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DILEMMA INFERENCE ON SNePS SEMANTIC NETWORK SYSTEM 

I. INTRODUCTION 

This paper presents a package of LISP functions collectively 

called DILEMMA defined within the frame of MULTI [McKay & Shapiro 

(1980)1, adding an extra bit to the existing capability of 

inference process possessed by SNePS semantic network processing 

system [Shapiro (1979a)l. 

Current inference mechanisms implemented on virtulally any 

semantic network systems are driven by essentially two basic 

operations: matching and data extension. Matching operation is 

to discover instances out of the database which will prove or 

disprove the queried theorem, while data extension operation is 

to expand the database through legitimate applications of 

inference rules upon the data available at the given moment in 

order to feed the matching operation with more data. We can thus 

view that inferencing is a series of computations in which these 

two basic operations are taking place repeatedly until either the 

theorem is proved or disproved .Ql: no more data extension is 

possible with the theorem yet undecided when the available data 

is exhausted. 

So far, a disjunctively asserted data items like 
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(l) P V Q 

are regarded useless as data items in the database even if P and 

Qare individually a molecular constant. For instance, when one 

knows that "Tom is either a first-year graduate student or a 

senior undergraduate student of this department.", the current 

situation is such that that knowledge is not usable for answering 

such a question like "Is Tom a student of this department?". 

The goal of this research is to add an extra set of control 

mechanisms to the present SNePS inference system so that it can 

now utilize such disjunctively asserted data as data item, not 

only as a rule if such data shows a possiblity of proving or 

disproving the queried theorem in one way or another. This 

technic of inference, which is traditionally called "dilemma 

inference", shows itself, in fact, not so rare in an actual human 

reasoning. 

This paper has two folds. The first section is devoted to 

an examination of the anatomy of dilemma inference in terms of 

formal logic, and the latter section presents the new package as 

a program object describing its major components with some 

discussions on a few technical issues related to this 

implementation. 

II. THE LOGICAL ASPECT OF DILEMMA INFERENCE 

It looks like to me that the intrinsic mechanism of 

inference processes implemented on virtually all systems 
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including SNePS is the so-called "disjunctive syllogism" which is 

depicted by < 2 > : 

(2) # P V Q. 

:It "-P. 

+ Q. 

where the meta-symbols have the following interpretations: 

# X.: 

+ X.: 

"It is asserted that Xis logically valid."; 

"It is derivable that Xis logically valid."; 

<indicates the range of the last meta-symbol 

:It or +); 

<indicates whatever above this is in database). --· 

If we introduce another literal P' which is logically 

complementary to P (i.e., P' = "'Pl, then <2> can be rewritten 

into < 3 r : 

(3) # ~p• V Q. 

# P'. 

+ Q. 

which is the canonical notation to express both syllogisms of 

modus ponens and modus tollens which are each conventionally 

represented by (4) and (5), respectively. 

(4) # P' => Q. 
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• p I• 

+ o. 

(5) # p• => o. 
• "'0. 

= p). 

But, the constraint that the number of the terms appearing 

in the major premise has to be two seems uselessly too strong. 

And similarly, the number of expressions in the minor premise 

does not have to be one either (here, I will exclusively mean by 

"terms" the top-level disjuncts within a disjunctive proposition, 

and by "expressions" the top-level conjuncts within a conjunctive 

proposition>. Thus, a more generalized disjunctive syllogism is 

formalized as (6): 

( 6 ) 

"'0 2 

p . n 
A "-0 • m 

+ Rl V R2 V .... V R n-m 

where Qi e A = (Pj}, 

R e A - (0 i}, k 

m < n, l =< i =< m, l =< j =< n, l =< k =< n - m. 

It is immediatly recognized that representing (6) in an 

implication format will be extremely cumbersome and wasty because 

n there exist roughly 2 number of different ways of grouping the 

terms appearing in the major premise into two partitioned sets 
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<one for the antecedent and another for the consequent>, and 

every different partition will require each unique implication of 

its own. A bi-directional use of one implication can reduce that 

explosive number by one half only. 

We now clearly see that the operation of data extension in a 

deductive inference process conventionally implemented on most 

systems using the material implication is a proper subset of this 

generalized disjunctive syllogism. The underlying idea of a 

deductive inference is that, if we design a database in a certain 

way abiding some constraint<s>, then, when a part of the data 

turns out to have a certain logical value, may we possibly 

predict the logical value of some part of the rest of the data. 

Two different constraints very likely useful in constructing a 

database come to our mind. One constraint is to keep the overall 

logical value of the whole database being inconsistant, while 

another is to keep it being valid. A system which maintains the 

overall logical value to be valid is called a "truth-maintenance 

system" <TMS}. And a system which maintains the overall logical 

value to be inconsistant may be analogously called an 

"inconsistent-maintenance system" (IMS>. A TMS system will crash 

with even a single invalid expression connected by a logical AND 

on the top level. Similarly, an IMS system will crash with even 

a single consistant term connected by a logical OR on the top 

level. Therefore, if the whole database is going to be 

decomposed into a number of independent partitions connected all 

together by an appropriate logical connective on the top level 

<AND for a TMS system and OR for an IMS system), then it becomes 

essential to assure that the logical value of each partitioned 
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data component is also valid for a TMS system and inconsistant 

for an IMS system. If a TMS system consisted of a top-level OR, 

then any one valid component will make the rest of the whole 

database uninteresting, and thus we can no longer find 

independence relation among the top-level components. A similar 

claim is also applicable to an IMS system as to top-level AND 

connection. It becomes thus clear why an appropriate top-level 

logical connective to integrate the whole database must be chosen 

so as to make the database non-trivially useful depending on the 

orientation of the system's truth-value maintenance. Thus, it 

becomes clear that the top-level data structure of a TMS system 

is a conjunction of disjunctions, while the top-level data 

structure of an IMS would be, if it be ever tried, a disjunction 

of conjunctions. And, we further see that, in a TMS system, 

disjunctive syllogism is the fundamental tool for inference. 

Then, we may easily imagine another type of tool for 

inference, namely, conjunctive syllogism on an IMS system which 

is depicted by (7). 

( 7 ) p .... 
2 

p . n 

' .• ~ol V Q V V ~o .,,. ~ 2 · · · · m· 

:+ R ~ R ~ A R 
l 2 .... n-m 

where the meta-symbols have the following meanings: 

:t: X.: "It is asserted that Xis inconsistant."; 

:+ X.: "It is derivable that Xis inconsistant."; 

and all the others rest the same as in (6). 
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However, if we pretend that "consistant" and 0valid" are 

equivalent, and "inconsistant" and "invalid" are also equivalent 

(as is in a monotonic logic), then, by replacing each of the 

meta-symbols :• and :+ by a• and+, respectively, together with 

a negation associated to every of them, we can equivalently 

transform (7) into (8): 

< a > p " 
2 

p 1. n 

+ "' I R1 " R2 " . . . . " R 1. n-m 

where all the conditions rest the same as in (7). 

Using de Morgan's law, (8) is rewritten into <9>: 

( 9) # V ._.p 2 V • • • • V ..... p . 
n 

Q " " 0 2 · • · · m ' 

+ 

where all the conditions rest the same as in <8>. 

