SNePS Implementation of Possessive Phrases

Soon Ae Chun

Department of Computer Science
State University of New York at Buffalo
May 1987

SNeRG Technical Note #19
1. PROJECT GOAL

The current project concentrates on the issues involved in understanding English possessive phrases. These issues are divided into two subcomponents: one component deals with the issues of representation of possessive phrases and the other deals with the issues of implementing the possessive phrases in SNePS (Shapiro 1979). The current project, however, discusses only the 's type (Genitive case) possessive phrases of English, putting aside other means of expressing possession. Before I launch into the discussion of the two subcomponents of the project, I will briefly discuss the linguistic issues concerning possessive phrases.

2. LINGUISTIC ISSUES

This section discusses the syntactic expressions of possession in English and the different types of semantic relations expressed by 's phrase.

1. The syntactic devices available to express possession are listed in the following:

 (1)

 a. A's B (Genitive case('s)) John's hat
 b. B of A The leg of the table
 c. A have B John has a hat.
 d. B is A's The hat is John's

In the above list, A is called possessor and B is called possessed (object). Of all possible devices, this project concentrates on the Genitive case type of possessive phrases.

2. In (2) the genitive case 's conveys different relations between possessor and possessed:

 (2)

 a. body part relation John's arm
 b. kinship relation John's father
 c. location John's hometown
 d. possession John's book

This list of semantic relations is not exhaustive by any means. However, the categorization above includes most of the semantic relations. The relations basically depend on the types of possessed. If the possessed is animate, then the relationship between possessor and possessed is mostly kinship/interpersonal relations. If the possessed is a body part nominal, then the
relation between possessor and possessed will mostly be body part. But if possessed is inanimate, then the relationship is possession or location. Thus, semantic features like [animate], [body] or [inanimate] will not perfectly predict the semantic relations between possessor and possessed.

It seems that all items in the world can be described as either (1) neutral items or (2) items belonging to some agent. The first case is usually described as non-possessive phrases and used when the agent possessing a particular item is not known or when the expression of the agent possessing an item is not of interest. The second case is expressed with possessive constructions where the possessor is explicitly specified. Consequently, the possessed item is from the world of the possessor rather than from the neutral world. In other words, there seems to be a world (or mental space) where all items are considered as possessed by an agent. When we look at these phenomena this way, all items which have to do with an agent John can be optionally expressed with possessive constructions: John’s X. This view naturally leads to the uniform treatment of the possessive construction, regardless of the semantic diversity conveyed by it.

3. REPRESENTATIONAL ISSUES

Considering different semantic relations between possessor and possessed, we are tempted to represent them differently. However, if the possessed is considered to be an item from the possessor’s world (domain), all the semantic diversity seems to be captured in a unique way. Namely, the possessor serves as the domain from which the item which stands in a particular relation, such as father_of, book_of or right_arm_of, is selected. Another way of looking at it is that there is a function which takes the possessor as its domain and returns an item which stands in a particular relationship (such as father_of) with the possessor. This functional relation can be denoted with the following notation:

\[
\begin{align*}
\text{a. } & \text{father_of (John)} = \text{John's father} \\
\text{b. } & \text{book_of (John)} = \text{John's book}
\end{align*}
\]
The corresponding case frame of the relation is shown in Figure 1. The possessive relation is represented with a propositional node labeled \textit{m4} in the diagram. \textit{m4} denotes that a possessor \textit{m1} has a relation \textit{m2} with the entity labeled \textit{m3}. For example, \textit{John's father} is represented as in Figure 2. Another example of \textit{Bill read John's favorite book} is shown in Figure 3. Notice that the modifier of \textit{book}, \textit{favorite}, is syntactically represented as \textit{modifier} to the head of noun phrase \textit{book}.

![Figure 1. Case Frame for Possessive Relations](image1)

![Figure 2. Representation of \textit{John's father}](image2)
4. COMPUTATIONAL ISSUES

In this section, I describe the approach of implementing the parsing and the generation of possessive phrases. These are basically the descriptions of changes that I have made in the existing ATN grammar.

