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Abstract 
It is sometimes necessary to reason non-monotonically, to 
withdraw previously held beliefs.  Default rules and 
defeasible reasoning have been frequently used to handle 
such situations.  Some years ago, J. Terry Nutter proposed 
a form of defeasible reasoning involving additional truth-
values that would avoid non-monotonicity in many 
situations.  We adopt and implement much of Nutter’s 
underlying concept, but use a structure of case frames in 
our knowledge representation to avoid the need for more 
than the standard truth values.  Our implementation 
captures most of the advantages of the original proposal 
and in some cases allows more flexibility. 

Introduction 
     As part of an ongoing project in constructing an 
artificially intelligent cognitive agent known as Cassie, that 
(among other skills) reads and comprehends narrative text 
[Shapiro 1989], we are developing a system that builds 
definitions for unknown words from their linguistic context 
combined with background knowledge [Ehrlich 1995, 
Ehrlich & Rapaport 1997, Rapaport & Ehrlich 2000, 
Rapaport & Kibby 2002].   
    While reading, one may encounter information that 
appears to contradict one’s previous understanding.  In 
some cases, it is clear that the original understanding was 
in error.  In those cases, we must withdraw previous belief; 
we must have recourse to non-monotonic reasoning.  
However, we can often avoid the need for non-
monotonicity by expressing our beliefs in less than 
absolute terms.  Defeasible rules are one way to do this: a 
rule may be blocked in some cases, but is assumed to apply 
if not specifically blocked.  
  In a classic example, we have the rule that, by default, 
birds fly.  On reading that Tweetie is a bird, and knowing 
no contradictory information, the rule would, by default, 
lead to the conclusion that Tweetie flies.  If Tweetie is a 
healthy young canary, the rule should apply, and all is 
well.  If one knows that penguins are flightless birds, and 
reads of Opus, a penguin, one would not conclude that 
Opus flies.  One would infer that Opus is a bird, but the 
defeasible rule would not be applied, because we have 
specific information blocking its application in this case.  
We know that the rule does not apply to Opus, and all is 

again well.  So long as one has all relevant information 
before attempting to deduce whether a particular bird flies, 
there should be no trouble.  However, if one must make a 
decision in advance of potentially relevant data, the fact 
that a defeasible rule was used will have no effect on the 
conclusion drawn, or the need to revise it.   
    For example, if we read of Elmer the emu, and all we 
know of emus is that they are birds, we will conclude that 
Elmer flies.  If we later learn that emus are no more flight-
capable than penguins, we’ll need to retract the conclusion, 
just as if it were based on an indefeasible rule that all birds 
fly. 
   Rather than use defeasible rules that rely on knowing in 
advance whether they are applicable in certain cases, we 
employ a method, based largely on theoretical work by 
Nutter [1983a,b], in which some rules have consequents 
marked as presumably true.  Frequently, this avoids the 
need for non-monotonicity.  In our example from above, 
we would have the rule that, if something is a bird, then 
presumably it flies. Opus, the penguin, and Elmer the emu, 
being both birds, would fit the antecedent, and we would 
conclude that presumably each flies.  Learning (for 
example) that emus do not fly does not, then, produce a 
contradiction, but rather the concatenation that Elmer could 
be presumed to fly though in fact he does not. 

Underlying Software: SNePS 
  Our system is built on SNePS, a semantic-network-
based knowledge representation and reasoning system 
developed by Stuart C. Shapiro and the SNePS Research 
Group [1996, 1999], which has facilities both for parsing 
and generating English and for belief revision [Shapiro 
1979; Shapiro 1982; Shapiro & Rapaport 1987; Martins & 
Shapiro 1988; Shapiro & Rapaport 1992; Cravo & Martins 
1993; Shapiro & the SNePS Implementation Group 1999].    
     SNePS has been and is being used for several research 
projects in natural language understanding and generation 
including Rapaport [1986], Almeida [1987], Peters & 
Shapiro [1987a,b], Peters, Shapiro & Rapaport [1988], 
Rapaport [1988a,b], Peters & Rapaport [1990], Wyatt 
[1990], Shapiro & Rapaport [1991], Yuhan [1991], Ali 
[1993], Ali & Shapiro [1993], Kumar [1993], Shapiro 
[1993], Chalupsky & Shapiro [1994], Wiebe [1994], 
Almeida [1995],Rapaport & Shapiro [1995], Yuhan & 
Shapiro [1995], Chalupsky & Shapiro[1996], Wiebe & 