If we introduce new atoms, which are each a logically complement 

of a negated atom in the set, and are each named by adding a 

prime (diacritic> to the name of its complementary original atom, 

then we can rewrite all the propositions using these newly 

introduced atoms only, getting (10) from (9). 

(10) P' l V P' V V 2 ••.. 

""0' 2 

P' n 

• "-QI 
l " ""0 I m· 

+ R11 v R'2 v .... v R'n-m 
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where, if the complementary relation 

is appropriately considered, all the conditions rest 

analogously the same as in (9). 

We see that (10) is syntactically identical to <6>, which is a 

formalization of a disjunctive syllogism on a TMS system. Hence, 

we now realize that disjunctive syllogisms and conjunctive 

syllogisms are isomorphic to one another in a monotonic logic. 

To put this in another way, the duality of a logical model 

enables us to construct an equally healthy model (as much healthy 

as the original) by exclusively exchanging all conjunctions with 

disjunctions and vice versa, all assertions with negations and 

vice versa, and all interpretation of "valid" with "inconsistant" 

and vice versa CKleene <1967:22}1. Thus so far, we have shown 

that disjunctive syllogism may be adopted as a cannonical 

notation for all inference mechanism, and that any significant 

development of inference technic will probably be captured by 

this cannonical representation inference mechanism. 

But, I would like to point out here that it is not our 

original purpose just to claim that the disjunctive 

syllogism-like notation can be a cannonical representation of any 

inference mechanisms. We rather want to look into the behavior 

of conventional inference mechanism with the aid of this 

cannonical representation, and attempt to find out any possible 

factors that we may be able to improve. 

I think there are at least two heels of Achiles embedded in 

most of the currently running inference systems. One is that it 

is always assumed that the negation of "valid" is necessarily 
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equivalent to "inconsistant", and vice versa, so that a system 

hardly knows how it can be modest by saying "Sorry, I don't 

really know. I can't really say anything.". Thus, one possible 

revolt can be not granting the monotonicity of the interpretation 

of a system's logical value. How to construct a system that 

computes deductive inferences on a non-monotonic logic appears to 

be an interesting worthy problem. 

But, granting the monotonicity of logic, and thus pretending 

that the frame of disjunctive syllogism is the basic tool for all 

deductive inferences, another taboo which was not challenged by 

current systems appears to be the assumption that a minor premise 

is necessarily a single term. What kind of inference can be 

performed if a minor premise turns out to be a disjunction of 

syllogisms, the conclusion of a unit syllogism is supposed to be 

a disjunction of more than one term? 

Let o1 and D2 be two independently valid disjunctive 

syllogisms like the one whose schemata was defined in (6>, and 

M<D>, m<D>, and C(O) respectively refer to major premise, minor 

premise, and conclusion of a disjunctive syllogism D. And let us 

define an operation* that applies on two disjunctive syllogisms 

such that o1 * o2 represents a new disjunctive syllogism which is 

a composition of o1 and o2 as described in (lll. 

( 11) 

V 

+ V 
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A careful calculation will prove that o1 * o2 is also valid 

if o1 and D2 are valid individually. Further more. it can be 

also shown that* operation is associative and commutative and 

can be applied abitrarily many times whose result is eventually 

given as shown in (12). 

(12) • 
# V 

X • m 

y . 
m V V 

+ V Z , m 

where x1 = Pil v Pi2 v .... v Pim<i> 

" "'Pjn<j> y = 
j "'pjl ""'pj2" 

Zj = Qjl V Qj2 V 

Qjt e Aj • 

v Qj<m<j>-n<j» 
where 

t = m<j> - n<j>. 

Aj = <Pjl' pj2' 

Bj = <Pjk} 

l =< k =< n<j> , 

l =< 1. j =< m , n<j> =< m<j> , 

A simple example of this expanded disjunctive syllogism is given 

by < 13 i , 

(13) 

+ 

Here in this example, we can easyily see that the major premise 

has two expressions and both the minor premise and the conclusion 

also have two terms, and that the terms there are each one-to-one 
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associated with each expression in the major premise. 

An eyeball examination tells us that (13) is nothing else 

but the canonical notation of a simplex dilemma as shown by <14). 

(14) # !P'11 => pl2) 

# P'11 v P'21· 

where 

+ pl2 v P22· 

P'ij = "'pij. 

Since old Greek sophists paid them a great deal of 

attention, dilemmas <.di- for .tli.Q. and lemma for assumption or 

proposition> have been long regarded as one of the most powerful 

tools for a debate and has attracted much of logicians' interest. 

To describe it verbally, the format of a dilemma is that the 

major premise is a conjunction of arbitrary number of 

implications, and the minor premise is either a disjunction of 

every antecedent or a disjunction of the negation of every 

consequent. Of course, the conclusion is either a disjunction of 

every consequent or a disjunction of the negation of every 

antecedent. Traditionally, the terms listed in the monor premise 

were called "horns" of the dilemma, and completing an exhaustive 

list of all possible horns were known as an ultimate technic of 

developing strong arguments using a dilemma. Two well-known 

standard technics of attacking a dilemma argument were known to 

be either to seek any propositions not listed in the major 

premise that may produce a couter-argument unfavorable to the 

dilemma argument<-- "to take horns"), or to seek some missing 
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horns that may provide a counter-argument unfavorable to the 

dilemma argument (-- to evade between horns). Depending on 

whether a dilemma is run in modus ponens or nodus tollens, it was 

called "constructive" or "destructive", respectively. And 

further, whether the conclusion of dilemma was merged into one 

single term or not, the distinction between a "simplex" and a 

"complex" dilemma was also made. 

To my knowledge, no system has attempted to implement this 

most general schemata of disjunctive syllogism which seems to me 

to be able to accomodate any kind of inference mechanisms 

including simple disjunctive syllogisms. 

III. IMPLEMENTATION OF DILEMMA INFERENCE 

1. Motivation 

We pointed out already that dilemma is a special type of 

inference mechanism which may be viewed as a set of parallelly 

processed simplex disjunctive syllogisms among which a special 

inter-relationship* operation holds as defined. In most 

situation, however, we would not really appreciate this too 

complex process just in order to obtain a set of disjunctive 

conclusion with which one can hardly do anything. But, if in 

some situation, the conclusion happens to be merged into one 

single term (which is the case of a simplex dilemma>, then we 

find that having the dilemma inference machanism available will 

sometimes enable a system to derive a conclusion which one would 



Page 14 

normally want but could not get. Two examples of typical 

benefits we can get through this dilemma inference are shown by 

(15) and by (16). 

(15) • < ¥x > < Animal ( x > => Breathe< x > > 
v( ,_; _.,~ 

# C ¥y > (Plant t,x > => Breathe <x> > 

:# (¥z> (Alive<z> => Animal<z> V Plant<z>> 

+ <¥w><Alive<w> => Breathe<w>> 

(16) # On(blockl, block2). 

# On<block2, block3). 

t: Red(blockl>. 

# Red(block3). 

# Red(block2) v B1ue(block3). 

+ <3x3y)(Red(x) A Blue(y) A On(x,y)). 

where all the predicates in (15) and <16) are dummy symbols for 

some appropriate n-ary predicates (But, readers are not 

discouraged to make a possible association for each of these with 

any tangible interpretation they may like to imagine). 