1. The major change for parsing is done in the states \textbf{npp}, \textbf{npdet}, and \textbf{npa}, where noun phrases are parsed. A Noun phrase, before my change, is parsed by these states as shown in Figure 4. For example, consider a noun phrase a yellow dog. The \textbf{det} arc at state \textbf{npp} is taken

Figure 3. Representation of Bill read John's favorite book.

Figure 4. Transition Network for Parsing NP (before change)
with the word *a*. At state **npdet** the **adj** arc is taken with the word *yellow*. Here the adjective *yellow* is stored in register **adj** for later use at state **npa**. Next the parser takes the **n** arc at state **npdet** with the noun *dog*, and then it stores it in the **nh** register. Finally, at state **npa** the parser finishes the noun phrase parsing and builds an *object-property* case frame with the adjective stored in **adj** register, namely, *yellow*, as *property* and the noun stored in **nh** register, namely *dog*, as *object*.

To parse the possessive phrase, I added a state **nppos** and **nprel** as in Figure 5. Let us consider a phrase *Lucy's little brother* to see how a possessive phrase is parsed. First, the parser takes the **jump** arc at state **npp** with the word *Lucy*. At state **npdet**, the arc **npr** is taken with *Lucy* and goes to state **nppos**. At state **nppos** the **wrd** arc is matched with the current word *'* but the flag **pos** is not set. Thus the parser jumps to state **npa**. (The **wrd** arc *'* at state **nppos** is only taken when the parser parses the second or third possessor in multiple possessor phrases, such as A's B's C.) At state **npa**, the parser sets the flag **pos** to be true and stores *Lucy* in register **possor**. Then the parser goes back to state **npdet**. At state **npdet** the parser has *s*...
as its current word and it matches with the word arc.

After parsing up to Lucy's, the parser at state npdet follows the arc adj to itself with the word little. Then, with the word brother, the parser takes arc n leading to state nprel since the possessive flag pos is set when the parser parsed Lucy's. At state nprel, the parser builds (or finds, if it already exits) the mod-head case frame with the adjective little and the head noun brother. Then the parser jumps to state nppos to find or build the possessor-rel-object case frame with possessor Lucy, rel little brother and object a base node. Finally, the parser jumps to state npa to pop from the np parsing, with a node built (or found) (labeled m8 in Figure 6) which corresponds to the proposition of Lucy's little brother represented by the possessor-rel-object case frame. (See Figure 6 for the resulting network representation in CASSIE's mind.)

2. In order to generate possessive phrases, I added states possessive, rel, mod and head. (See Shapiro 1982 for the details on generating from the semantic networks.) To illustrate the process of generating a possessive phrase, consider the network built in Figure 6 on the example of Lucy's little brother.

![Diagram](Image)

Figure 6. Representation of Lucy's little brother.
Given node m8 as the current node at state gs, the generator decides the node headed by
the object arc, namely m7, is going to be the subject of the sentence and the node m8 is to be
the object of the sentence. In other words, it prepares to generate a sentence m7 is Lucy's little
brother. (Notice here we do not know what is m7 in the current network. It can be a simple
proper noun like John or it can be any description of Lucy's little brother.) Assume that m7,
the subject of the sentence as well as the verb is are generated and the generator is about to
generate the "object" of the sentence with node m8, namely Lucy's little brother.

The generator separates the node m2 for generating the possessor from the node m6 for
generating the possessed. Now the generator jumps to state possessive to generate the possessor
Lucy's. (See Figure 7 for the sketchy transition networks involving the generation of possessive
phrases.) At state possessive, the generator calls state np where all noun phrase generation
takes place. The state np recursively calls itself until the generator goes down to the node
m1 from which the lex arc emanates. With node m1, the generator generates the English
word Lucy and 's.

After generating the possessor at state possessive, the generator jumps to state rel with
node m6 as the current node to generate. At state rel, the generator calls state np to generate
the noun phrase little brother. At state np, the generator jumps to state np1 and "prepares" to
generate the modifier and the head separately, if there is any modifier. In the current example,
the node m4 is set to be modifier and m5 to be head. With the node m4, the generator produces
the English word little. After the modifier is generated at the state mod by calling the state
np, the generator jumps to the state head and generates the English word brother with node
m5 by calling the state np. After generating modifier(s) and head noun, the generator pops to
state rel completing the generation of the node headed by the rel arc and popping from the
generation of a whole possessive phrase.
5. ADDITIONAL COMPUTATIONAL CHANGES

In addition to the changes for parsing and generating possessive phrases, I also made
changes to process the embedded subject clause, embedded complement clause and comparative
phrases. The following list contains the states in transition network that I have added to pro-
cess possessives and other phrases mentioned above.

