
DILEMMA INFERENCE ON SNePS SEMANTIC NETWORK SYSTEM

Han Yong You

Page 2

DILEMMA INFERENCE ON SNePS SEMANTIC NETWORK SYSTEM

I. INTRODUCTION

This paper presents a package of LISP functions collectively

called DILEMMA defined within the frame of MULTI [McKay & Shapiro

(1980)1, adding an extra bit to the existing capability of

inference process possessed by SNePS semantic network processing

system [Shapiro (1979a)l.

Current inference mechanisms implemented on virtulally any

semantic network systems are driven by essentially two basic

operations: matching and data extension. Matching operation is

to discover instances out of the database which will prove or

disprove the queried theorem, while data extension operation is

to expand the database through legitimate applications of

inference rules upon the data available at the given moment in

order to feed the matching operation with more data. We can thus

view that inferencing is a series of computations in which these

two basic operations are taking place repeatedly until either the

theorem is proved or disproved .Ql: no more data extension is

possible with the theorem yet undecided when the available data

is exhausted.

So far, a disjunctively asserted data items like

Page 3

(l) P V Q

are regarded useless as data items in the database even if P and

Qare individually a molecular constant. For instance, when one

knows that "Tom is either a first-year graduate student or a

senior undergraduate student of this department.", the current

situation is such that that knowledge is not usable for answering

such a question like "Is Tom a student of this department?".

The goal of this research is to add an extra set of control

mechanisms to the present SNePS inference system so that it can

now utilize such disjunctively asserted data as data item, not

only as a rule if such data shows a possiblity of proving or

disproving the queried theorem in one way or another. This

technic of inference, which is traditionally called "dilemma

inference", shows itself, in fact, not so rare in an actual human

reasoning.

This paper has two folds. The first section is devoted to

an examination of the anatomy of dilemma inference in terms of

formal logic, and the latter section presents the new package as

a program object describing its major components with some

discussions on a few technical issues related to this

implementation.

II. THE LOGICAL ASPECT OF DILEMMA INFERENCE

It looks like to me that the intrinsic mechanism of

inference processes implemented on virtually all systems

Page 4

including SNePS is the so-called "disjunctive syllogism" which is

depicted by < 2 > :

(2) # P V Q.

:It "-P.

+ Q.

where the meta-symbols have the following interpretations:

X.:

+ X.:

"It is asserted that Xis logically valid.";

"It is derivable that Xis logically valid.";

<indicates the range of the last meta-symbol

:It or +);

<indicates whatever above this is in database). --·

If we introduce another literal P' which is logically

complementary to P (i.e., P' = "'Pl, then <2> can be rewritten

into < 3 r :

(3) # ~p• V Q.

P'.

+ Q.

which is the canonical notation to express both syllogisms of

modus ponens and modus tollens which are each conventionally

represented by (4) and (5), respectively.

(4) # P' => Q.

Page 5

• p I•

+ o.

(5) # p• => o.
• "'0.

= p).

But, the constraint that the number of the terms appearing

in the major premise has to be two seems uselessly too strong.

And similarly, the number of expressions in the minor premise

does not have to be one either (here, I will exclusively mean by

"terms" the top-level disjuncts within a disjunctive proposition,

and by "expressions" the top-level conjuncts within a conjunctive

proposition>. Thus, a more generalized disjunctive syllogism is

formalized as (6):

(6)

"'0 2

p . n
A "-0 • m

+ Rl V R2 V V R n-m

where Qi e A = (Pj},

R e A - (0 i}, k

m < n, l =< i =< m, l =< j =< n, l =< k =< n - m.

It is immediatly recognized that representing (6) in an

implication format will be extremely cumbersome and wasty because

n there exist roughly 2 number of different ways of grouping the

terms appearing in the major premise into two partitioned sets

Page 6

<one for the antecedent and another for the consequent>, and

every different partition will require each unique implication of

its own. A bi-directional use of one implication can reduce that

explosive number by one half only.

We now clearly see that the operation of data extension in a

deductive inference process conventionally implemented on most

systems using the material implication is a proper subset of this

generalized disjunctive syllogism. The underlying idea of a

deductive inference is that, if we design a database in a certain

way abiding some constraint<s>, then, when a part of the data

turns out to have a certain logical value, may we possibly

predict the logical value of some part of the rest of the data.

Two different constraints very likely useful in constructing a

database come to our mind. One constraint is to keep the overall

logical value of the whole database being inconsistant, while

another is to keep it being valid. A system which maintains the

overall logical value to be valid is called a "truth-maintenance

system" <TMS}. And a system which maintains the overall logical

value to be inconsistant may be analogously called an

"inconsistent-maintenance system" (IMS>. A TMS system will crash

with even a single invalid expression connected by a logical AND

on the top level. Similarly, an IMS system will crash with even

a single consistant term connected by a logical OR on the top

level. Therefore, if the whole database is going to be

decomposed into a number of independent partitions connected all

together by an appropriate logical connective on the top level

<AND for a TMS system and OR for an IMS system), then it becomes

essential to assure that the logical value of each partitioned

Page 7

data component is also valid for a TMS system and inconsistant

for an IMS system. If a TMS system consisted of a top-level OR,

then any one valid component will make the rest of the whole

database uninteresting, and thus we can no longer find

independence relation among the top-level components. A similar

claim is also applicable to an IMS system as to top-level AND

connection. It becomes thus clear why an appropriate top-level

logical connective to integrate the whole database must be chosen

so as to make the database non-trivially useful depending on the

orientation of the system's truth-value maintenance. Thus, it

becomes clear that the top-level data structure of a TMS system

is a conjunction of disjunctions, while the top-level data

structure of an IMS would be, if it be ever tried, a disjunction

of conjunctions. And, we further see that, in a TMS system,

disjunctive syllogism is the fundamental tool for inference.

Then, we may easily imagine another type of tool for

inference, namely, conjunctive syllogism on an IMS system which

is depicted by (7).

(7) p
2

p . n

' .• ~ol V Q V V ~o .,,. ~ 2 · · · · m·

:+ R ~ R ~ A R
l 2 n-m

where the meta-symbols have the following meanings:

:t: X.: "It is asserted that Xis inconsistant.";

:+ X.: "It is derivable that Xis inconsistant.";

and all the others rest the same as in (6).

Page 8

However, if we pretend that "consistant" and 0valid" are

equivalent, and "inconsistant" and "invalid" are also equivalent

(as is in a monotonic logic), then, by replacing each of the

meta-symbols :• and :+ by a• and+, respectively, together with

a negation associated to every of them, we can equivalently

transform (7) into (8):

< a > p "
2

p 1. n

+ "' I R1 " R2 " " R 1. n-m

where all the conditions rest the same as in (7).

Using de Morgan's law, (8) is rewritten into <9>:

(9) # V ._.p 2 V • • • • V p .
n

Q " " 0 2 · • · · m '

+

where all the conditions rest the same as in <8>.