Rapaport [1996], Johnson & Shapiro [1999a,b], Shapiro, 
Ismail & Santore [2000], Shapiro & Johnson [2000], and 
Shapiro & Ismail 2003. 
 
  The Nature Of SNePS Networks.  Each node in a 
SNePS network is a term in a language of thought that 
represents a mental object (possibly built of other mental 
objects).  Labeled arcs link the nodes to one another. 

    [A]ll information, including propositions, 
“facts”, etc., is represented by nodes [and] 
propositions about propositions can be 
represented with no limit. 

Arcs merely form the underlying 
syntactic structure of SNePS.  [O]ne cannot add 
an arc between two existing nodes.  That would 
be tantamount to telling SNePS a proposition that 
is not represented by a node. [Shapiro & Rapaport 
1987: 266-267] 

    Anything about which one can think is represented as a 
node.  Nodes represent the concepts embodied by the 
nouns, pronouns, verbs, adjectives, and adverbs of natural 
language.  Base nodes (those that have no arcs emerging 
from them) typically represent a cognitive agent’s concepts 
of particular objects or entities, or they represent individual 
words or sensory inputs.  Molecular nodes represent 
structured concepts, including those that might be 
expressed in natural language phrases and sentences 
[Maida & Shapiro 1982, Shapiro & Rapaport 1987].  A 
special variety of molecular node is the pattern node, 

which has arcs to variable nodes.  These pattern nodes and 
variable nodes are used in the construction of rules, as we 
shall see below. 
   Certain propositions may be asserted in SNePS, but it is 
possible to represent propositions without asserting them. 
Thus, a cognitive agent whose mental state is represented 
as a SNePS network can consider a proposition without 
necessarily believing it.  Typically, a proposition 
embedded within another proposition is not asserted 
(although it can be; see Wiebe & Rapaport [1986], 
Rapaport [1986], Rapaport, Shapiro, & Wiebe [1997], 
Rapaport [1998]). 

 
Rule-Based Inference In SNePS.  SNePS allows the 
creation of universally quantified rules such as:  
(For all v1, v2, v3) [(Before (v1, v2) & Before (v2, v3)) => 
Before (v1, v3)].  In SNePS list-representation such a rule 
could be represented as: 
 (M1! (FORALL V1 V2 V3) 
           (&ANT (P1 (BEFORE V1 AFTER V2)) 
                       (P2 (BEFORE V2 AFTER V3))) 

       (CQ (P3 (BEFORE V1 AFTER V3)))) 
 

In this representation, a node is described as a list, the first 
element of which is its name, and subsequent elements of 
which describe the arcs leading from it.  Each of these 
descriptions is a list whose first element is the arc-name 
and whose second element is a list of all the nodes at the
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heads of those arcs.  A typical SNePS rule node has one or 
more of each of the following arcs: FORALL pointing to 
the variable node(s) of the rule, ANT or &ANT pointing to 
the antecedent pattern(s), and CQ pointing to the 
consequent pattern(s) of the rule.  If the antecedent is a 
single proposition, or if there is a choice among possible 
antecedents, we use the ANT arc.  If the rule requires that 
multiple antecedents be matched, we use the &ANT arc. 
So, in rule M1!,  both patterns P1 and P2, must be satisfied 
by matching against other propositions (by substituting for 
the variables V1, V2, and V3) in order to allow the rule to 
fire and create a new asserted proposition that matches the 
consequent pattern P3.   A graphical representation of M1! 
is depicted in figure 1.  
   Assertion is indicated by an exclamation mark following 
the name of the node (e.g., M1!)  If we think of the 

