ASSUMPTION.
* HYY -~ 12/21/81
ATTACK.HORN
VALUE

(LAMBLA (NAME: CLINK: CQ: BNDGH)
(COND C(NULL Cat) (SEND {(LIST T) CLINKE))
(T {PRIN3 <= " A HORN TRIGGERS INFER TO PROVE " * CGf)
{NEW-OLD-INFER CG: BNDG: CLINK:))))

PLIST
(LREGE: (NAME: CLINKET CQ: BNDG:))

NI IIE I I6 I I T 06 060606 56 06600 0696 06096 5 06 96 9696 08 3606 06 06 96 0606 3606 6 36 26 0 0 06 0K 0
% LU-ANSCATY PROCESE CATCHES THE ANSWERS FOR EVERY HORN INFERENCE, AND KEEPS

* CHECKING IF ALL HORNS PRODUCE EACH A DISJUNCTIVE ANSMER. IF S0, THEN THIS
¥ PROCESS REPORTS THE ASNWER TO CLINK:. <NHORN::> REMEMEMBERS THE NUMBER OF

¥ HORNG, <REG:» KEEPS ALL THE ANSWERS, <FLG::» SIGNAL GETS OFF AFTER ONE SET

¥ OF ANSKER IS SENT TO CLINK:. BUT ALL THE ANSHER ARE CONTINUOWUSLY DEPOSITED.
* HYY -- 12/21/81

D-ANSCAT

VALUE

(LAMBDA (NAME: CLINK: CQ: NHORN: REGE: MBNUG: FLG: M&G:)

(IF MSG:

(MAPC MSG: (LAMBDA (M5G) (SETQ REG: (RECORU.DANS REG: MSG))))
{SETG MSG: NIL
(IF (AND FLG: (ALL-HORNS? REG: NHORN:))
(CONDJ
((EQ (REGFETCH CLINK: *NAME:) *TOPMOST-TOFINF)
(D-SEND (DRAFT.O-ANS CQ: NHORN: REG:) CLINK:))
(T (SEND (DRAFT.D-ANS CQ: NHORN: RECG:z; CLINK:)))
(SETG FLG: NILOYM)
(SET CURNT: (LIST NAME: CLINK: CQ: NHORN: REG: MBNDG: FLG: MEG:)))

PLIST
(LREGS: (NAME: CLINK: CQ: NHORN: REG: HBNDG: FLG: M&EGE))

b33 S 2 s 2332 e 2SRRI SIS STIILITISIIL LI LLIL L L
* [D-HORNTI ASKS IF OR NOT THE GIVEN NOUE <DNE> IS A PROTENTIALLY USEFUL
¥ HORN FOR A DILEMMA INFERENCE. FOR THE TIME BEING, <DNE> IS5 REGARDED
AS A CANDIDATE HORN SET ONLY MWHEN IT IS A DISJUNCTIVELY ASSERTED CONTAINING
NO VARIABLES. FOR A FURTHER EXPANSION OF DILEMMA INFERENCE EVEN WITH RULE
NODES, A RELAXATION OF THIE FUNCTION MUST BE APPROPRIATELY MADE.

HYY -- 12/21/81

* W ok XK

L-HORNY
VALLE
(LAMBOR (NDE)
(PROG (MINID)
(RETURN
(AND (TOPY NDE)
(NO-FREEVAR? NIE)
(NON~NILS (MAPCAR (GET NDOE *ARG) ATOMOLECULE?))
(SETQ MINI (CAR (GET NDE *HINI))
(PLUSP (DIFF (LENGTH (GET NDE *ARG)) MINIDIO))

PLIST
NIL

2696 9 69 26 96 36 3636 96 96 96 3636 36 36 36 96 9 36 6 9 I 36 3 3 36 6 36 3636 36 9 3 36 36 6 I J6 36 3 I 3 36 36 36 36 36 I 3 96 96 96 36 I 3 I 06 06 3606 396 IR

* LD-INFERI ITERATIVELY TRIES TO0 PROVE THE GIVEN CG WITH EACH HORN BEING
¥ AN ASSUMPTION.