If we introduce new atoms, which are each a logically complement

of a negated atom in the set, and are each named by adding a

prime (diacritic> to the name of its complementary original atom,

then we can rewrite all the propositions using these newly

introduced atoms only, getting (10) from (9).

(10) P' l V P' V V 2 ••..

""0' 2

P' n

• "-QI
l " ""0 I m·

+ R11 v R'2 v v R'n-m

Page 9

where, if the complementary relation

is appropriately considered, all the conditions rest

analogously the same as in (9).

We see that (10) is syntactically identical to <6>, which is a

formalization of a disjunctive syllogism on a TMS system. Hence,

we now realize that disjunctive syllogisms and conjunctive

syllogisms are isomorphic to one another in a monotonic logic.

To put this in another way, the duality of a logical model

enables us to construct an equally healthy model (as much healthy

as the original) by exclusively exchanging all conjunctions with

disjunctions and vice versa, all assertions with negations and

vice versa, and all interpretation of "valid" with "inconsistant"

and vice versa CKleene <1967:22}1. Thus so far, we have shown

that disjunctive syllogism may be adopted as a cannonical

notation for all inference mechanism, and that any significant

development of inference technic will probably be captured by

this cannonical representation inference mechanism.

But, I would like to point out here that it is not our

original purpose just to claim that the disjunctive

syllogism-like notation can be a cannonical representation of any

inference mechanisms. We rather want to look into the behavior

of conventional inference mechanism with the aid of this

cannonical representation, and attempt to find out any possible

factors that we may be able to improve.

I think there are at least two heels of Achiles embedded in

most of the currently running inference systems. One is that it

is always assumed that the negation of "valid" is necessarily

Page 10

equivalent to "inconsistant", and vice versa, so that a system

hardly knows how it can be modest by saying "Sorry, I don't

really know. I can't really say anything.". Thus, one possible

revolt can be not granting the monotonicity of the interpretation

of a system's logical value. How to construct a system that

computes deductive inferences on a non-monotonic logic appears to

be an interesting worthy problem.

But, granting the monotonicity of logic, and thus pretending

that the frame of disjunctive syllogism is the basic tool for all

deductive inferences, another taboo which was not challenged by

current systems appears to be the assumption that a minor premise

is necessarily a single term. What kind of inference can be

performed if a minor premise turns out to be a disjunction of

syllogisms, the conclusion of a unit syllogism is supposed to be

a disjunction of more than one term?

Let o1 and D2 be two independently valid disjunctive

syllogisms like the one whose schemata was defined in (6>, and

M<D>, m<D>, and C(O) respectively refer to major premise, minor

premise, and conclusion of a disjunctive syllogism D. And let us

define an operation* that applies on two disjunctive syllogisms

such that o1 * o2 represents a new disjunctive syllogism which is

a composition of o1 and o2 as described in (lll.

(11)

V

+ V

Page 11

A careful calculation will prove that o1 * o2 is also valid

if o1 and D2 are valid individually. Further more. it can be

also shown that* operation is associative and commutative and

can be applied abitrarily many times whose result is eventually

given as shown in (12).

(12) •
V

X • m

y .
m V V

+ V Z , m

where x1 = Pil v Pi2 v v Pim<i>

" "'Pjn<j> y =
j "'pjl ""'pj2"

Zj = Qjl V Qj2 V

Qjt e Aj •

v Qj<m<j>-n<j»
where

t = m<j> - n<j>.

Aj = <Pjl' pj2'

Bj = <Pjk}

l =< k =< n<j> ,

l =< 1. j =< m , n<j> =< m<j> ,

A simple example of this expanded disjunctive syllogism is given

by < 13 i ,

(13)

+

Here in this example, we can easyily see that the major premise

has two expressions and both the minor premise and the conclusion

also have two terms, and that the terms there are each one-to-one

Page 12

associated with each expression in the major premise.

An eyeball examination tells us that (13) is nothing else

but the canonical notation of a simplex dilemma as shown by <14).

(14) # !P'11 => pl2)

P'11 v P'21·

where

+ pl2 v P22·

P'ij = "'pij.

Since old Greek sophists paid them a great deal of

attention, dilemmas <.di- for .tli.Q. and lemma for assumption or

proposition> have been long regarded as one of the most powerful

tools for a debate and has attracted much of logicians' interest.

To describe it verbally, the format of a dilemma is that the

major premise is a conjunction of arbitrary number of

implications, and the minor premise is either a disjunction of

every antecedent or a disjunction of the negation of every

consequent. Of course, the conclusion is either a disjunction of

every consequent or a disjunction of the negation of every

antecedent. Traditionally, the terms listed in the monor premise

were called "horns" of the dilemma, and completing an exhaustive

list of all possible horns were known as an ultimate technic of

developing strong arguments using a dilemma. Two well-known

standard technics of attacking a dilemma argument were known to

be either to seek any propositions not listed in the major

premise that may produce a couter-argument unfavorable to the

dilemma argument<-- "to take horns"), or to seek some missing

Page 13

horns that may provide a counter-argument unfavorable to the

dilemma argument (-- to evade between horns). Depending on

whether a dilemma is run in modus ponens or nodus tollens, it was

called "constructive" or "destructive", respectively. And

further, whether the conclusion of dilemma was merged into one

single term or not, the distinction between a "simplex" and a

"complex" dilemma was also made.

To my knowledge, no system has attempted to implement this

most general schemata of disjunctive syllogism which seems to me

to be able to accomodate any kind of inference mechanisms

including simple disjunctive syllogisms.

III. IMPLEMENTATION OF DILEMMA INFERENCE

1. Motivation

We pointed out already that dilemma is a special type of

inference mechanism which may be viewed as a set of parallelly

processed simplex disjunctive syllogisms among which a special

inter-relationship* operation holds as defined. In most

situation, however, we would not really appreciate this too

complex process just in order to obtain a set of disjunctive

conclusion with which one can hardly do anything. But, if in

some situation, the conclusion happens to be merged into one

single term (which is the case of a simplex dilemma>, then we

find that having the dilemma inference machanism available will

sometimes enable a system to derive a conclusion which one would

Page 14

normally want but could not get. Two examples of typical

benefits we can get through this dilemma inference are shown by

(15) and by (16).

(15) • < ¥x > < Animal (x > => Breathe< x > >
v(,_; _.,~

C ¥y > (Plant t,x > => Breathe <x> >

:# (¥z> (Alive<z> => Animal<z> V Plant<z>>

+ <¥w><Alive<w> => Breathe<w>>

(16) # On(blockl, block2).

On<block2, block3).

t: Red(blockl>.

Red(block3).

Red(block2) v B1ue(block3).

+ <3x3y)(Red(x) A Blue(y) A On(x,y)).

where all the predicates in (15) and <16) are dummy symbols for

some appropriate n-ary predicates (But, readers are not

discouraged to make a possible association for each of these with

any tangible interpretation they may like to imagine).