The example (15) shows that dilemma inference can be used to 

derive new inference rules ("patterns" in a network term) which 

is not supprising since dilemma inference is a meta-mechanism 

which is ablout rule schematas. The example shown by (16), which 

is one of the famous problems in AI community known as "three-box 

problem" sheds another interesting point. The conclusion in the 
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process (16) asserts that there exist some x and some y such that 

the formula in the conclusion has an actual instanciation. 

Usually, a formula with unbound variable or a disjunctively 

asserted assertion is worthless for a final use. However, we 

notice that the conclusion drawn in (16> is already usable enough 

to answer a query that simply asks whether or not there exists 

such an instance not necessarily demanding to learn the exact 

binding situation. However, there may be someone who may wonder 

if <16), with a disjunctive assertion still in the conclusion, is 

within the frame of a simplex constructive dilemma which requires 

its conclusion to be a merged single term. We believe that it is 

so, but in one level higher order, though. To prove it, let us 

define P and E such that 

(17) P(x,y> <=> On(x,y> ~ Red<x> ~ Blue<y> 

E ( q I <= > ( 3x3y) ( q ( x , y) ) . 
, and 

Certainly, E(P) will have an interpretation that says "there is 

at least one instance of P, a binary predicate.". With this 

definition, we can then rewrite (16> into <18>. 

(18) * P(blockl, block2> => E<P>. 

# P(block2, block3) => E<P>. 

# P<blockl, block2> v P(block2, block3). 

+ E<P>. 

Notice that (18> conforms precisely the schemata of simplex 

constructive dilemma, but where a predicate Pis used as an 

argument of a new higher order predicate E. 
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2. Solution on SNePS 

First of all, it will be a good procedure to describe very 

briefly the present status and the nature of SNePS semantic 

network procesing system being maintained at the Department of 

Computer Science at State University of New York at Buffalo. 

SNePS can hold semantic information represented in the net as a 

set of associated network, and can perform backward inference for 

a specific theorem queried while a limited depth of forward 

inference may be also done. Inference mechanisms being used 

includes resource limited inference and ANOOR computation 

[Shapiro (1979b)l on top of the standard material implication. 

These various inference mechanisms are run in multi-processing 

mode in which a maximum data sharing becomes possible. 

One of the conceivable ways of approaching to the 

implementation of dilemma inference to SNePS could be a 

utilization of already available inference mechanisms with a 

little addition of extra control. Among others, AND-IMPLICATION 

mechanism may appears to be very plausible. It proves a given 

theorem only when all the antecedents are proved. Considering 

that a dilemma inference proves a theorem only when the theorem 

is proved with every horn, we can realize that there is an 

ANO-IMPLICATION's nature in a dilemma inference. From this, we 

can obviously derive a rule (19) which says: 

( 19 > ( H '# T ) => 1· , 

where His a set of all horns, and Tis a queried theorem, This 

rule represented by (19) is a tautology no matter what T happens 
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to be. Thus, adding this rule to the database does not cause any 

problem as far as the truth-maintaining business is concerned, 

Due to this rule, then we may initiate AND-IMPLICATION mechanism, 

and wait until this process returns an answer? If 

AND-IMPLICATION proves T, then by the rule (19), we do prove T. 

But, a close examination shows us that this is not a solution by 

any means, Because the disjunctively asserted data will not be 

utilized by the AND-IMPLICATION process, the rule has no 

significance at all as far as dilemma inference is concerned, It 

is just like your saying that if you prove it then it is proved. 

Discussing AND-OR tree problem solving technic, Nilsson 

(1980) illustrated tnat the three-box problem is a very peculiar 

kind of a graph-like AND tree problem where there are two roots 

at both of which the control paths should communicate. One root 

is the node representing the given goal while another is the node 

that provides the disjunctive instance leading to a solution via 

"reasoning-by-cases" strategy, It is an AND tree because every 

branch of the disjunctive instance must succeed in proving the 

theorem in order to prove the theorem, In an ordinary AND-OR tree 

problem solving, the goal node creates descendent AND or OR 

nodes, and lets them run to see who brings back which anwer, 

However, in this peculiar situation that he called the case of 

reasoning-by-cases strategy, an AND tree is created from the node 

that represents the disjunctive assertion, and the goal node can 

make a decion when the AND tree created by someone else reports 

to him that every branch has been successfully terminated, 

he stated that the key to the solution of this strategy is 

somehow to make it possible for the two critical nodes to 

Thus, 
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communicate. This matter could be resolved pretty easily on 

SNePS running on MULTI. When a top level inference mechanism 

finds a disjunctive assertion which seemingly has a potentiality 

of proving the theorem in a reasoning-by-cases fashion, the top 

level inference driver sets up a specialist who will take care of 

the dilemma inference case. Upon being set up, the specialist 

creates each case handler for every horn resolution, and 

instructs each of them to report to himself, and then waits until 

all horns sends him a message of success. 

The real harder problem of a dilemma inference rather lies 

in the way how each of the horn attackers can resolves his own 

problem. Each horn attacker is of course expected to call for 

the help of inference specialist forming a daisy-chain recursion 

in order to solve his horn resolution problem with his particular 

horn assumption. In a data-sharing system like present SNePS 

running on MULTI, a horn assumption may not safely be added to 

the database as if it were real to everybody since it will mess 

up all other innocent processes sharing the data. 

Thus, the way how the horn assumption is handled for each 

horn resolution seems to be the real core of the solution to 

dilemma inference (or reasoning-by-cases). 

The solution which is adopted by this implimentation is to 

let the horn attacker reshape his own theorem derived from the 

original theorem that the dilemma process boss has been asked 

about. Each horn attacker is asked to prove the grand theoren 
A different 

with one's own horn assumption taken granted. 

assumption leaves a different subtheorem to be proved. For 
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instance, if the horn assumption were the original theorem 

itself, then that particular horn attacker does not have to do 

anything. His duty is none from the very beginning. All he has 

to do is to report that with his horn assumption, the theorem is 

proved. Reshaping of theorem clearly does not affect the 

database, and makes a change onto the theorem ultimately to be 

proved, thus raising the possibility of the theorem's being 

proved. 

3. Program description 

On top of number of supporting lisp functions, this program 

package consists of four newly defined MULTI processes and two 

pre-existing processes slightly modified so that this package can 

be coupled to the present SNePS inference package. 

is described as follows: 

Each process 

INFER 

This is a pre-existing process which cranks the main piston 

of inference machinary. This was modified so that it collects 

available and relevant horn sets for a given theorem to be 

proved. Dilemma inference is triggered only when the global 

switch <DILEMMA> is set to T, which is the default value at the 

top-most top level. If any horn sets are collected, INFER 

creates 0-INFER and 0-ANSCAT with the help of a lisp function 

<dilemma-infer>. 

TOPMOST-TOP INF 

This pre-existing process was modified so that it can 
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receive disjunctive answers obtained throuhgh dilemma inference 

via a different process registor. The reason it does not use the 

normal message channel is in order not to cause the disjunctive 

answer to be permenantly built as other type of answers are. The 

deep reason why a disjunctive answer must not be permenantly 

built is that a dilemma inference cannot determine the number 

value for MAX arc. The routine assigns the maximum value for MAX 

for the sake of the largest generality, but certainly the system 

does not want it to serve as inference rules for any further 

inference. 