% HYY -- 12/21/81
O-INFER
VALLUE
(LAMBDA (NAME: CLINK: CQ: HORNSET: MBNDG:)
(MAPC

{CUR HORNSET:)
{LAMBOA (HORN)
(PROG (HP HO)
(SETR
HF (NEW *ATTACK.HORN
(SET@ HC (NEW *HORN-ANSCAT CLINK: (ARGN HORN 2) NIL NIL T)»)
{HORN~TORN-CQ HORN CQ:)
(LUNION-B (ARGN HORN 2) MBNDG:)))
(REGSTORE CLINK: 'REG: (CONS (LIST HC) (REGFETCH CLINK: *REG#)))
(INITIATE HPY)OI D)

PLIST
(LREGS: (NAME: CLINK:= CQ: HORNSET: MBNDG:))

MMM RNENEIERERN IR NN NN ERENERRRRNH RN ERHHH NN F KRR R RN RN N R
% [D-SEND] IS A KLUDGE FOR SENDING AN ANSHWER DERIVED THROUGH A D-INFERENCE
¥ TO [TOPMOST-TOPINF] PROCESS. THE REASON FOR NOT LISING NORMAL MESGAGE

% CHANNEL IS DESCRIBED IN CDEDUCE®] SECTION. THIS MUST BE, THOUGH, ELIMINATED
* IN THE FUTURE BY CHANGING SOME CODE IN L[TOPMOST-TOPINF1 PROCESS, THROWING
% AWAY THE REGISTER <D-ANS:: EVENTUALLY.
* HYY -- 12/21/81
[~SEND
VALUE

(LAMBDA (ANS BOSS)
(SETQ ANS (CAR (ARGN ANS 2) 1)
{REGSTORE BOSS ‘*D-ANS: AND)
{INITIATE BOSS)Y)

PLIST
NIL

g T T T T T Tttt et 2223 R T2 Lt el bt b bbb bbb
% [DEOUCE®] MODIFIED 8Y HYY IN ORDER TO AOD ONE EXTRA REGISTOR TO THE PROCESS
% [TOPMOST-TORINFI. THIS REGISTOR IS NEEDED TO GET AN ANSWER FROM THE
DILEMMA INFERENCING PROCESS. THE REASON WHY WE DO NOT USE THE NORMAL
MESSAGE SENDING CHENNEL FOR THIS PURPOSE IS TO AVOID THE THEOREM PROVEX
VIA O-INFERENCE BEING PERMENANTLY BUILT IN THE DRTABASE.

HYY —-— 12/721/81

* s K ok

DEOUCE *
VaLUE
(LAMBDA (NUMFLD CQ)
(PROG (TP RESULTS: INF XDILEMMA)
(SETQ XDILEMHA DILEMMA)
{(PUT *LASTINFER *:1val NIL)
(IF (NULL (FIRET-ATOM CQ)) (RETURN RESULTS))
(SETQ
TP (NEW *TOPHMOST-TORINF
NIL
(FIRST-ATOM CQ)
MIL
NIL
0
¢
(IF (NUMBERP NUMFLL) NUMFLID
CIF (NOT (ATOM NUMFLID) (CAR NUMFLID)
(IF (NOT (ATOM NUWFLD)} (CADR NUMFLD))
NIL
NIL
(NEW YI-HMTR
NIL
(LIST (SETQ INF (NEW *INFER NIL (FIRST-ATOM C@) NIL NIL)M)
NIt}
NIL)
{(REGSTORE INF *CLINKZ TP
(MULTIP (LIST (REGFETCH TP *MTRI)))
(PUT LASTINFER *rval (LIST TP))

{TERPRI)

{TERFRI)

(RETURN RESULTE:)))
PLIST
NIL

HHHH I KH I IE K I HHIRIEI TN I I 663608 6 3 636 360606 066 30060 066 06 063606 6 36 36 36 36 6 06 36 6 K I N

¥ LOILEM-RPTI ISSUES A SNEPSUL USER READABLE MESSAGE FOR THE DILEMMA INFERENCE
* PROCESSING TAKEN.