The example (15) shows that dilemma inference can be used to

derive new inference rules ("patterns" in a network term) which

is not supprising since dilemma inference is a meta-mechanism

which is ablout rule schematas. The example shown by (16), which

is one of the famous problems in AI community known as "three-box

problem" sheds another interesting point. The conclusion in the

Page 15

process (16) asserts that there exist some x and some y such that

the formula in the conclusion has an actual instanciation.

Usually, a formula with unbound variable or a disjunctively

asserted assertion is worthless for a final use. However, we

notice that the conclusion drawn in (16> is already usable enough

to answer a query that simply asks whether or not there exists

such an instance not necessarily demanding to learn the exact

binding situation. However, there may be someone who may wonder

if <16), with a disjunctive assertion still in the conclusion, is

within the frame of a simplex constructive dilemma which requires

its conclusion to be a merged single term. We believe that it is

so, but in one level higher order, though. To prove it, let us

define P and E such that

(17) P(x,y> <=> On(x,y> ~ Red<x> ~ Blue<y>

E (q I <= > (3x3y) (q (x , y)) .
, and

Certainly, E(P) will have an interpretation that says "there is

at least one instance of P, a binary predicate.". With this

definition, we can then rewrite (16> into <18>.

(18) * P(blockl, block2> => E<P>.

P(block2, block3) => E<P>.

P<blockl, block2> v P(block2, block3).

+ E<P>.

Notice that (18> conforms precisely the schemata of simplex

constructive dilemma, but where a predicate Pis used as an

argument of a new higher order predicate E.

Page 16

2. Solution on SNePS

First of all, it will be a good procedure to describe very

briefly the present status and the nature of SNePS semantic

network procesing system being maintained at the Department of

Computer Science at State University of New York at Buffalo.

SNePS can hold semantic information represented in the net as a

set of associated network, and can perform backward inference for

a specific theorem queried while a limited depth of forward

inference may be also done. Inference mechanisms being used

includes resource limited inference and ANOOR computation

[Shapiro (1979b)l on top of the standard material implication.

These various inference mechanisms are run in multi-processing

mode in which a maximum data sharing becomes possible.

One of the conceivable ways of approaching to the

implementation of dilemma inference to SNePS could be a

utilization of already available inference mechanisms with a

little addition of extra control. Among others, AND-IMPLICATION

mechanism may appears to be very plausible. It proves a given

theorem only when all the antecedents are proved. Considering

that a dilemma inference proves a theorem only when the theorem

is proved with every horn, we can realize that there is an

ANO-IMPLICATION's nature in a dilemma inference. From this, we

can obviously derive a rule (19) which says:

(19 > (H '# T) => 1· ,

where His a set of all horns, and Tis a queried theorem, This

rule represented by (19) is a tautology no matter what T happens

Page 17

to be. Thus, adding this rule to the database does not cause any

problem as far as the truth-maintaining business is concerned,

Due to this rule, then we may initiate AND-IMPLICATION mechanism,

and wait until this process returns an answer? If

AND-IMPLICATION proves T, then by the rule (19), we do prove T.

But, a close examination shows us that this is not a solution by

any means, Because the disjunctively asserted data will not be

utilized by the AND-IMPLICATION process, the rule has no

significance at all as far as dilemma inference is concerned, It

is just like your saying that if you prove it then it is proved.

Discussing AND-OR tree problem solving technic, Nilsson

(1980) illustrated tnat the three-box problem is a very peculiar

kind of a graph-like AND tree problem where there are two roots

at both of which the control paths should communicate. One root

is the node representing the given goal while another is the node

that provides the disjunctive instance leading to a solution via

"reasoning-by-cases" strategy, It is an AND tree because every

branch of the disjunctive instance must succeed in proving the

theorem in order to prove the theorem, In an ordinary AND-OR tree

problem solving, the goal node creates descendent AND or OR

nodes, and lets them run to see who brings back which anwer,

However, in this peculiar situation that he called the case of

reasoning-by-cases strategy, an AND tree is created from the node

that represents the disjunctive assertion, and the goal node can

make a decion when the AND tree created by someone else reports

to him that every branch has been successfully terminated,

he stated that the key to the solution of this strategy is

somehow to make it possible for the two critical nodes to

Thus,

Page 18

communicate. This matter could be resolved pretty easily on

SNePS running on MULTI. When a top level inference mechanism

finds a disjunctive assertion which seemingly has a potentiality

of proving the theorem in a reasoning-by-cases fashion, the top

level inference driver sets up a specialist who will take care of

the dilemma inference case. Upon being set up, the specialist

creates each case handler for every horn resolution, and

instructs each of them to report to himself, and then waits until

all horns sends him a message of success.

The real harder problem of a dilemma inference rather lies

in the way how each of the horn attackers can resolves his own

problem. Each horn attacker is of course expected to call for

the help of inference specialist forming a daisy-chain recursion

in order to solve his horn resolution problem with his particular

horn assumption. In a data-sharing system like present SNePS

running on MULTI, a horn assumption may not safely be added to

the database as if it were real to everybody since it will mess

up all other innocent processes sharing the data.

Thus, the way how the horn assumption is handled for each

horn resolution seems to be the real core of the solution to

dilemma inference (or reasoning-by-cases).

The solution which is adopted by this implimentation is to

let the horn attacker reshape his own theorem derived from the

original theorem that the dilemma process boss has been asked

about. Each horn attacker is asked to prove the grand theoren
A different

with one's own horn assumption taken granted.

assumption leaves a different subtheorem to be proved. For

Page 19

instance, if the horn assumption were the original theorem

itself, then that particular horn attacker does not have to do

anything. His duty is none from the very beginning. All he has

to do is to report that with his horn assumption, the theorem is

proved. Reshaping of theorem clearly does not affect the

database, and makes a change onto the theorem ultimately to be

proved, thus raising the possibility of the theorem's being

proved.

3. Program description

On top of number of supporting lisp functions, this program

package consists of four newly defined MULTI processes and two

pre-existing processes slightly modified so that this package can

be coupled to the present SNePS inference package.

is described as follows:

Each process

INFER

This is a pre-existing process which cranks the main piston

of inference machinary. This was modified so that it collects

available and relevant horn sets for a given theorem to be

proved. Dilemma inference is triggered only when the global

switch <DILEMMA> is set to T, which is the default value at the

top-most top level. If any horn sets are collected, INFER

creates 0-INFER and 0-ANSCAT with the help of a lisp function

<dilemma-infer>.

TOPMOST-TOP INF

This pre-existing process was modified so that it can

Page 20

receive disjunctive answers obtained throuhgh dilemma inference

via a different process registor. The reason it does not use the

normal message channel is in order not to cause the disjunctive

answer to be permenantly built as other type of answers are. The

deep reason why a disjunctive answer must not be permenantly

built is that a dilemma inference cannot determine the number

value for MAX arc. The routine assigns the maximum value for MAX

for the sake of the largest generality, but certainly the system

does not want it to serve as inference rules for any further

inference.