D-INFER and D-ANSCAT 

D-INFER creates appropriately many horn attackers 

ATTACK.HORN and one D-ANSCAT. ATTACK.HORN's are each given a 

horn to be disjunctively proved, and 0-ANSCAT collects the 

answers coming from individual ATTAC.HORN's. When all horn 

aresuccessfully finished, D-ANSCAT send the anwer (disjunctively 

bound binging set) to whoever ordered the dilemma inference work. 

ATTACK.HORN AND HORN-ANSCAT 

ATTACK.HORN reshapes the local theorem related to the horn 

assumption, and initiate INFER recursively to resolve the horn. 

In this embedded call to INFER, the switch <dilemma> is set to 

NIL such that too much costing dilemma inference may not be 

triggered within the embedded level. HORN-ANSCAT catches answers 

from ATTACK.HORN's clients and sends it to D-ANSCAT. 
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ENTERING ECHO DECEMBER 22 ~ 1 '~81 

?<INPUT DILMA) 
(INFER GATHER.HORNS WORTH-DIL? D-HORN? NO-FREEVAR? NON-NILS ATOMOLECULE? 
DILEMMA-INFER DILEMMA D-INFER ALL-HORNS? ATTACK.HORN HORN-TORN-C(~ IJNTOR 

N-CQ SELECT.HORNS SORT.HORNS PACK-IN PUTIN-BASKET SET.PREG EQUISET HORN­ 
ANSCAT D-ANSCAT RECORD.DANS DILEM-RPT DRAFT.D-ANS TOPMOST-TOPINF DEDIJCE* 
D-SEND) 
?(INSYS MEMO) 

(SNEPS FILE LOADED) 
?DILEMMA 

T 
?(SNEPS) 

SNEPS 
**<DESCRIBE (Hi M2 M3 M4 M5 M6 M7 MB M9 M10 M11)) 
<Ml (OBJ <BLOCK2)) (SUBJ <BLOCK1)) <R£L (ON))) 
< M2 ( OBJ <BLOCK3)) ( SUBJ <BLOCK2)) <REL (ON))) 
(M3 (OBJ <BLOCK12)) (SUBJ <BLOCK11)) <REL (ON))) 
( M4 ( COLOR < F~ED)) ( P. OWN (BLOCK!))) 
( M5 C COLOR <BLIJE)) ( P. OWN <BLOCK3))) 
CM6 (COLOR (RED>> (P.OWN CBLOCK2))) 
(M7 (COLOR <BLUE)) <P.OWN <BLOCK2») 
(MB <ARG (M7 (COLOR (BLUE)) (P.OWN <BLOCK2)) > 

( M6 < COLOR <RED> ) < P. OWN <BLOCK2) > )) 
( MAX ( 1)) 
(MIN (1))) 

( M9 ( COLOR <BLUE) > ( P. OWN <BLOCK11))) 
(M10 (COLOR <RED)) (P.OWN <BLOCK12)}) 
(M11> 
(DUMPED> 
c,2'~ MSECS 

** ( DEDUCE P. OWN BLOCl<2 COLOR %X) 

FOR A DILEMMA INFERENCE, 
WE KNOW 

( M8 ( ARG ( M7 ( COLOR <BLUE)) ( P. OWN <BLOCK2))) 
(M6 (COLOR (RED>) (P.OWN <BLOCK2)))) 

( MAX ( 1)) 
(MIN (1))) 

HERE, WE INFER A DISJUNCTIVE ANSWER 
(T87 <ARG (f86 (COLOR <BLUE)) <P.OWN <BLOCK2))) 

(T85 <COLOR <RED>> <P.OWN <BLOCK2)))) 
<MIN (1)) 
( MAX ( 2) ) ) 

NIL 
882 MSECS 

** <DEDUCE MIN 3 MAX 3 ARG ( 
* (TBIJILD SIJBJ :Y.X OBJ i.Y REL ON> 
* (TBUILD P.OWN *X COLOR RED> 
* <TBIJILD P.OWN *Y COLOR BLUE))) 

FOR A DILEMMA INFERENCE, 
WE KNOW 

< M8 <ARG ( M7 ( COLOR <BLUE)) < P. OWN <BLOCK2))) 
( M6 ( COLOR <RED> > ( P. OWN <BLOCK2) ) ) ) 

(MAX (1)) 
<MIN (1))) 



'A HORN TRIGGERS INFER TO PROVE T113 
A HORN TRIGGERS INFER TO PROVE T116 
HERE, WE INFER A DISJUNCTIVE ANSWER 
(T153 
(:SVAR <Q100 (:VAR (T))) <Q101 (:VAR (T)))) 
(ARG 
(T152 
<ARG 
0151 <REL (ON)) 

( OBJ <BLOCK2)) 
(:SVAR (Q100 (:VAR (T)))) 
(SUBJ (Q100 (:VAR (T))))) 

(T150 (COLOR (RED)) (:SVAR (Q100 (:VAR <T)))) CP.OWN (0100 (:VAR (T) 
) }) ) 

<T14·~ (COLOR <BLUE>> <P.OWN <BLOCi<2)))) 
(:SVAR (0100 (:VAR .r ».» 
<MAX (3)) 
<MIN (3))) 

(T148 
c:SUAR (Q101 (:VAR <T>>>> 
(ARG 

(T147 <REL (ON)) 
(:SVAR ((H01 (:IJAR (T)))) 
<OBJ <0101 ( :VAR <T))) > 
< SUBJ < BLOCl<2) ) ) 

<T14t. (COLOR (RED>) (P.OWN <BLOCK2))) 
(T145 (COLOR <BLUE>> c:SVAR (Q101 (:VAR CT>>>> <P.OWN (Q101 (:VAR <T 
)))))) 

< MAX < 3)) 
(MIN (3)))) 

(MIN (1)) 
<MAX (2))) 

NIL 
2259 MSECS 

** ( LISP) 
END SNEPS 
?(GRIND DILMA XREF ALPHA 90) 

DILMA 

CREATED~ 
LAST MODIFIED: 
CHANGES MADE TO: 

22 DECEMBER 1°181 2.52.24 

14 DECEMBER 1981 21.31.24 
22 DECEMBER 1'181 2.15.28 
DEDUCE* D-ANSCAT ATTACK.HORN ALL-HORNS? 

********************************************************************** 
* [ALL-HORNS?J TESTS IF OR NOT EACH HORN INFERENCE HAS BEEN FINISHED 
* WITH EVERY HORN IN THE HORN-SET BEING MADE AS AN ASSUMPTION. 
* THE ASKED QUERY IS DISJUNCTIVELY ANSWERED ONLY WHEN THE INFERENCE FOR EVERY 
* HORN AS AN ASSUMPTION HOLDS. 
* HYY -- 12/21/81 