* HYY -- 12/21/81

DILEM-RPT
VALUE
(LAMBDA {(HORNSET)
(PRINI <= ¥ FOR A DILEMMA INFERENCE,")
{COND ((EG (REGFETCH BOSS *NAME:) *TOPMOST-TOPINF) (PRIN3 < " HE KNOW" «x))
(T {PRIN3 <= " SINCE™ <3)))
(DESCRIBE (~ (CAR HORNSET))

PLIST
NIL

T I3 060 T I 606 I I I 6060000060 6000 0
x JDURILEMMALX IS A GLOBAL SWITCH FOR DILEMMA INFERENCING. DEFAULT IS T.
% HYY -- 12/21/81

DILEMMA
VALLUE
T

PLIST
NIL

RREEREFHARAREERRUE LR RER LR L AR KT REREREREREXEREEREEERREAERRRE KRBT AR XX

FOLMLLERAARTLNCCRS S1arH aVELT IRLED EVERT HORNDED THREN FROM THE HORNFILE,
* EETTING UP LDO-ANSCATI FOR ANSER CATCHER OND CO-INFERI FOR 8 DISJUNCTIVE
* REASONING.

% HYY ~- 12721781

DILEMMA-INFER
VALUE
(LAMBDR (BOSS €Q MBNDCG HORNPILE)
(SETQ ZDILEMMA NIL)
(REFEAT NIL
WHILE HORNPILE
(DILEX-RPT (CAR HORNPILE))
(INITIATE (NEW 'D-INFER
(NEW *D-ANSCAT
BOsE
cas
(LENGTH (CUAR HORNPILE))
NIL
MBNDG
1
NIL)
<o
{CAR HORNPILE)
HMENDG))
{SETQ HORNPILE (CDR HORNPILE»))

PLIST
NIL

JE0EJE 300 0 26 36 20 03 30 T U TE I TN T I I I IE I I FE I I I 6606 I I 3 I I6 I I3 I I 6 I I I 0
¥ [DRAFT.D-ANST IS A KLUDGE FOR SENDING AN ANSWER DUE TO DILEMMA INFERENCE

* [ORAFT.D-ANE] DRAFTS THE FINAL ANSWER TO BE SENT TO LTOPMOST-TOPINFI WHEN
¥ f DILEMMA INFERENCE BRINGS UP WITH & DISJUNCTIVE ANSWER. NOTE THAT THE
ANSWER IS5 A TEMPORARY NOLE,.

* HYY -~ 12/21/81

DRAFT . B-ANS

VALUE
LAMBDA (CO MAXI REG)
(LIST CR
(APPLY TBUILD
(LIST *MAX
MAXI
TMIN
1
ARG
(MAPCAR REG (LAMBDA (D-ANS) (NBUILD CQ (CADR D-ANS) TBUILIN)M
FLIST
NIL
EQUISET
VALUE

{(LAMEBDA (L1 LD
(AND (EQ (LENGTH L1) (LENGTH L2))
{NON-NILS {MARPCAR L1 (LAMBOA (LL) (MEMB LL L23)33))

PLIST
NiL

T T A6 369636006 J6 06 26 36 96 936 6 36 36 36 36 36 36 96 96 36 36 J6 96 I8 6 J6 K696 36 96 3 36 096 6 96 96 96 J6 0 36 6 96 96 560 96 96 36 36 36 00 0 60 KA K KK
*

*OLWHIRLRCGAVRNGG GHIHENS WURTHKHLG L AORN-SETD FOR A ULLEMMA INFERENCE OF THE

*# GIVEN CR. A HORN-SET IS5 A DISJUNCTIVELY ASSERTED STATEMENT IN WHICH AONY
¥ SUBLET OF THE GIVEN CQ IS INCLUEDED AS ONE OF ITS DISJUNTES.
¥ RETURNS (MI (Md BJd TJ) (MK BK TE) ... 7,
¥ WHERE MI IS THE NODE OF THE HORNSET FOUND IN THE DATABASE,
* (Md .. TJd) I5 & DATA SET FOR EACH HORN,
WHERE, MJd IS THE NODE OF HORN DISJUNCT,
® BJd 1S THE BINGING SATISFYING THE HORN AS AN ASSUMPTION,
T I& THE SUB-PART OF C@ WHICH IS PROVED BY THE HORN ASSUMPTION.
*® HYY -- 12/21/81
GATHER. HORNS
VALUE