D-INFER and D-ANSCAT

D-INFER creates appropriately many horn attackers

ATTACK.HORN and one D-ANSCAT. ATTACK.HORN's are each given a

horn to be disjunctively proved, and 0-ANSCAT collects the

answers coming from individual ATTAC.HORN's. When all horn

aresuccessfully finished, D-ANSCAT send the anwer (disjunctively

bound binging set) to whoever ordered the dilemma inference work.

ATTACK.HORN AND HORN-ANSCAT

ATTACK.HORN reshapes the local theorem related to the horn

assumption, and initiate INFER recursively to resolve the horn.

In this embedded call to INFER, the switch <dilemma> is set to

NIL such that too much costing dilemma inference may not be

triggered within the embedded level. HORN-ANSCAT catches answers

from ATTACK.HORN's clients and sends it to D-ANSCAT.

Page 21

References

Kleene, S. C. (1967> Mathematical Logic. New York: Jojn Wiley.

McKay, D. P. & Shapiro, S. C. (1980) MULTI -- A LISP based

multiprocessing system. Dept./Comp. Sci. SUNY at Buffalo.

Technical Report #164.

Nilsson, N. J. <1980> frinciples of Artificial Intelligence. Palo

Alto: CA: Tioga.

Shapiro, S. C. (1979a) The SNePS semantic network processing

system. In Findler ed., Associative Networks; Representation

and Use of Knowledge by Computers: 179-203. New York:

Academic Press.

Shapiro, S. C. (1979b) Using non-standard connectives and

quantifiers for representing deduction rules in a semantic

network. Presented at "Current Aspects of AI research", a

seminar at Electrotechical Lab. Tokyo. Aug. 1979.

ENTERING ECHO DECEMBER 22 ~ 1 '~81

?<INPUT DILMA)
(INFER GATHER.HORNS WORTH-DIL? D-HORN? NO-FREEVAR? NON-NILS ATOMOLECULE?
DILEMMA-INFER DILEMMA D-INFER ALL-HORNS? ATTACK.HORN HORN-TORN-C(~ IJNTOR

N-CQ SELECT.HORNS SORT.HORNS PACK-IN PUTIN-BASKET SET.PREG EQUISET HORN­
ANSCAT D-ANSCAT RECORD.DANS DILEM-RPT DRAFT.D-ANS TOPMOST-TOPINF DEDIJCE*
D-SEND)
?(INSYS MEMO)

(SNEPS FILE LOADED)
?DILEMMA

T
?(SNEPS)

SNEPS
**<DESCRIBE (Hi M2 M3 M4 M5 M6 M7 MB M9 M10 M11))
<Ml (OBJ <BLOCK2)) (SUBJ <BLOCK1)) <R£L (ON)))
< M2 (OBJ <BLOCK3)) (SUBJ <BLOCK2)) <REL (ON)))
(M3 (OBJ <BLOCK12)) (SUBJ <BLOCK11)) <REL (ON)))
(M4 (COLOR < F~ED)) (P. OWN (BLOCK!)))
(M5 C COLOR <BLIJE)) (P. OWN <BLOCK3)))
CM6 (COLOR (RED>> (P.OWN CBLOCK2)))
(M7 (COLOR <BLUE)) <P.OWN <BLOCK2»)
(MB <ARG (M7 (COLOR (BLUE)) (P.OWN <BLOCK2)) >

(M6 < COLOR <RED>) < P. OWN <BLOCK2) >))
(MAX (1))
(MIN (1)))

(M9 (COLOR <BLUE) > (P. OWN <BLOCK11)))
(M10 (COLOR <RED)) (P.OWN <BLOCK12)})
(M11>
(DUMPED>
c,2'~ MSECS

** (DEDUCE P. OWN BLOCl<2 COLOR %X)

FOR A DILEMMA INFERENCE,
WE KNOW

(M8 (ARG (M7 (COLOR <BLUE)) (P. OWN <BLOCK2)))
(M6 (COLOR (RED>) (P.OWN <BLOCK2))))

(MAX (1))
(MIN (1)))

HERE, WE INFER A DISJUNCTIVE ANSWER
(T87 <ARG (f86 (COLOR <BLUE)) <P.OWN <BLOCK2)))

(T85 <COLOR <RED>> <P.OWN <BLOCK2))))
<MIN (1))
(MAX (2)))

NIL
882 MSECS

** <DEDUCE MIN 3 MAX 3 ARG (
* (TBIJILD SIJBJ :Y.X OBJ i.Y REL ON>
* (TBUILD P.OWN *X COLOR RED>
* <TBIJILD P.OWN *Y COLOR BLUE)))

FOR A DILEMMA INFERENCE,
WE KNOW

< M8 <ARG (M7 (COLOR <BLUE)) < P. OWN <BLOCK2)))
(M6 (COLOR <RED> > (P. OWN <BLOCK2))))

(MAX (1))
<MIN (1)))

'A HORN TRIGGERS INFER TO PROVE T113
A HORN TRIGGERS INFER TO PROVE T116
HERE, WE INFER A DISJUNCTIVE ANSWER
(T153
(:SVAR <Q100 (:VAR (T))) <Q101 (:VAR (T))))
(ARG
(T152
<ARG
0151 <REL (ON))

(OBJ <BLOCK2))
(:SVAR (Q100 (:VAR (T))))
(SUBJ (Q100 (:VAR (T)))))

(T150 (COLOR (RED)) (:SVAR (Q100 (:VAR <T)))) CP.OWN (0100 (:VAR (T)
) }))

<T14·~ (COLOR <BLUE>> <P.OWN <BLOCi<2))))
(:SVAR (0100 (:VAR .r ».»
<MAX (3))
<MIN (3)))

(T148
c:SUAR (Q101 (:VAR <T>>>>
(ARG

(T147 <REL (ON))
(:SVAR ((H01 (:IJAR (T))))
<OBJ <0101 (:VAR <T))) >
< SUBJ < BLOCl<2)))

<T14t. (COLOR (RED>) (P.OWN <BLOCK2)))
(T145 (COLOR <BLUE>> c:SVAR (Q101 (:VAR CT>>>> <P.OWN (Q101 (:VAR <T
))))))

< MAX < 3))
(MIN (3))))

(MIN (1))
<MAX (2)))

NIL
2259 MSECS

** (LISP)
END SNEPS
?(GRIND DILMA XREF ALPHA 90)

DILMA

CREATED~
LAST MODIFIED:
CHANGES MADE TO:

22 DECEMBER 1°181 2.52.24

14 DECEMBER 1981 21.31.24
22 DECEMBER 1'181 2.15.28
DEDUCE* D-ANSCAT ATTACK.HORN ALL-HORNS?

**
* [ALL-HORNS?J TESTS IF OR NOT EACH HORN INFERENCE HAS BEEN FINISHED
* WITH EVERY HORN IN THE HORN-SET BEING MADE AS AN ASSUMPTION.
* THE ASKED QUERY IS DISJUNCTIVELY ANSWERED ONLY WHEN THE INFERENCE FOR EVERY
* HORN AS AN ASSUMPTION HOLDS.
* HYY -- 12/21/81

ALL-HORNS?
VALUE
CLAMBDA CREG NHORN) <AND (EQ (LENGTH REG> NHORN> <NON-NILS CMAPCAR REG CDR>>>>

PUST
NIL

INFER

* LHUIOMQLE.CULE'?J ASKS IF OR NOT A GIVEN NODE <ND!::..> DOMlNAIES ATOMIC NODES ONLY.
* HYY -- 12/21/81

ATOMOLECULE?
VALUE
(LAMBDA <NDE)

(NON-NILS (MAPCAR (DOWNSET NDE)
< LAMBDA <ARGT>

(OR (NUMBERP (CDR ARGT)) (NULL < DOWN SET (CDR ARGT)))))))

PLIST
NIL

* PROCESS CAHACK.HORNJ TAKES CARE OF THE INFERENCE OF THE GIVEN CQ WITH
* THE ASSUMPTION THAT THE HORN IS TRUE. THUS, THE NEW CQ' TO BE PROVED
* IS "CQ - HORN" WITH THE BINGING PROVIDED BY THE HORN ASSUMPTION.
* HYY -- 12/21/81

ATTACK.HORN
VALUE
(LAMBDA (NAME: CLINK: CQ: BNDG:)

<COND (<NI.ILL CQ:) <SEND <LIST r: CLINK:))
(T (PRIN3 <>" A HORN TRIGGERS INFER TO PROVE"* CQ:)

(NEW-OLD-·INFER CQ: BNOG: CLINK:))))

PLISl
<LREGS: <NAME: CLINK: CQ: BNDG:>)

* UJ-·ANSCATJ PROCES~; CATCHES THE ANSWERS FOR EVERY HORN INFERENCE, AND KEEPS
* CHECKING IF ALL HORNS PRODUCE EACH A DISJUNCTIVE ANSWER. IF SO, THEN fHIS
* PROCESS RE.PORTS THE ASNWER TO CUN~:::. <NHORN: > REMEMEMBERS THE NUMBER OF
* HORNS, <REG:> KEEPS ALL THE ANSWERS, <FLG:> SIGNAL GETS OFF AFTER ONE SET
* OF ANSWER IS SENT TO CLINK:. BUT ALL THE ANSWER ARE CONTINUOUSLY DEPOSITED.
* HYY -- 12/21/81

D-ANSCAT
VALUE
(LAMBDA (NAME: CLINK: CQ: NHORN: REG: MBNDG: FLG: MSG:>

(IF MSG:
<MAPC MSG: (LAMEDA <MSG) <SETQ REG: <RECORD.DANS REG: MSG))))
< sere MSG: NIL)
(lF <AND FLG: <ALL-HORNS? REG: NHORN:))

(COND
< (EQ <REGFETCH CLINK: 'NAME:) 'TOPMOST-TOPINF)
<0-SEND <DRAFT.D-ANS CQ: NHORN: REG:> CLINK:>)

<T <SEND (DRAFT.D-ANS CQ: NHORN: REG:) CLINK:)))
(SETQ FLG: NIL)))

<SET CURNT: <LIST NAME: CLINK: CQ: NHORN: REG: MBNDG: FLG: MSG:>>>

PLIST
(LREGS: <NAME: CLINK: CQ: NHORN: REG: MBNDG: FLG: MSG:))

**
* [D-HORN?J ASKS IF OR NOT THE GIVEN NODE <DNE> IS A PPOTENTIALLY USEFUL
* HORN FOR A DILEMMA INFERENCE. FOR THE TIME BEING, <DNE> IS REGARDED
* AS A CANDIDATE HORN SET ONLY WHEN IT IS A DISJIJNCTIVEL Y ASSERTED CONTAINING
* NO VARIABLES. FOR A FURTHER EXPANSION OF DILEMMA INFERENCE EVEN WITH RULE
* NODES, A RELAXATION OF THIS FUNCTION MUST EE APPROPRIATELY MADE.
* HYY -- 12/21/81

D-HORN?
VALUE
(LAMBDA <NDE)

<PROG (MINI>
<RETURN

<AND (TOP? NDE)
<NO-FREEVAR? NOE>
<NON-NILS <MAPCAR (GET NDE 'ARG) ATOMOLECULE'?))
(SETQ MINI <CAR <GET NOE 'MIN}))
(PLIJSP <DIFF <LENGTH (GET NDE 'ARG)) MINI))))))

PLI5T
NIL

* (D-INFERJ ITERATIVELY TRIES TO PROVE THE GIVEN CQ WITH EACH HORN BEING
* AN ASSUMPTION.
* HYY -- 12/21/81

D-INFER
VALUE
(LAMBDA <NAME: CLINK: CQ: HORNSET: MBNDG:)

<MAPC
(CDR HORNSET:)
(LAMBDA (HORN)

<PROG (HP HC)
<SETQ
HP (NEW 'ATTACK.HORN

CSETQ HC (NEW 'HORN-ANSCAl CLINK: <ARGN HORN 2) NIL NIL T>>
(HORN-TORN-CQ HORN CQ:)
(UNlON-B <ARGN HORN 2) MBNDG:)))

<REGSTORE CLINK: 'REG: (CONS (LIST HC) (REGFETCH CLINI<: 'REG:)))
(INITIATE HP>>>>>

PUST
CLREGS: <NAME: CLINK: CQ: HORNSET: MBNDG:))

**
* CD-SENDJ IS, A KLUDGE FOR SENDING AN ANSWER DERIVED THROUGH A D-INFERENCE
* TO [TOPMOST-TOPINFJ PROCESS. THE REASON FOR NOT USING NORMAL MESSAGE
* CHANNEL IS DESCRIBED IN [DEDUCE*] SECTION. THIS MUST BE, THOUGH, ELIMINATED
* IN THE FUTURE BY CHANGING SOME CODE IN CTOPMOST-TOPINFJ PROCESS, THROWING
* AWAY THE REGISTER <D-ANS:> EVENTUALLY.
* HYY -- 12/21/81

D-SEND
VALi.iE
(LAMBDA (ANS BOSS)

(S£TQ ANS <CAR (ARGN ANS 2)))
<REGSlORE BOSS 'D-ANS: ANS>
< INITIATE BOSS))