ALL-HORNS? 
VALUE 
CLAMBDA CREG NHORN) <AND (EQ (LENGTH REG> NHORN> <NON-NILS CMAPCAR REG CDR>>>> 

PUST 
NIL 

***************************************************************** 

INFER 



* LHUIOMQLE.CULE'?J ASKS IF OR NOT A GIVEN NODE <ND!::..> DOMlNAIES ATOMIC NODES ONLY. 
* HYY -- 12/21/81 

ATOMOLECULE? 
VALUE 
(LAMBDA <NDE) 

(NON-NILS (MAPCAR (DOWNSET NDE) 
< LAMBDA <ARGT> 

( OR ( NUMBERP ( CDR ARGT) ) ( NULL < DOWN SET ( CDR ARGT) ) ) ) ) ) ) 

PLIST 
NIL 

*********************************************************************** 
* PROCESS CAHACK.HORNJ TAKES CARE OF THE INFERENCE OF THE GIVEN CQ WITH 
* THE ASSUMPTION THAT THE HORN IS TRUE. THUS, THE NEW CQ' TO BE PROVED 
* IS "CQ - HORN" WITH THE BINGING PROVIDED BY THE HORN ASSUMPTION. 
* HYY -- 12/21/81 

ATTACK.HORN 
VALUE 
(LAMBDA (NAME: CLINK: CQ: BNDG:) 

<COND ( <NI.ILL CQ:) <SEND <LIST r: CLINK:)) 
(T (PRIN3 <>" A HORN TRIGGERS INFER TO PROVE"* CQ:) 

(NEW-OLD-·INFER CQ: BNOG: CLINK:)))) 

PLISl 
<LREGS: <NAME: CLINK: CQ: BNDG:>) 

********************************************************************* 
* UJ-·ANSCATJ PROCES~; CATCHES THE ANSWERS FOR EVERY HORN INFERENCE, AND KEEPS 
* CHECKING IF ALL HORNS PRODUCE EACH A DISJUNCTIVE ANSWER. IF SO, THEN fHIS 
* PROCESS RE.PORTS THE ASNWER TO CUN~:::. <NHORN: > REMEMEMBERS THE NUMBER OF 
* HORNS, <REG:> KEEPS ALL THE ANSWERS, <FLG:> SIGNAL GETS OFF AFTER ONE SET 
* OF ANSWER IS SENT TO CLINK:. BUT ALL THE ANSWER ARE CONTINUOUSLY DEPOSITED. 
* HYY -- 12/21/81 

D-ANSCAT 
VALUE 
(LAMBDA (NAME: CLINK: CQ: NHORN: REG: MBNDG: FLG: MSG:> 

( IF MSG: 
<MAPC MSG: (LAMEDA <MSG) <SETQ REG: <RECORD.DANS REG: MSG)))) 
< sere MSG: NIL) 
(lF <AND FLG: <ALL-HORNS? REG: NHORN:)) 

(COND 
< (EQ <REGFETCH CLINK: 'NAME:) 'TOPMOST-TOPINF) 
<0-SEND <DRAFT.D-ANS CQ: NHORN: REG:> CLINK:>) 

<T <SEND (DRAFT.D-ANS CQ: NHORN: REG:) CLINK:))) 
(SETQ FLG: NIL))) 

<SET CURNT: <LIST NAME: CLINK: CQ: NHORN: REG: MBNDG: FLG: MSG:>>> 

PLIST 
(LREGS: <NAME: CLINK: CQ: NHORN: REG: MBNDG: FLG: MSG:)) 

**************************************************************** 
* [D-HORN?J ASKS IF OR NOT THE GIVEN NODE <DNE> IS A PPOTENTIALLY USEFUL 
* HORN FOR A DILEMMA INFERENCE. FOR THE TIME BEING, <DNE> IS REGARDED 
* AS A CANDIDATE HORN SET ONLY WHEN IT IS A DISJIJNCTIVEL Y ASSERTED CONTAINING 
* NO VARIABLES. FOR A FURTHER EXPANSION OF DILEMMA INFERENCE EVEN WITH RULE 
* NODES, A RELAXATION OF THIS FUNCTION MUST EE APPROPRIATELY MADE. 
* HYY -- 12/21/81 



D-HORN? 
VALUE 
( LAMBDA <NDE) 

<PROG (MINI> 
<RETURN 

<AND (TOP? NDE) 
<NO-FREEVAR? NOE> 
<NON-NILS <MAPCAR (GET NDE 'ARG) ATOMOLECULE'?)) 
(SETQ MINI <CAR <GET NOE 'MIN})) 
(PLIJSP <DIFF <LENGTH (GET NDE 'ARG)) MINI)))))) 

PLI5T 
NIL 

************************************************************************* 
* (D-INFERJ ITERATIVELY TRIES TO PROVE THE GIVEN CQ WITH EACH HORN BEING 
* AN ASSUMPTION. 
* HYY -- 12/21/81 

D-INFER 
VALUE 
( LAMBDA <NAME: CLINK: CQ: HORNSET: MBNDG:) 

<MAPC 
( CDR HORNSET:) 
(LAMBDA (HORN) 

<PROG (HP HC) 
<SETQ 
HP (NEW 'ATTACK.HORN 

CSETQ HC (NEW 'HORN-ANSCAl CLINK: <ARGN HORN 2) NIL NIL T>> 
(HORN-TORN-CQ HORN CQ:) 
(UNlON-B <ARGN HORN 2) MBNDG:))) 

<REGSTORE CLINK: 'REG: (CONS (LIST HC) (REGFETCH CLINI<: 'REG:))) 
(INITIATE HP>>>>> 

PUST 
CLREGS: <NAME: CLINK: CQ: HORNSET: MBNDG:)) 

************************************************************************** 
* CD-SENDJ IS, A KLUDGE FOR SENDING AN ANSWER DERIVED THROUGH A D-INFERENCE 
* TO [TOPMOST-TOPINFJ PROCESS. THE REASON FOR NOT USING NORMAL MESSAGE 
* CHANNEL IS DESCRIBED IN [DEDUCE*] SECTION. THIS MUST BE, THOUGH, ELIMINATED 
* IN THE FUTURE BY CHANGING SOME CODE IN CTOPMOST-TOPINFJ PROCESS, THROWING 
* AWAY THE REGISTER <D-ANS:> EVENTUALLY. 
* HYY -- 12/21/81 

D-SEND 
VALi.iE 
(LAMBDA (ANS BOSS) 

(S£TQ ANS <CAR (ARGN ANS 2))) 
<REGSlORE BOSS 'D-ANS: ANS> 
< INITIATE BOSS)) 

PLIST 
NIL 

**************************************************************************** 
* tDEDI.ICE*J MODIFIED BY H'r'"'I' IN ORDER TO ADD ONE EXTRA REGISTOR TO fHE PROCESS 
* CTOPMOST-TOPINFJ. THIS REGISTOR IS NEEDED TO GET AN ANSWER FROM THE 
* DILEMMA INFERENCING PROCESS. THE REASON WHY WE 00 NOT USE THE NORMAL 
* MESSAGE SENDING CHANNEL FOR THIS PURPOSE IS TO AVOID THE THEOREM PROVEN 
* VIA D-INFERENCE BEING PERMENANTLY BUILT IN THE DATABASE. 
* HYY -- 12/21/81 



DEDIJCE* 
VALLIE 
(LAMBDA (NUMFLD C(~) 