{(LAMBDA (CQ BNDG)
{FPROG {HRN)
(MARPC (OR {GET CR PARGY (LIST Ce)
(LAMBDA (X)
(MAPC (MATCHI X BNDG)
(LAMBDR (YY) (SETQ HRN (CONS (APPEND Y (LIST X)) HRN))I)
(RETURN (SORT.HORNS (PUTIN-BASKET (SELECT.HORNS HRN)J))))

FLTIS
NIL

BRI I N I K I I 06 I 0TI 06606 T 060606 0 I 6 I

[HORN-ANSCATI CATCHES ANSWERS FOR A HORN AND SEND THE FIRST ANSKER T0

* LO-ANSCATT. RIGHT NOW, THE ANSMER IS SENT JUST ONCE. 1IN THE FUTURE,
% SOMEONE MAY ATTEMPT TO LET IT SEND ALL ANSWMERS BACK. DBUT NOTICE THAT
% A TAXONOMICALLY EMBEDDED DISJUNCTION OF DISJUNCTIONS ARE REALLY HESSY.
* HYY -- 12/721/81

HORM-ANSCAT
VaLLE

(LAEMBDA (NAMEY CLINK: BNDG: REG: MSG: FLGH)
(IF MSG: (SETQ REG: (AFPPEND REG: (COR MSG:)) MSGT NIL)D
(IF FLG: (SEND (LIST CURNTS {(UNION-DB BNDG: (CAR REGS))) CLINKI) (SET@ FLGI NILM)

(SET CURNT: (LIST NAME: CLINKD BNDG: REG: MSG: FLGIY))

PLIST
(LREGS: (NAME: CLINK: BNDG: REG: M&G: FLG#))

3903036036 0606 06 003 9606 006 T 036006 06 3 0000 3600 06 0 00 0000 060606 06 36 30 06 06 00 3696 06 06 06 9636 36 36 36 30 00 26 36 30 00 0 0

% [HORN~TORN-CQY GENERATES A NEW CQ TO BE PROVED FROM A GIVEN CQ WITH THE
RSSUMPTION THAT THE HORN IS TRUE.

¥ RETUHRNS A TEMPORARY NODE NEMWLY BUILT.

* HYY -~ 12/21/81

*

HORN-TORN-CAR
VALUE
(LAMBDR (HORN CQ)
(PROG (LCW
(RETURN
{COND
((OR (E& CQ (ARGN HORN 3)) (EQ (SETQ LCO (LENGTH (GET €@ *ARG))) 1)) NIL)
{T (FIRST-ATOM (RAPPLY TBUILD
{(LIST *HMAX
(SR LCY)
*MIN
(SUB1 LCW)
ARG
{UNTORN-CO {(ARGN HORN 3) (GET €& *ARGININIININ

PLIST

Mt

TN I3 36360606 3696 303636 3 B0 36 36 036 9656 606969696 96 56 96 5 696 36 36 636 36 36 26 06 36 36 96 36 36 0 06 96 6 30 36 3696 36 36 3 6 6 20 6 36 36 96 3
¥ LINFERI #MODIFIED BY HYY 12/21/861

® IN ORLER TO COLLECT HORMSETS INTO A HORNPILE, AND CALL DILEMMA INFERENCING
* ROUTINE IF <DILEMMA> IS5 SET AND <HORNPILE» IS NOT EMPTY. FOR THE TIME BEING
¥ <UTLEMMAX IS SET TO NIL AT ALL EMBEDDED INFERENCE LEVELS. HOWEVER, THIS MAY
BE LIFTED IN THE FUTURE IF AN ENOUGH MOTIVATION JUSTIFIES TO 1O SO.
SWITCHING OF <DILEMMAX IS LONE IN [UILEMMA-INFERI.
* HYY -—~ 12/21/81
INFER
VALUE