PLIST
NIL

**
* tDEDI.ICE*J MODIFIED BY H'r'"'I' IN ORDER TO ADD ONE EXTRA REGISTOR TO fHE PROCESS
* CTOPMOST-TOPINFJ. THIS REGISTOR IS NEEDED TO GET AN ANSWER FROM THE
* DILEMMA INFERENCING PROCESS. THE REASON WHY WE 00 NOT USE THE NORMAL
* MESSAGE SENDING CHANNEL FOR THIS PURPOSE IS TO AVOID THE THEOREM PROVEN
* VIA D-INFERENCE BEING PERMENANTLY BUILT IN THE DATABASE.
* HYY -- 12/21/81

DEDIJCE*
VALLIE
(LAMBDA (NUMFLD C(~)

(PROG (TP RESULTS: INF 7.DILEMMA)
(SETQ %DILEMMA DILEMMA)
(Pl.IT 'LASTINFER ':VAL NIU
(IF (NULL (FIRST-ATOM CQ)) (RETURN RESULTS:>>
CSETQ
TP <NEW 'TOPMOST-TOPINF

NIL
<FIRST-ATOM CQ)
NIL
NIL
0
0
(IF <NllMBERP NUMFLD) NUMFLD)
(IF <NOT <ATOM NIJMFLD>) C CAR N!JMFLD>)
< IF (NOT (ATOM NUMFLD)) (CADR NUMFLD) >
NIL
NIL
<NEW 'I-MTR

NlL
(LIST (SETQ INF <NEW 'INFER NIL (FIRST-ATOM CQ) NIL. NIU))
NIU

NIU>
(REGSTORE INF 'CLINK: lP>
<MUL1IP <LIST (REGFETCH TP 'MTR:)))
(PUT 'U~STINFER ':VAL (LIST TP>>
(TERPRI)
CTERPRI)
<RETURN RESULTS~))>

PUST
NIL

* CDILEM-RPTJ ISSUES A SNEPSUL USER READABLE MESSAGE FOR THE DILEMMA INFERENCE
* PROCESSING TAKEN.
* HYY -- 12/21/81

DILEM-RPT
VALUE
(LAMBDA <HORNSET)

(PRIN3 <>"FOR A DILEMMA INFERENCE,")
CCOND ((EQ <REGFETCH BOSS 'NAME:) 'TOPMOST-TOPINF> (PRIN3 <> 11 WE KNOW" <>))

CT (PRIN3 <> " SINCE" <>)))
(DESCRIBE (" < CAR HORNSET>)))

PLIST
NIL

** * <DUKILEMMA> IS A GLOBAL SWITCH FOR DILEMMA INFERENCING. DEFAULT 15 T.
* HYY -- 12/21/81

DILEMMA
VALUE
T

PLIST
NIL

'I\' LLJ.LLl:.MMH-.LNl-1::.H.J lll:.Hf..11.i.Vl:.U 11-<J.I:.::. t:.Vl:.HY HOl-<NSE:.f IRKE:.N !-HOM IHE HORNPILE,
* 5ETl ING !JP CD-ANSCATJ FOR ANSER CATCHER AND CD-INFERJ FOR A DISJUNCTIVE
* REASONING.
* HYY --- 12/21/81

DILEMMA-INFER
VALLIE
(LAMBDA <BOSS CQ MBNDG HORNPILE)

(SEH~ Y.DILEMMA NIL)
<REPEAT NIL

WHILE HORNPILE
(DlLEM-RPT CCAR HORNPILE))
<INITIATE (NEW 'D-INFER

<NEW 'D-ANSCAT
BOSS
CQ:
<LENGTH (CDAR HORNPILE))
NIL
MBNDG
T
NlU

CQ
<CAR HORNPILE)
MBNDG))

CSETQ HORNPILE (CDR HORNPILE))))

PUST
NIL

* CDRAFT.D-ANSJ IS A KLUDGE FOR SENDING AN ANSWER DUE TO DILEMMA INFERENCE
* [DRAFT.D-ANSJ DRAFTS THE FINAL ANSWER TO BE SENT TO r.TOPMOST-TOPINFJ WHEN
* A DILEMMA INFERENCE BRINGS UP WITH A DISJUNCTIVE ANSWER. NOTE THAT THE
* ANSWER IS A TEMPORARY NODE.
* HYY -- 12/21/81

DRAFT.D-ANS
VALUE
<LAMBDA (CQ MAXI REG)

<LIST CQ
(APPLY TBUILD

(LIST 'MAX
MAXI
'MIN
1
'ARG
(MAPCAR REG (LAMBDA (D-ANS) (NBl.!ILD CQ <CADR D-ANS) TBLIILD>))))))

PUST
NIL

EQUISET
VALUE
(L~1M:8DA (U L2)

(AND CEQ (LENGTH L1> <LENGTH L2))
<NON-NILS (MAPCAR Ll <LAMBDA (LL) CMEMB LL L2)))))J

PLISf
NIL

*

* L(:;1-ilHl::.H.HUt<N~J l.f-ilr1!::.H~ WUtffHWHILE HORN-SETS FOR H DILEMMA INFERENCE OF THE
* GIVEN CQ. A HORN-SET IS A DISJIJNCTIVELY ASSERTED STATEMENT IN WHICH ANY
* SUBSii:.T OF THE GIVEN CQ IS INCLUEDED ~1S ONE OF ITS DISJUNTS.
* RETURNS <MI (MJ BJ TJ) (Ml< BK TU •••) ,
* WHERE MI IS THE NODE OF THE HORNSET FOUND IN THE DATABASE,
* (MJ •• TJ) IS A DATA SET FOR EACH HORN,
* ~!HERE., MJ IS 'THE NODE OF HORN DISJUNCT,
* BJ IS THE BINGING SATISFYING THE HORN AS AN ASSUMPTION,
* TJ IS THE SUB-PART OF CO WHICH IS PROVED BY THE HORN ASSUMPTION.
* HYY -- 12/21/81

GATHER.HORNS
VALi.iE
(LAMBDA (CQ BNDG)

(PROG (HRN)
<MAPC <OR (GET CQ 'ARG) <LIST CQ))

(LAMBDA (X}
(MAPC (MATCH! X BNDG)

<LAMBDA (Y) (SETQ HRN (CONS (APPEND Y (LIST X)) HRN))))))
(RETURN <SORT .HORNS <PUTIN-BASKET <SELECT .HORNS HRN))) >))

PLIST
NIL

**
* CHORN-ANSCAiJ CATCHES ANSWERS FOR F1 HORN AND SEND THE FIRST ANSWER TO
* CD-(4NSCA1J. RIGHT NOW, THE ANSWER IS SENT JUST ONCE. IN THE FUTURE,
* SOMEONE MAY ATTEMPT TO LET IT SEND ALL ANSWERS BACK. BUT NOTICE THAT
* A TAXONOMICALLY EMBEDDED DISJUNCTION OF DISJUNCTIONS ARE REALLY MESSY.
* HYY -- 12/21/81

HORN-ANSCAT
VALUE
(U:lMBDA (NAME~ CLINI<: BNDG: REG: MSG: FLG:)