(PROG (TP RESULTS: INF 7.DILEMMA) 
(SETQ %DILEMMA DILEMMA) 
(Pl.IT 'LASTINFER ':VAL NIU 
(IF (NULL (FIRST-ATOM CQ)) (RETURN RESULTS:>> 
CSETQ 
TP <NEW 'TOPMOST-TOPINF 

NIL 
<FIRST-ATOM CQ) 
NIL 
NIL 
0 
0 
( IF <NllMBERP NUMFLD) NUMFLD) 
( IF <NOT <ATOM NIJMFLD>) C CAR N!JMFLD>) 
< IF ( NOT ( ATOM NUMFLD)) ( CADR NUMFLD) > 
NIL 
NIL 
<NEW 'I-MTR 

NlL 
(LIST (SETQ INF <NEW 'INFER NIL (FIRST-ATOM CQ) NIL. NIU)) 
NIU 

NIU> 
( REGSTORE INF 'CLINK: lP> 
<MUL1IP <LIST (REGFETCH TP 'MTR:))) 
(PUT 'U~STINFER ':VAL (LIST TP>> 
(TERPRI) 
CTERPRI) 
<RETURN RESULTS~))> 

PUST 
NIL 

*********************************************************************** 
* CDILEM-RPTJ ISSUES A SNEPSUL USER READABLE MESSAGE FOR THE DILEMMA INFERENCE 
* PROCESSING TAKEN. 
* HYY -- 12/21/81 

DILEM-RPT 
VALUE 
(LAMBDA <HORNSET) 

(PRIN3 <>"FOR A DILEMMA INFERENCE,") 
CCOND ( (EQ <REGFETCH BOSS 'NAME:) 'TOPMOST-TOPINF> (PRIN3 <> 11 WE KNOW" <>)) 

CT ( PRIN3 <> " SINCE" <>))) 
( DESCRIBE (" < CAR HORNSET>)) ) 

PLIST 
NIL 

************************************************************ * <DUKILEMMA> IS A GLOBAL SWITCH FOR DILEMMA INFERENCING. DEFAULT 15 T. 
* HYY -- 12/21/81 

DILEMMA 
VALUE 
T 

PLIST 
NIL 

*************************************************************************** 



'I\' LLJ.LLl:.MMH-.LNl-1::.H.J lll:.Hf..11.i.Vl:.U 11-<J.I:.::. t:.Vl:.HY HOl-<NSE:.f IRKE:.N !-HOM IHE HORNPILE, 
* 5ETl ING !JP CD-ANSCATJ FOR ANSER CATCHER AND CD-INFERJ FOR A DISJUNCTIVE 
* REASONING. 
* HYY --- 12/21/81 

DILEMMA-INFER 
VALLIE 
(LAMBDA <BOSS CQ MBNDG HORNPILE) 

( SEH~ Y.DILEMMA NIL) 
<REPEAT NIL 

WHILE HORNPILE 
(DlLEM-RPT CCAR HORNPILE)) 
<INITIATE (NEW 'D-INFER 

<NEW 'D-ANSCAT 
BOSS 
CQ: 
<LENGTH (CDAR HORNPILE)) 
NIL 
MBNDG 
T 
NlU 

CQ 
<CAR HORNPILE) 
MBNDG)) 

CSETQ HORNPILE (CDR HORNPILE)))) 

PUST 
NIL 

*************************************************************************** 
* CDRAFT.D-ANSJ IS A KLUDGE FOR SENDING AN ANSWER DUE TO DILEMMA INFERENCE 
* [DRAFT.D-ANSJ DRAFTS THE FINAL ANSWER TO BE SENT TO r.TOPMOST-TOPINFJ WHEN 
* A DILEMMA INFERENCE BRINGS UP WITH A DISJUNCTIVE ANSWER. NOTE THAT THE 
* ANSWER IS A TEMPORARY NODE. 
* HYY -- 12/21/81 

DRAFT.D-ANS 
VALUE 
<LAMBDA (CQ MAXI REG) 

<LIST CQ 
(APPLY TBUILD 

( LIST 'MAX 
MAXI 
'MIN 
1 
'ARG 
(MAPCAR REG (LAMBDA (D-ANS) (NBl.!ILD CQ <CADR D-ANS) TBLIILD>)))))) 

PUST 
NIL 

EQUISET 
VALUE 
( L~1M:8DA ( U L2) 

(AND CEQ (LENGTH L1> <LENGTH L2)) 
<NON-NILS (MAPCAR Ll <LAMBDA (LL) CMEMB LL L2)))))J 

PLISf 
NIL 

*********************************************************************** 
* 



* L(:;1-ilHl::.H.HUt<N~J l.f-ilr1!::.H~ WUtffHWHILE HORN-SETS FOR H DILEMMA INFERENCE OF THE 
* GIVEN CQ. A HORN-SET IS A DISJIJNCTIVELY ASSERTED STATEMENT IN WHICH ANY 
* SUBSii:.T OF THE GIVEN CQ IS INCLUEDED ~1S ONE OF ITS DISJUNTS. 
* RETURNS <MI (MJ BJ TJ) (Ml< BK TU ••• ) , 
* WHERE MI IS THE NODE OF THE HORNSET FOUND IN THE DATABASE, 
* (MJ •• TJ) IS A DATA SET FOR EACH HORN, 
* ~!HERE., MJ IS 'THE NODE OF HORN DISJUNCT, 
* BJ IS THE BINGING SATISFYING THE HORN AS AN ASSUMPTION, 
* TJ IS THE SUB-PART OF CO WHICH IS PROVED BY THE HORN ASSUMPTION. 
* HYY -- 12/21/81 

GATHER.HORNS 
VALi.iE 
(LAMBDA (CQ BNDG) 

(PROG (HRN) 
<MAPC <OR (GET CQ 'ARG) <LIST CQ)) 

(LAMBDA (X} 
(MAPC (MATCH! X BNDG) 

<LAMBDA (Y) (SETQ HRN (CONS (APPEND Y (LIST X)) HRN)))))) 
(RETURN <SORT .HORNS <PUTIN-BASKET <SELECT .HORNS HRN))) >)) 

PLIST 
NIL 

**************************************************************** 
* CHORN-ANSCAiJ CATCHES ANSWERS FOR F1 HORN AND SEND THE FIRST ANSWER TO 
* CD-(4NSCA1J. RIGHT NOW, THE ANSWER IS SENT JUST ONCE. IN THE FUTURE, 
* SOMEONE MAY ATTEMPT TO LET IT SEND ALL ANSWERS BACK. BUT NOTICE THAT 
* A TAXONOMICALLY EMBEDDED DISJUNCTION OF DISJUNCTIONS ARE REALLY MESSY. 
* HYY -- 12/21/81 

HORN-ANSCAT 
VALUE 
(U:lMBDA (NAME~ CLINI<: BNDG: REG: MSG: FLG:) 

(IF MSG: <SETQ REG: (APPEND REG: (CDR MSGO) MSG: NIU) 
(IF FLG: (SEND <LIST CURNT: (UNION-B BNDG: (CAR REG:))) CLINK:) <SETQ FLG: NIU) 
(SET CiJRNT: <LIST NAM£: CLINK: BNDG: REG: MSG: FLG:>)) 

PL1ST 
<LREGS: <NAME: CLINK: BNDG: REG: MSG: FLG:)) 

********************************************************************** 
* (HORN-TORN-CQJ GENERATES A NEW CQ TO BE PROVED FROM A GIVEN CQ WITH THE 
* ASSUMPTION THAT THE HORN IS TRI.IE. 
* RETURNS A TEMPORARY NODE NEWLY BUILT. 
* HYY -- 12/21/81 

HORN--TORN-CQ 
VALUE 
(LAMBDA (HORN CQ) 

( PROG (LC(~) 
(RETURN 

(COND 
((OR (EQ CO (ARGN HORN 3)) (EQ (SETQ LCO <LENGTH (GET CQ 'ARG))) 1)) NIL) 
(T (FIRST-ATOM (APPLY T8l1ILD 

( LIST 'MAX 
(SUB1 LCQ) 
'MIN 
(SUB1 LC~t> 
'ARG 
(UNTORN-CQ CARGN HORN 3) (GET CQ 'ARG)))))))))) 

PUST 



Nll .. 