(LAMBDA (NAME: CLINK: CQ: BNDG: MSG:)
{PROG (WD HORNFILE)
(COND
CCAND (NULL M5G:) (GET CR:z *NAME:))
(INITIATE (NEW *EVAL-FN CLINK:® CQ: BNDG: NIL NIL)))
{7
(PROG (M A I
(SETQ M (OR MEG: (MATCHI OO BNDGE)) MEG: NIL)
(SETQ WO (WORTH-DIL? CQt))
(IF (ANLI ZDILEMMA WD) (SETQ HORNPILE (GATHER.HORNE CQ: BNDG:)))
(REPEAT NIL
WHILE M
{COND
((TOP? (TNODE {CAR M) 1)
(GETQ A (CONE (LIST (TNODE (CAR M) (SBIND (CAR M))») A))
(IF (EQ (REGFETCH CLINKS *NAMEL) *TOPMOST-TOPINF)
(INF-RPT (EBIND (CAR M) NIL NIL (LIST CQ))»)
(CAND (OR (GET (THODE (CAR H)) (CONV L@
(GET (TNOLE (CAR M) (CONV *ARGH)
(GET (TNODE (CAR M) (CONY 0GR)
{NOT
{MEMBER
NIL
{(MRFPCAR (TBIND (CAR M1
(LAMBIA (BM
(OR (VAR (CDR BP})
(NULL (GET (CAR BP) 'EVB-»1 1)
(SETQ O (CONS (CAR ¥W) D)) 1)
(SET@ M (CDR M2))
(IF (OR A
(AND (NULL {(REGFETCH CLINK: *CLINK)
(EQF (REGFETCH CLINK: 'TOT:) 93))
(SENLD (CONS Ce: A) CLINK:Z))
(IF (AND D (OR (NULL A) (WH-Q (SVAR C&:) BRDG:) Y

(MAFC D
(LAMBDA (MTCHID
(INITIATE
(NEW *GO-UP

(NEW *SWITCH CLINK: CQ2 (SBIND MTCHD) NIL)
(TNODE MTCHD)
(TBIND MTCHD)?)))))
(IF (AND XZDILEMMA WD HORNPILE) (DILEMMA-INFER CLINKE O3 BNDG: HORNPILE))
(COND
((GET CQ: *HAX)
(INITIATE
(NEW *VANDOR
CLINK:
Cos
(CAR (GET C@: *MIND)
(CAR {GET Rt 'MAX))
(LENGTH (GET Qs ARG
9

Vb § URE THNG)
BNDGE
NIL
NiLO®)
COGET Cae 7I-//~) (INITIATE (NEW *VI-//- CLINK: Q@ BNDG: NIL NIL)M)
COGET CQt YUNKD (INITIATE (NEW *V-UNK CLINK:D Q@ BNDG: NIL NIL NIL NIL»Y))»))
(SET CURNT: (LIST NAME: CLINK:I (03 BNIDG: HSG:) M)

ALIST
(LREGS: (NAMED CLINK:E CQ: DBNDG: M3G:))

NO-FREEVAR?
VALUE
{LAMBOA (NDE)
(NON-NILS (MAPCAR (DOWNSET NLE) {(LAMBDA (X) (NOT (VAR (COR X))))))

PLIST
NIL

TR I I I NI ST 036 I I 06696 96 0656 36 36 2638 06 06 06 0606 606 690060

% [NON-NILS1 1S A HELP FUNCTION TESTING IF A LIST CONTAINS ANY TOP LEVEL NIL
¥ RS AN ELEMENT. THIS IS USEFUL USED ASSGCIATED WITH A [HMAPCARI FUNCTION.
® HYY -~ 12/21/81

NON-NILL
VALUE
(LAMBDA (LS
(COND C(NULL LETY T
CONULL (CRR LS1))Y NIL)
(T (AND (CAR LET) (NON-NILS (COR L&TIN)