(IF MSG: <SETQ REG: (APPEND REG: (CDR MSGO) MSG: NIU)
(IF FLG: (SEND <LIST CURNT: (UNION-B BNDG: (CAR REG:))) CLINK:) <SETQ FLG: NIU)
(SET CiJRNT: <LIST NAM£: CLINK: BNDG: REG: MSG: FLG:>))

PL1ST
<LREGS: <NAME: CLINK: BNDG: REG: MSG: FLG:))

**
* (HORN-TORN-CQJ GENERATES A NEW CQ TO BE PROVED FROM A GIVEN CQ WITH THE
* ASSUMPTION THAT THE HORN IS TRI.IE.
* RETURNS A TEMPORARY NODE NEWLY BUILT.
* HYY -- 12/21/81

HORN--TORN-CQ
VALUE
(LAMBDA (HORN CQ)

(PROG (LC(~)
(RETURN

(COND
((OR (EQ CO (ARGN HORN 3)) (EQ (SETQ LCO <LENGTH (GET CQ 'ARG))) 1)) NIL)
(T (FIRST-ATOM (APPLY T8l1ILD

(LIST 'MAX
(SUB1 LCQ)
'MIN
(SUB1 LC~t>
'ARG
(UNTORN-CQ CARGN HORN 3) (GET CQ 'ARG))))))))))

PUST

Nll ..

* CINFERJ MODIFIED BY HYY 12/21/81
* IN ORDER TO COLLECT HORNSETS INTO ~i HORNPILE, AND CALL DILEMMA INFERENCING
* ROUTINE IF <DILEMMA> IS SET AND <HORNPILE> IS NOT EMPTY. FOR THE TIME BEING
* <DILEMMA> IS SET TO NIL Al ALL EMBEDDED INFERENCE LEVELS. HOWEVER, THIS MAY
* BE LIFTED IN THE FUTURE IF AN ENOUGH MOTIVATION JUSTIFIES TO DO 50.
* SWITCHING OF <DILEMMA> IS DONE IN CDILEMMA-INFERJ.

* HYY -- 12/21/81

INFER
VALUE
(LAMBDA <NAME: CLINK: CQ: BNDG: MSG:)

(PROG (WD HORNPILE)
(COND
(<AND (NULL MSG:) (GET CQ: 'NAME:))
(INITIATE <NEW 'EVAL-FN CLINK: CQ: BNDG: NIL NIU))

(T

CPROG (M A D)
(SETQ M (OR MSG: <MATCHI C(-1: BNDG:) > MSG: NIU
(SETQ WO (WORTH-OIL? CQ:))
(IF <AND ZDILEMMA WD> (SETQ HORNPILE (GATHER.HORNS CQ: BNDG:)))
(REPEAT NIL

WHILE M
(COND
<<TOP? CTNODE <CAR M>>>
(SETQ A (CONS (LIST CTNODE (CAR M)) (SBIND (CAR M))) A))
< IF (EQ <REGFETCH CLINI<: 'NAME:) 'TOPMOST-TOPINF)

<INF-RPT CSBIND (CAR M>> NIL NIL (LIST CQ:))))
((AND (OR <GET (TNODE (CAR M)) (CONV 'CQ))

(GET (TNODE (CAR M)) (CONV 'ARG))
(G£T <TNODE <CAR M>) (CONtJ 'DCQ) >)

(NOl
<MEMBER
NIL
(MAPCAR CTBIND (CAR M))

(LAMBDA <BP>
COR <VAR CCDR BP>>

(NULL <GET (CAR BP) 'EVB-))))))))
(SET<~ D (CONS <CAR M) D))))

<SETQ M <CDR M)))
< IF (OR A

CAND (NULL (REGFETCH CLINK: 'CLINK:))
(EQP <REGFETCH CLINK: 'TOT:) 0)))

(SEND (CONS CQ: A) CLINK:)>
<IF <AND D (OR CNIJLL A) <WH-Q (SVAR CQ:) BNDG:)))

<MAPC D
< LAMBDA (MT CHD>

< INITIATE
<NEW 1GO-UP

<NEW 'SWITCH CLINK: CQ: CSBIND MTCHD> NIL)
(H,tODE MTCHD>
(TBIND MTCHD>>>>>>>

(IF <AND %DILEMMA WD HORNPILE) <DILEMMA-INFER CLINK: CQ: BNDG: HORNPILE»
(COND
(<GET CQ: 'MAX)
(INITIATE.
(NEW 'WlNDOR

CLINK:
CQ:
<CAR (GET CQ; 'MIN))
(CAR (GET CQ: 'MAX))
(LENGTH (GET CQ: ''ARG))
0

\Gt:.J L{H 'HHG)
BNDG:
NIL
NIU})

((GET CQ: ;I-//-) (INITIATE (NEW 'llJI-//- CLINI<: CQ: BNDG: NIL NIU))
«GET CQ: 'UNn (INITIATE (NEW 'V-UNK CLINK: CQ: BNDG: NIL NIL NIL NIU)))))

(SET CURNT: CLIST NAME: CLINK: CQ: BNDG: MSG:))))

PUST
<LREGS: (NAME; CLINK: CQ: BNDG: MSG:))

NO-FREE VAR?
VALUE
< LAMBDA (NOE)

<NON-NILS (MAPCAR <DOWNSET NDE) <LAMBDA (X) <NOT <VAR (CDR X)))))))

PUST
NIL

**
* [NON-NILSJ 15 A HELP FUNCTION TESTING IF A LIST CONTAINS ANY TOP LEVEL NIL
* AS AN ELEMENT. THIS IS USEFUL USED ASSOCIATED WITH A [MAPCARJ FUNCTION.
* HYY -- 12/21/81

NON-NILS
VALUE
<LAMBDA <LST)

CCOND ((NULL LST> T)
((NULL <CAR LSr>> NIU
CT <AND <CAR LST> (NON-NILS CCDR LST>>>>>>

PUST
NlL

**
* [PACK-INJ IS AN AID TO [PIJTIN-EASl<ETJ
* HYY -- 12/21 <PROG <TND)

(RETURN
(COND
((NULL HHEAP> NIL)
((AND (MEMB CSETQ TND <CAR (GET (CAAR HHEAP> <CONV 'ARG)J))

< GET t NODES t: VAL>)
(D-HORN? TND> >

<CONS <LIST TND CCAAR HHEAP) CARGN <CAR HHEAP) 3) <ARGN (CAR HHEAP) 4))
(SELECT.HORNS <CDR HHEAP))))

n (SELECT.HORNS <CDR HHEAP)))))))

PUST
NIL

SET.PREG
lJALUE
(LAMBDA C 1=-L >

(MAPC FL <LAMBDA ff) <PUT F 'LREGS: (ARGN <EVAL F> 2))))
CAPPLY OUTPUT (LIST 'DILMA FL>>>

PUST
NIL

* CSORT.HORNSJ Pl.ITS ALL USEFUL HORNS SELECTED BY CSELECT.HORNSJ INTO A

* CONVlNIENf FORi"1AJ HS DE.SCRIBED IN [GAlHER.HORNSJ.
* HYY -- 12/21/81

SORT.HORNS
VALUE
<LAMBDA (HORNS)