network as Cassie’s mind, an asserted proposition is one 
that believed to be true and an unasserted node represents a 
concept that has been entertained but not necessarily 
believed.  Coming to believe a previously considered idea, 
then, involves the assertion of a pre-existing propositional 
node.  Ceasing to hold a previous belief entails “un-
asserting” an asserted node.  The antecedents of the above 
rule will be satisfied if there exist a pair of asserted nodes 
with “before” and “after” arcs, and the “before” arc from 
one points to the same node as does the “after” arc from 
the other, for example: 
    (M14! (BEFORE B23) (AFTER B24)) 
    (M19! (BEFORE B24) (AFTER B28)) 
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   Here, the asserted propositions M14! and M19! match  
the pattern nodes P1 and P2, so that, when the rule M1! 
fires, it will build a new asserted proposition (M20!) to 
the effect that the time represented by B23 is before the 
time represented by B28. 
     (M20! (BEFORE B23) (AFTER B28)) 

Case Frames for “Modal Logic” 
In our implementation, rules with consequents that are 

presumably true differ from ordinary rules only in that the 
consequent takes the form of a (MODE OBJECT) case 
frame.  For example, node M94! (see figure 2) is the rule 
that, for all V10, if V10 is a bird then presumably V10 
flies.   
   (M94! (FORALL V10) 
             (ANT (P44 (CLASS (M90 (LEX bird))) 
                               (MEMBER V10))) 
             (CQ  (P46 (MODE (M12 (LEX presumably))) 
                              (OBJECT (P45 (ACT (M91 (LEX fly))) 
                                                       (AGENT V10))))))   
 
    (M96! (MODE (M12 (LEX presumably))) 
                   (OBJECT (M95 (ACT (M91 (LEX fly))) 
                                              (AGENT B52)))) 
 
    B52 is Cassie’s concept of a particular bird, and node 
M96! is the belief (created by the firing of M94!) that 
presumably B52 flies.  Notice that node M95, the 
proposition that B52 flies, is not asserted.  At this point 
Cassie does not believe either that B52 flies or that it 
doesn't.  New information could cause either M95 or its 
negation to be asserted, without contradicting M96! 
    Note that, as used here, “presumably” is just a word 
representing a concept in the Cassie's knowledge base. It 
is not a logical operator. Nutter originally proposed the 
use of “presumably” as an operator, and suggested 
expanding the number of truth values to four: “true”, 
“presumably true”, “false”, and “presumably false”.  This 
is different from the five truth values (“monotonically 
true”, “default true”, “unknown”, “default false”, 
“monotonically false”) employed in the Cyc KB.  In Cyc, 
a “monotonically true” assertion is true in all 
circumstances, whereas a “default true” assertion is an 
assertion (often a rule) to which there may be exceptions 
[Cycorp 2002].  Nutter’s theory allows a proposition to be 
both “presumably true” and “false” without there being a 
contradiction.  The gloss (as in the case of Elmer or Opus 
flying) would be something like: “there is reason to 
believe that P, but not P”.  Our system uses only the 
standard SNePS truth values: assertions are believed to be 
true; assertions of negation mean that the negated 
proposition is false; unasserted propositions have no real 
truth value as far as the system is concerned.  It might be 
interesting to one day implement a “presumably” 
operator, expand of the number of possible truth-values, 
and compare such an approach with our case-frame 