*********************************************************************** 
* CINFERJ MODIFIED BY HYY 12/21/81 
* IN ORDER TO COLLECT HORNSETS INTO ~i HORNPILE, AND CALL DILEMMA INFERENCING 
* ROUTINE IF <DILEMMA> IS SET AND <HORNPILE> IS NOT EMPTY. FOR THE TIME BEING 
* <DILEMMA> IS SET TO NIL Al ALL EMBEDDED INFERENCE LEVELS. HOWEVER, THIS MAY 
* BE LIFTED IN THE FUTURE IF AN ENOUGH MOTIVATION JUSTIFIES TO DO 50. 
* SWITCHING OF <DILEMMA> IS DONE IN CDILEMMA-INFERJ. 

* HYY -- 12/21/81 

INFER 
VALUE 
( LAMBDA <NAME: CLINK: CQ: BNDG: MSG: ) 

(PROG (WD HORNPILE) 
(COND 
( <AND ( NULL MSG:) ( GET CQ: 'NAME:) ) 
( INITIATE <NEW 'EVAL-FN CLINK: CQ: BNDG: NIL NIU)) 

(T 

CPROG (M A D) 
(SETQ M (OR MSG: <MATCHI C(-1: BNDG:) > MSG: NIU 
(SETQ WO (WORTH-OIL? CQ:)) 
(IF <AND ZDILEMMA WD> (SETQ HORNPILE (GATHER.HORNS CQ: BNDG:))) 
(REPEAT NIL 

WHILE M 
(COND 
<<TOP? CTNODE <CAR M>>> 
(SETQ A (CONS (LIST CTNODE (CAR M)) (SBIND (CAR M))) A)) 
< IF (EQ <REGFETCH CLINI<: 'NAME:) 'TOPMOST-TOPINF) 

<INF-RPT CSBIND (CAR M>> NIL NIL (LIST CQ:)))) 
((AND (OR <GET (TNODE (CAR M)) (CONV 'CQ)) 

(GET (TNODE (CAR M)) (CONV 'ARG)) 
(G£T <TNODE <CAR M>) (CONtJ 'DCQ) >) 

(NOl 
<MEMBER 
NIL 
(MAPCAR CTBIND (CAR M)) 

( LAMBDA <BP> 
COR <VAR CCDR BP>> 

(NULL <GET (CAR BP) 'EVB-)))))))) 
(SET<~ D (CONS <CAR M) D)))) 

<SETQ M <CDR M))) 
< IF (OR A 

CAND (NULL (REGFETCH CLINK: 'CLINK:)) 
(EQP <REGFETCH CLINK: 'TOT:) 0))) 

(SEND (CONS CQ: A) CLINK:)> 
<IF <AND D (OR CNIJLL A) <WH-Q (SVAR CQ:) BNDG:))) 

<MAPC D 
< LAMBDA ( MT CHD> 

< INITIATE 
<NEW 1GO-UP 

<NEW 'SWITCH CLINK: CQ: CSBIND MTCHD> NIL) 
( H,tODE MTCHD> 
(TBIND MTCHD>>>>>>> 

(IF <AND %DILEMMA WD HORNPILE) <DILEMMA-INFER CLINK: CQ: BNDG: HORNPILE» 
(COND 
( <GET CQ: 'MAX) 
( INITIATE. 
( NEW 'WlNDOR 

CLINK: 
CQ: 
<CAR (GET CQ; 'MIN)) 
(CAR (GET CQ: 'MAX)) 
(LENGTH (GET CQ: ''ARG)) 
0 



\Gt:.J L{H 'HHG) 
BNDG: 
NIL 
NIU}) 

((GET CQ: ;I-//-) (INITIATE (NEW 'llJI-//- CLINI<: CQ: BNDG: NIL NIU)) 
«GET CQ: 'UNn ( INITIATE (NEW 'V-UNK CLINK: CQ: BNDG: NIL NIL NIL NIU))))) 

(SET CURNT: CLIST NAME: CLINK: CQ: BNDG: MSG:)))) 

PUST 
<LREGS: (NAME; CLINK: CQ: BNDG: MSG:)) 

NO-FREE VAR? 
VALUE 
< LAMBDA (NOE) 

<NON-NILS (MAPCAR <DOWNSET NDE) <LAMBDA (X) <NOT <VAR (CDR X))))))) 

PUST 
NIL 

************************************************************************ 
* [NON-NILSJ 15 A HELP FUNCTION TESTING IF A LIST CONTAINS ANY TOP LEVEL NIL 
* AS AN ELEMENT. THIS IS USEFUL USED ASSOCIATED WITH A [MAPCARJ FUNCTION. 
* HYY -- 12/21/81 

NON-NILS 
VALUE 
<LAMBDA <LST) 

CCOND ((NULL LST> T) 
((NULL <CAR LSr>> NIU 
CT <AND <CAR LST> (NON-NILS CCDR LST>>>>>> 

PUST 
NlL 

******************************************************************** 
* [PACK-INJ IS AN AID TO [PIJTIN-EASl<ETJ 
* HYY -- 12/21 <PROG <TND) 

(RETURN 
(COND 
((NULL HHEAP> NIL) 
((AND (MEMB CSETQ TND <CAR (GET (CAAR HHEAP> <CONV 'ARG)J)) 

< GET t NODES t: VAL>) 
( D-HORN? TND> > 

<CONS <LIST TND CCAAR HHEAP) CARGN <CAR HHEAP) 3) <ARGN (CAR HHEAP) 4)) 
(SELECT.HORNS <CDR HHEAP)))) 

n (SELECT.HORNS <CDR HHEAP))))))) 

PUST 
NIL 

SET.PREG 
lJALUE 
( LAMBDA C 1=-L > 

(MAPC FL <LAMBDA ff) <PUT F 'LREGS: (ARGN <EVAL F> 2)))) 
CAPPLY OUTPUT (LIST 'DILMA FL>>> 

PUST 
NIL 

*********************************************************************** 
* CSORT.HORNSJ Pl.ITS ALL USEFUL HORNS SELECTED BY CSELECT.HORNSJ INTO A 