(PROG (HORNPILE>
<MAPC HORNS

(LAMBDA (HSET>
(IF (EQUISET (GET <CAR HSET> 'ARG) (MAPCAR <CDR HSET> CAR))

(SETQ HORNPILE <CONS HSET HORNPILE)))))
(RETURN HORNPILE)))

PUST
NIL

**
* CTOPMOST-TOPINFJ MODIFIED BY HYY ON 12/21/81
* 1N ORDER TO ADD AN EXTRA REGISTOR <D-ANS:> THAT WILL RECEIVE AN ANSWER
* FROM A DILEMMA INFERENCE ROUTINE. SHOULD BE FURTHER IMPROVED IN THE FUTURE.
* HYY -- 12/21/81

TOPMOST-TOPINF
VALUE
(LAMBDA (NAME: CUN~::: co= DATA: MSG: N-ANS:

N-NEG: /~~SIJSPS~~ BOSSES: MTR: D-ANS:)
(IF D-ANS:

(PRIN3 <> " HERE, WE INFER A DISdUNCTIVE ANSWER" <>>
<APPLY DESCRIBE D-ANS:)
(SETQ D-ANS~ NIL))

(IF (SET<~ MSG: (MEMBER-S <MAPCONC MSG: (LAMBDA (X) (CDR X))) (SBINDS DATA:)))

P-ANS: TOT: N-POS

(SEND MSG: BOSSES:)
<SETQ DATA: (APPEND DATA: MSG:))
(MAPC
(MAPCAR M~:G:

(LAMBDA (X)
(CONS (FIRST-ATOM <NBUILD (COND < (SAME-SIGN (CAR X) CQ:) CQ:)

< T (NEGATE CQ:) >)
(CADR X)
FORBTOP)}

<CDR X} >))
(LAMBDA (ANS>

<IF (NOT (MEMBER (CAR ANS) RESULTS:>)
(SE re RE SUL TS: (SNOC RESUL Ts: (CAR ANS))))

(COND ((NEGATED (CAR ANS>) <SETO N-ANS: <ADD1 N-ANSO))
(T (SETQ P-ANS: < ADD1 P-ANS:)))) >)

<IF (NOT (CON1? N-ANS: P-ANS: TOT: N-POS: N-NEG:>)
<SETQ
/~~SUSPS~~ < APPEND

/ ~~SI.I SPS~~
<MAPCONC
<APPEND SUSPS: EVNTS)
(LAMBDA (E)

<IF <OR <BELOWP E CURNT:)
(MEMBER <REGFETCH E 'NAME:) '(I··MTR I-MTR-R)))

< LI ST E)))))
EVNTS <MAPCONC EVNTS <LAMBDA (E) (IF <NOT (MEMBER E /~~Sl.1SPS4D) <LISl E)))}
SUSPS: (MAPCONC SIJSPS: <LAMBDA (E) <IF <NOT (MEMBER E /~~S!JSPS~~)) <LIST E}))))

(IF CEQ TP CURNT:)
(MAPC EVNTS (LAMBDA (X) < SUSPENDEM X)))
(MAPC SIJSPS: (LAMBDA (X) (SIJSPENDEM X)))
<SETQ EVNTS NIL SlJSPS: NIL>>>

(SETQ MSG: NIL>)
(SET CURNT:

\ u::, I 'NHMt:.: t;UNK: C,H 1)/-llR: M~t;: N··AN~: P-HN5: IOI
N-Pos: N-NEG: /~~SIJSPS~~ BOSSES: MTR: D-ANS:)))

PUST
(UxEGS: (NAME: CLINK: c,i: DATA: MSG: N-ANS: P-ANS: TOT: N··POS

N-NEG: /~~SUSPS~~ BOSSES: MTR: D-ANS:))

** * CUNTORN-C(n HELPS CHORN-TORN-CQJ TO GENERATE A NEW CQ TO BE PROVED.
* CUNTORN-·CQJ RETURNS A LIST OF NODES DISTINCT FROM HORN NODE.
* HYY -- 12/21/81

UNTORN-CQ
VALUE
(LAMBDA (I-IC(} CQ)

<COND ((EQ (CAR CQ) HCQ} <CDR CQ))
(T (CONS (CAR CQ) WNTORN-CQ HC(~ (CDR CQ))))))

PLIST
NIL

**
* CWORTH-DIL?l TESTS IF OR NOT A DILEMMA INFERENCING IS WORTH TO BE EVER
* ATTEMPTED FOR THE GIVEN <CQ>. NOD-INFERENCE IS ATTEMPTED FOR AN ALREADY
* DISJUNCTIVE QUERY.
* HYY -- 12/21/81

WORTH-DIL·?
VALUE
(LAMBDA (CQ)

(PROG (MAXI)
(RETURN
(OR <AND <SETQ MAXI (CAR <GET CQ 'MAX)))

(EQ MAXI (CAR <GET CQ 'MIN)))
(NON-NILS (MAPCAR (GET CQ 'ARG) ATOMOLECULE?)))

(ATOMOLECULE? CQ)))))

PLIST
NIL

CROSS REFERENCE OF DILMf:1

ALL-HORNS? D-ANSCAT

ATOMOLECULE? D-HORN? WORTH-DIL?

ATTACK.HORN D-INFER

D-ANSCAT DILEMMA-INFER

D-HORN? SELECT.HORNS

D-INFER DILEMMA-INFER

D-SEND D-ANSCAT

DEDUCE*

DILE.M-RPT DILEMMA-INFER

UlLl::.Ml"IH JJEJJllCI::.*

DI LEMMA- I NF ER INFER

lJRAFT.D-ANS D-ANSCAT

EQUISET SORT.HORNS

GATHER.HORNS INFER

HORN-AN SCAT D-INFER

HORN-TORN-CQ D-INFER

INFER DEDUCE*

NO-FREEVAR? D-HORN?

NON-NILS ALL-HORNS?
NO-FREE VAR?

ATOMOLECIJL.E? 0-·HORN? EQUISET
NON-NILS MORTH-DIL?

PACK- IN PACK- IN PUTIN-BASKET

PUTIN-BASKET GATHER.HORNS

RECORD.DANS D-ANSCAT RECORD.DANS

SELECT.HORNS GATHER.HORNS SELECT.HORNS

SET.PREG

SORT.HORNS GATHER.HORNS

TOPMOST-TOPINF D-ANSCAT DEDUCE* DILEM-RPT INFER

LINTORN-CQ

WORfH-DIL·?
NIL
?<EXIT)

REVERT.
I

HORN-TORN-CO

INFER

UNTORN-CQ