1. **sc** -- In state **np**p, if the word was *that* then the sc node is taken to parse an embedded
clause. In **sc**, it is pushed to **sp** for sentence parsing.

2. **cc** -- At this state the parser parses the complement clause by pushing to **sp** to handle *X is
that S or *X is (comparative) than that* S.

3. **compare** -- In this state, parse the noun phrase following the comparative adjective such as
than NP. Set the **complement** register to the noun to build **arg1-rel-arg2** case frame later.

4. **nprel** -- As described in the previous section, in this state the **head-mod** case frame is built
for the **rel** arc of the possessive case frame.

5. **nppos** -- As shown in the previous section, the whole possessive case frame **possessor-rel-
object** is built in this state.

6. **surrel** -- In this state, the comparative adjective and *than* of the **arg1-rel-arg2** case frame
are generated.
7. **possessive** -- The possessor of the possessive case frame and 's are generated in this state.

8. **rel** -- The rel arc of the possessive case frame is processed to generate the relation involved in the possessive phrase.

9. **mod** -- The adjective qualifying the head of the possessive phrase is generated.

10. **head** -- The head noun of the possessive phrase is generated.

11. Different networks are built for the following sentences:

 \[(4)\]
 a. That John is taller than Mary is Kevin’s favorite proposition.
 b. Kevin’s favorite proposition is that John is taller than Mary.

With sentence (4a), CASSIE first identifies an entity (intensional object) as Kevin’s favorite proposition and then finds what relation that entity has with Kevin. With sentence (4b), CASSIE first builds the base object described as *Kevin’s favorite proposition* and then it finds out what that proposition is. For (4b), an explicit **equiv-equiv** case frame is used to note that the entity described as *Kevin’s favorite proposition* is equivalent to the *that*-clause, whereas for (4a) the proposition *that*-clause is the object of the possessive case frame. This asymmetry is shown in Figures 8 and 9.

6. LIMITATIONS OF THIS PROJECT

1. The current project only handles 's type possessive phrases, ignoring all other possessive devices. This means further work must be done on possessive expressions in order to handle other types of syntactic devices, such as the *of* phrase and *hane*. The difficulty arises immediately by just observing the various possibilities in interpreting *of* phrases:

 \[(5)\]
 a. The legs *of* a table (possession)
 b. one *of* the pioneers
 c. a discussion *of* semantic theory
 d. a collection *of* sentences
Figure 8. Representation of *That John is taller than Mary is Kevin's favorite proposition*

Figure 9. Representation of *Kevin's favorite proposition is that John is rich*

Even the 's type of possessive phrase, which is considered a reduced version of a complete sentence (see the following example), is not handled:

(6) a. John's blowing bubbles made us laugh.
REFERENCE

The logical subject of the act of blowing bubbles is expressed with the 's. Such possessive nominals are not handled in the current project.

2. The possessive pronoun is not handled in the current project at all. This future work should be able to handle first, correct parsing, second, identification of the right referent, and third, generation of referent in the possessive form. This work has to be incorporated with the work on pronoun resolution in general. (Li 1987)

3. The current work did not touch the inference involved with the possessive phrases. For example, the phrase John's sister's husband should be identified as the same as John's brother-in-law through the knowledge base and inference. Another example we might encounter in larger discourse are narratives like: the narratives like:

(7)

USER : John owns a car.
 It is yellow.
 Is John's car yellow?
SYSTEM : Yes, John's car is yellow.

We want the pronoun it in the second input sentence to be interpreted as John's car, even though there is no explicit input phrase John's car, so that CASSIE can answer the third input question correctly as shown above. This involves the inference from own (X Y) to the possession and generates or identifies the possession with possessive phrases.