approach.  Currently, however, we believe that the case-
frame approach captures the important elements of 
Nutter's proposal without the need for additional truth-
values.  
    Using a case-frame approach also allows us a greater 
degree of flexibility in the construction of rules than 
would be the case if we used a logical operator and the 
revised truth-values.  Nutter suggested that, if a 
presumably true assertion matched the antecedent of a 
rule, the assertion built as a result of the rule's firing 
would also be presumably true.  When this is what we 
want, we can write our rule this way, with the (MODE 
presumably OBJECT <pattern>) case-frame appearing in 
both the antecedent and the consequent:  If presumably P, 
then presumably Q. But our approach also allows us to 
have a rule with a “presumable” antecedent and a 
consequent that is baldly asserted, e.g.: “If, presumably, x 
purrs, then x is feline.”  We would be unlikely to presume 
x purred, unless it were feline. 
    So, our case-frame approach allows us to write the 
same sort of default rules (If P, then presumably Q) as 
would the operator and truth-values approach, and it 
allows us the flexibility to write rules of the form “If 
presumably P then Q”.  The trade-off we make is that, in 
some cases we may need two rules, where using the 
operator and expanded set of truth-values would require 
only one.  Under Nutter's proposed implementation, the 
antecedent of a rule such as “If x purrs, then x is feline” 
could match the belief that “Presumably, Tom purrs” and 
lead to the conclusion that “Presumably, Tom is feline”.  
Our approach does not allow that match.  If we wanted a 
rule that would fire when it was found that Tom purrs or 
that presumably he purrs, we would need to write that rule 
with a disjunction of two antecedents:  “If x purrs, or if 
presumably x purrs, then x is feline”.  If we wanted the 
unqualified assertion to lead to an unqualified conclusion, 
and a presumably true assertion to lead to a conclusion 
marked as presumably true, then we would need two 
rules.   
    It seems probable that some such implicit qualification 
is part of most humans’ understanding, though it is not 
generally expressed.  People are apt to state their rules of 
thumb without qualification unless the exceptions are 
explicitly drawn to their attention, but they maintain those 
rules even when well aware that there are exceptions.  
When exceptions are pointed out, a typical reaction is 
something on the order of  “well, of course, but in 
general…”.  There is not usually any sense that one’s 
belief was in error, or in need of modification. 
 
     As mentioned at the beginning of this article, the case 
frame implementation of presumably true propositions is 
being currently being used in a project on contextual 
vocabulary acquisition.  Much background knowledge is 



encapsulated in rules that employ this case frame.  When 
asked for a definition of a word, Cassie selects relevant 
aspects of her knowledge and experience with that word 
to report.  Just which aspects are chosen depends upon the 
type and quantity of her exposure to the word, and the 
contexts in which it occurs, as well as what background 
knowledge she has.  If she has information about the 
presumable actions, functions, structure, etc., of objects 
named by a certain noun, she will report those in 
preference to the observed actions, functions, structure of 
individual instances of that noun, but lacking such 
information, she relies on what she knows of individuals. 
On the other hand, if she has hard and fast rules (really 
definitional rules) such information takes precedence over 
the “presumably true” behaviors, etc.  Similarly in 
defining verbs, Cassie employs a hierarchy in analyzing 
the effects of actions.  Those effects known to follow 
from certain actions are reported preferentially, but the 
known probable effects of actions are usually reported as 
well, if available.  If no such knowledge is to be had, 
Cassie may hypothesize as to the possible effects of the 
action described by certain verb, based on observation of 
changes described in the narrative in which she 
encounters the word knowledge [Ehrlich 1995, Ehrlich & 
Rapaport 1997, Rapaport & Ehrlich 2000, Rapaport & 
Kibby 2002].   

Conclusion 
    While neither traditional defeasible rules nor rules 
whose consequents are marked as presumably true can 
entirely relieve us of the need for non-monotonic 
reasoning, both (and especially the latter) can reduce the 
frequency of such a need.  Either is probably a more 
accurate representation of the knowledge with which we 
reason (although they are usually less accurate 
representations of how we report our knowledge) than 
classical, indefeasible, non-modal logic is.  We have used 
case-frames in our knowledge representation and 
reasoning system to implement a variant of Nutter’s 
proposed modal logic, marking certain propositions as 
“presumably true”, and allowing that a proposition may 
be both “presumably true” and “false” at the same time 
without contradiction.  This approach allows us to reason 
monotonically wherever possible (reserving the need for 
non-monotonic reasoning to those situations in which 
previous beliefs are actually shown to be erroneous), but 
does not require the implementation of more than the 
classical truth values. 
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