* CONVlNIENf FORi"1AJ HS DE.SCRIBED IN [GAlHER.HORNSJ. 
* HYY -- 12/21/81 

SORT.HORNS 
VALUE 
<LAMBDA (HORNS) 

(PROG (HORNPILE> 
<MAPC HORNS 

(LAMBDA (HSET> 
(IF (EQUISET (GET <CAR HSET> 'ARG) (MAPCAR <CDR HSET> CAR)) 

(SETQ HORNPILE <CONS HSET HORNPILE))))) 
( RETURN HORNPILE) ) ) 

PUST 
NIL 

************************************************************** 
* CTOPMOST-TOPINFJ MODIFIED BY HYY ON 12/21/81 
* 1N ORDER TO ADD AN EXTRA REGISTOR <D-ANS:> THAT WILL RECEIVE AN ANSWER 
* FROM A DILEMMA INFERENCE ROUTINE. SHOULD BE FURTHER IMPROVED IN THE FUTURE. 
* HYY -- 12/21/81 

TOPMOST-TOPINF 
VALUE 
(LAMBDA (NAME: CUN~::: co= DATA: MSG: N-ANS: 

N-NEG: /~~SIJSPS~~ BOSSES: MTR: D-ANS:) 
(IF D-ANS: 

(PRIN3 <> " HERE, WE INFER A DISdUNCTIVE ANSWER" <>> 
<APPLY DESCRIBE D-ANS:) 
(SETQ D-ANS~ NIL)) 

(IF (SET<~ MSG: (MEMBER-S <MAPCONC MSG: (LAMBDA (X) (CDR X))) (SBINDS DATA:))) 

P-ANS: TOT: N-POS 

(SEND MSG: BOSSES:) 
<SETQ DATA: (APPEND DATA: MSG:)) 
(MAPC 
( MAPCAR M~:G: 

(LAMBDA ( X) 
(CONS (FIRST-ATOM <NBUILD (COND < (SAME-SIGN (CAR X) CQ:) CQ:) 

< T ( NEGATE CQ: ) > ) 
(CADR X) 
FORBTOP)} 

<CDR X} >)) 
(LAMBDA (ANS> 

<IF (NOT (MEMBER (CAR ANS) RESULTS:>) 
( SE re RE SUL TS: ( SNOC RESUL Ts: ( CAR ANS)))) 

(COND ((NEGATED (CAR ANS>) <SETO N-ANS: <ADD1 N-ANSO)) 
( T ( SETQ P-ANS: < ADD1 P-ANS:)))) >) 

<IF (NOT (CON1? N-ANS: P-ANS: TOT: N-POS: N-NEG:>) 
<SETQ 
/~~SUSPS~~ < APPEND 

/ ~~SI.I SPS~~ 
<MAPCONC 
<APPEND SUSPS: EVNTS) 
(LAMBDA (E) 

<IF <OR <BELOWP E CURNT:) 
(MEMBER <REGFETCH E 'NAME:) '(I··MTR I-MTR-R))) 

< LI ST E ) ) ) ) ) 
EVNTS <MAPCONC EVNTS <LAMBDA (E) (IF <NOT (MEMBER E /~~Sl.1SPS4D) <LISl E)))} 
SUSPS: (MAPCONC SIJSPS: <LAMBDA (E) <IF <NOT (MEMBER E /~~S!JSPS~~)) <LIST E})))) 

(IF CEQ TP CURNT:) 
( MAPC EVNTS ( LAMBDA ( X) < SUSPENDEM X) ) ) 
( MAPC SIJSPS: ( LAMBDA ( X) ( SIJSPENDEM X))) 
<SETQ EVNTS NIL SlJSPS: NIL>>> 

( SETQ MSG: NIL>) 
(SET CURNT: 



\ u::, I 'NHMt:.: t;UNK: C,H 1)/-llR: M~t;: N··AN~: P-HN5: IOI 
N-Pos: N-NEG: /~~SIJSPS~~ BOSSES: MTR: D-ANS:))) 

PUST 
(UxEGS: (NAME: CLINK: c,i: DATA: MSG: N-ANS: P-ANS: TOT: N··POS 

N-NEG: /~~SUSPS~~ BOSSES: MTR: D-ANS:)) 

************************************************************************ * CUNTORN-C(n HELPS CHORN-TORN-CQJ TO GENERATE A NEW CQ TO BE PROVED. 
* CUNTORN-·CQJ RETURNS A LIST OF NODES DISTINCT FROM HORN NODE. 
* HYY -- 12/21/81 

UNTORN-CQ 
VALUE 
( LAMBDA ( I-IC(} CQ) 

<COND ((EQ (CAR CQ) HCQ} <CDR CQ)) 
(T ( CONS ( CAR CQ) WNTORN-CQ HC(~ ( CDR CQ)))))) 

PLIST 
NIL 

************************************************************************ 
* CWORTH-DIL?l TESTS IF OR NOT A DILEMMA INFERENCING IS WORTH TO BE EVER 
* ATTEMPTED FOR THE GIVEN <CQ>. NOD-INFERENCE IS ATTEMPTED FOR AN ALREADY 
* DISJUNCTIVE QUERY. 
* HYY -- 12/21/81 

WORTH-DIL·? 
VALUE 
( LAMBDA ( CQ) 

( PROG (MAXI ) 
(RETURN 
(OR <AND <SETQ MAXI (CAR <GET CQ 'MAX))) 

(EQ MAXI (CAR <GET CQ 'MIN))) 
(NON-NILS (MAPCAR (GET CQ 'ARG) ATOMOLECULE?))) 

(ATOMOLECULE? CQ))))) 

PLIST 
NIL 

CROSS REFERENCE OF DILMf:1 

ALL-HORNS? D-ANSCAT 

ATOMOLECULE? D-HORN? WORTH-DIL? 

ATTACK.HORN D-INFER 

D-ANSCAT DILEMMA-INFER 

D-HORN? SELECT.HORNS 

D-INFER DILEMMA-INFER 

D-SEND D-ANSCAT 

DEDUCE* 

DILE.M-RPT DILEMMA-INFER 



UlLl::.Ml"IH JJEJJllCI::.* 

DI LEMMA- I NF ER INFER 

lJRAFT.D-ANS D-ANSCAT 

EQUISET SORT.HORNS 

GATHER.HORNS INFER 

HORN-AN SCAT D-INFER 

HORN-TORN-CQ D-INFER 

INFER DEDUCE* 

NO-FREEVAR? D-HORN? 

NON-NILS ALL-HORNS? 
NO-FREE VAR? 

ATOMOLECIJL.E? 0-·HORN? EQUISET 
NON-NILS MORTH-DIL? 

PACK- IN PACK- IN PUTIN-BASKET 

PUTIN-BASKET GATHER.HORNS 

RECORD.DANS D-ANSCAT RECORD.DANS 

SELECT.HORNS GATHER.HORNS SELECT.HORNS 

SET.PREG 

SORT.HORNS GATHER.HORNS 

TOPMOST-TOPINF D-ANSCAT DEDUCE* DILEM-RPT INFER 

LINTORN-CQ 

WORfH-DIL·? 
NIL 
?<EXIT) 

REVERT. 
I 

HORN-TORN-CO 

INFER 

UNTORN-CQ 