PLIST
NIL

F NI IR RT3 I I 00 T30 I I 06 06606069600 960000606 0
* [PACK~-INI IS AN RID TO CPUTIN-BASKET]
* HYY -- 12721 (PROG (TND)
(RETURN
{COND
CONULL HHEAP) NIL)
((AND (MEMB (BETO TND (CAR (GET (CAAR HHEAP)Y {(CONV ARG
(GET *NOOES *:VAL))
(O-HORNT TND))
(CONS (LIST TND (CAAR HHEAP) (ARGN (CAR HHEAF) 3) (ARGN (CAR HHERP) 4))
(SELECT.HORNG (CDR HHEAP)))
(T (SELECT.HORNS {(CDR HHEAP))))

PLIST
NIL

SETLPREG
YaLUE
{LAMBDR (FL)
(MAPC FL {LAMBDA (F) (PUT F *LREGS: {(ARGN (EVAL F) 2))¥
CARPLY QUTPUT (LIST *DILMR FLY)

PLIST

NIL

I F U666 I 606 I I I TR0 I I I IE I I 696 06 0 06 36 36060096 06 0626 36 06 06 96 36 96 96 96 96 96 36 I 3066 96 96 3 36 06 36 36 36 296 36 36 3¢
[S0RT.HORNGI FUTS ALL USEFUL HORNE SELECTED BY [SELECT.HORNS1 INTO A

® CONVINGZENT FURMHT RAS DESCRIBED IN DGHRTHERLCHORNSG.
* HYY -- 12/21/81

S0RT JHORNE
VALUE
(LAMBDA (HORNS)
(PROG (HORNPILE)
(MAPC HORNE
(LAMBDA (HSET)
(IF (EQUISET (GET (CAR HEET) *ARG) (MAPCAR (CLR HSET) CARY)
{SETQ HORNPILE (CONS HSET HORNPILE)X))))
{RETURN HORNPILED)

FLIST
NIL

FH 2RI I I I TN T K T8 963236096 36 96 9606 36060636 360608 30 0% 96 3636 5 06006 KK

[TOPHOST~-TOPINFI MOUIFIED BY HYY ON 12/21/81

* IN ORDER TO ALDL AN EXTRA RECIETOR <D~ANS:> THAT WILL RECEIVE AN ANSKER

¥ FROM A DILEMMA INFERENCE ROUTINE. SHOULD BE FURTHER IMPROVED IN THE FUTURE.
* HYY —-- 12/21/81

TOPMOST-TOPINF

VALUE
(LAMBDA (NAME: CLINK: CQs DATA: MEG: N-fiNG2 P-ANG: TOT: N-POS
N-NEG: /HEUEPSE BOSEES: MTR: O~ANSE)
{IF D-ANS:
(PRING < " HERE, WE INFER A DISJUNCTIVE ANSKER" <)

(AFPLY DESCRIBE D-ANS:D)
(EETR L-ANSE NIL))
(IF (SETQ HSG: (MEMBER-T (MAPCONC MSG: (LAMBDA (X) (COR X)) (SBINDS DATA:)))
(SEND MSG: BOSSESt)
(SETQ DATA: (APPEND DATA: MSGz))
{MARC
{(MAPCAR MSG:
(LaMBoe (X0
(CONS (FIRST-ATOM (NBUILD (COND ((ZAME-SIGN (CAR X) CQ#j Co)
(T (HEGATE <R
(CADR X)
FORBTOP))
(COR X33))
(LAMBDA (ANS)
{(IF (NOT (MEMBER (CAR ANS) REEULTSH))
(SETH RESULTS: (SNOC RESULTS: (CAR ANSI)
(COND ((NEGATED (CAR ANS)) (SETQ N-ANS: (ADDL N-ANSI)))
(T (SETQ P-ANS: (ADDL P-ANSE)) 1))
(IF (NOT (CONT? N-ANS: P-ANS: TOT: N-POS: N-NEG:))
(BETQ
FELUEPSE (APPEND
£ HENSPSE
(MRPCONC
(APREND SUEPS: EUNTS)
{LAMBDA (E)
(IF (OR (BELOWP E CURNT:)
{(MEMBER (REGFETCH E *NAME:) ?*(I-MTR I-MTR-R)))
(LIST EYVond
EUNTS {(MAPCONC EUNTS (LAMBDA (E) (IF (NOT (MEMBER E /%#SUESPSH)) (LIST EN))

SHEPST (MAPCONC SUSPS: (LAMBOA (E) (IF (NOT (MEMBER E /3%CUSPSH)) (LIST)1)

{(IF (EQ TP CURNTZ)
(MAPC EVNTE (LAMBDA (X)) (SUSPENDEM Xo)0
(MAPC SUSPG: (LAMBOA (X) (SUSPENDEM X))
(SETE EUNTS NIL SUSPS: NILD)
{SETH MSG: NIL))Y
(SET CURNT

Ldod T - Ll LiNE. s Lt n HiHe Mo N-HNE FrHMNDs 10

N-FPOS: N-NEG: /HEUSPSS BOSSES: MTR: O-ANS:))

PLIET

(LREGS: (NAME: CLIN: Che UATA= HEGe N-ANS: P-ANSE TOTs N-POS
N-HEG: /HSUEPSSE BOSSES: MTR: O-ANSE))

FR I B RN TR H KRNI H IR IK KT I T KK I NI J 06 00T 06 I35 96 36 36060 36 36 36 36 966 96 96 36 I 96 96 396 0
£ [UNTORN-CGD HELPS [HORN-TORN~CQI TO GENERATE A NEW CQ TO BE PROVED.

¥ [UNTORN-COT RETURNS B LIST OF NODES DISTINCT FROM HORN NOLE.

* HYY -- 12/21/81

UNTORN-CQ
VALUE
(LAMBOA (HCO C&)
(COND ({EQ (CAR CQ) HCQ) (COR CQJ)
(T (CONG (CAR CQ) (UNTORN-CQ HCO (CDR CQII))

PLIST
NIL

HERRBERRR KR RERE TR ERERIHEERERRRKT KRN R R I I H KKK KKK T KKK 33K 962

¥ [WORTH-OIL?] TESTS IF OR NOT O DILEWMMA INFERENCING IS WORTH TO BE EVER

¥ ATTEMPTED FOR THE GIVEN «CQ:. NO D-INFERENCE IS ATTEMPTED FOR AN ALREADY
¥ DISJUNCTIVE QUERY.

* HYY -- 12/231/81

WORTH-DIL?Y
VALLE
{(LAMBOA (CW)
(PROG (MAXI)
LRETUIRN
QR (AND (SETG MAXI (CAR (GET €& 'MAX)))
(EQ MAXI (CAR (GET CQ HINIY
(NON-NILE (MAPCAR (GET C@ *ARG) ATOMOLECULE?T)))
(ATOMOLECUHLE? €Q1)1)0)

PLIST

NI

CROSS REFERENCE OF DILMA

ALL-HORNET O-ANSCAT
ATOMOLECULET D-HORNT WORTH-DIL?

ATTACK .HORN D-INFER

D-ANECAT DILEMMA-INFER
O~HORN? SELECT JHORNS
D-INFER DILEMMA-INFER
[-SEND G-RNSCAT
DEDUCE*

OILEM-RPT ODILEMMA~INFER

MLLERPRN

DILEMMA-INFER

ORAFT . B-ANS

EQUISEY

GATHERLHORNS

HORN-ANSCAT

HORN-TORN-CQ

INFER

HO-FREEVAR?

NON-NILS

PACK-IN

PUTIN~BASKET

RECORD. DANS

SELECT .HORNS

SET.PREG

SORT .HORNS

TOPHOST-TOPINF

UNTORN~CQ

WORTH-DIL?Y

NIL
PEXLTY

REVERT.

/

Ve e %

INFER

D-aNsCat

SORTLHORNSG

INFER

D-INFER

O-INFER

DEDUCE*

O~HORNT

ALL~HORNS? ATOMOLECULE™ D-HORN?
NO~FREEVAR? NON-NILS WORTH-DIL?Y

PRCK~IN PUTIN-BASKET
GATHER.HORNS
D-ANSCAT RECORDL. UANS

GATHER.HORNS SELECT JHORNS

GATHER.HORNE

D-ANSCAT DEDUCE® DILEM-RPT INFER
HORN~TORN~CQ LINTORN-CQ
INFER

EQUISET

