CONCURRENT INFERENCE GRAPHS

by

Daniel R. Schlegel

September 3, 2014

A dissertation submitted to the
Faculty of the Graduate School of
the University at Buffalo, State University of New York
in partial fulfillment of the requirements for the
degree of

Doctor of Philosophy

Department of Computer Science and Engineering
Acknowledgements

I could not possibly enumerate all of the people in my life who have inspired and helped me along this journey I have undertaken: teachers, who pushed me further than I thought I could go; professors, who taught with a passion which infected the entire room; but several leap to the front of my mind. First, my advisor, Dr. Shapiro, has helped me through this process more than any other single person. He has dedicated much of his life to the SNePS project, and I am proud and humbled to be a part of it. I am thankful for the patience Dr. Shapiro has had with me as I developed as a researcher, meeting with me week after week and providing insight and guidance when it seemed (to me at least) that I was missing the point. I am a better thinker because of him, and I am thankful he decided I was worthy of taking on as one (probably) last student. I have become very fond of our weekly meetings, and I will miss them greatly.

The rest of my committee, Dr. Rapaport and Dr. Dipert, have helped me immensely as well. Dr. Rapaport is an extremely careful reader, and has a memory for names and references I could only dream of. He has been an invaluable resource, and I have learned to turn to him when even Google fails me. Dr. Dipert’s knowledge of logic is vast, and without his teachings many pieces of this dissertation would have been impossible for me.

I would be remiss to not mention the fellow members of SNeRG who, over these past five years, provided so many useful comments, inspired my confidence that this could be done, and made the world seem less dark when things weren’t going well. Of these I would like to single out Jon Bona, who has been a great friend I hope to work with more in the future.

I owe a lot to my family and friends who have stood by me through it all. My family has been wonderfully supportive, and I don’t know what I would have done without them. My friends have been understanding of my long hours, which I know can strain any friendship.

Lastly, but certainly not least, I am very lucky to have Ashley Rowe in my life. She has been right beside me to put up with the roller coaster of successes and failures that have filled the last few years. And through all of it, the long hours, the sour moods, and my being constantly distracted, she has always loved me, and for that I am thankful.
Contents

Abstract

1 Introduction

1.1 Expressiveness .. 2
1.2 Inference through Message Passing ... 3
1.3 Concurrency ... 4
1.4 Outline ... 5

2 Background

2.1 Knowledge Representation Inference Systems .. 6
 2.1.1 The Inference Graph Approach ... 8
 2.1.2 A Short Aside: Expressiveness vs. Performance .. 9
2.2 \mathcal{L}_A - A Logic of Arbitrary and Indefinite Objects ... 10
2.3 Hybrid Reasoning and Generic Terms ... 11
2.4 Question Answering .. 16
2.5 Set-Oriented Logical Connectives ... 17
2.6 The SNePS 3 Knowledge Representation and Reasoning System 18
 2.6.1 The Logic View .. 18
 2.6.2 The Frame View .. 19
 2.6.3 The Graph View: Propositional Graphs ... 19
 2.6.4 Contexts ... 20
2.7 Antecedent Inference Components .. 21
 2.7.1 Production Systems and RETE Networks .. 21
 2.7.2 Truth Maintenance Systems .. 24
 2.7.3 Active Connection Graphs ... 26
2.8 A Comparison of Inference Components .. 29
 2.8.1 Structural Similarities .. 29
 2.8.2 Functional Differences ... 30
2.9 Parallelism and Concurrency in Inference Systems ... 32
 2.9.1 Production Systems .. 33
 2.9.2 Theorem Provers .. 34
 2.9.3 Parallel Logic Programming and Datalog ... 34
 2.9.4 Building on Concurrency Techniques ... 36
2.10 Parallelism and Functional Programming Languages .. 36

3 CSNePS Knowledge Representation

3.1 Implemented Logic ... 38
 3.1.1 Origin Sets and Sets of Support ... 39
 3.1.2 Introduction and Elimination Rules .. 40
 3.1.3 Structural Rules .. 50
The past ten years or so have seen the rise of the multi-core desktop computer. Although many pieces of software have been optimized to make use of multiple processors, logic-based knowledge representation inference systems have lagged behind. Inference Graphs (IGs) have been designed to solve this problem.

Inference graphs are a new hybrid natural deduction and subsumption inference mechanism capable of forward, backward, bi-directional, and focused reasoning using concurrent processing techniques. Inference graphs extend a knowledge representation formalism known as propositional graphs, in which nodes represent, among other things, propositions and logical formulas, while edges serve to indicate the roles played by components of the propositions and formulas. Inference graphs add a message passing architecture atop propositional graphs. Channels are added from each term to each unifiable term, through which messages communicating the result of inference or controlling inference are passed. Nodes themselves perform inference operations - combining messages as appropriate and determining when message combinations satisfy the conditions of a rule.

Efficient concurrent processing is achieved by treating message-node pairs as separate tasks which may be scheduled. Scheduling is done using several heuristics combined with a priority scheme. No-longer-necessary tasks can be canceled. Together, these ensure that time spent on inference is used efficiently.

Inference Graphs are evaluated by examining their performance characteristics in multiprocessing environments, and by comparing their performance against two competing systems in applying several rules to knowledge bases containing syntactic information extracted from natural language.
Chapter 1

Introduction

The past ten years or so have seen the rise of the multi-core desktop computer. Although many software products have been optimized for the use of multiple processors, logic-based knowledge-representation inference systems have lagged behind. Inference Graphs (IGs) have been designed to solve this problem.

Inference Graphs are a new, graph-based mechanism for reasoning over an expressive, first-order logic. They extend a knowledge-representation formalism known as propositional graphs (see Chapter 2), in which every logical term in the knowledge base (KB) is represented by a node in the graph. To propositional graphs, IGs add an architecture for passing messages that contain substitutions. These messages are combined in nodes to carry out rules of inference. Reasoning happens within the graph, meaning that IGs act both as the representation of knowledge within the AI system and as a reasoner utilizing that knowledge (a unique feature of IGs).

Reasoning is performed in IGs through the use of both natural deduction and subsumption reasoning. Natural deduction is a proof-theoretic reasoning technique that often makes use of a large set of inference rules (usually one or more for the introduction and elimination of each logical connective). Subsumption is a reasoning technique that allows for the derivation of new beliefs about classes of objects without introducing new individuals.

Since an IG uses more than one reasoning method, they are hybrid reasoners. Inference Graphs are one of the only inference systems to combine natural deduction and subsumption, with the only others currently being ANALOG (Ali and Shapiro, 1993, Ali 1994) (an ancestor of IGs) and PowerLoom (University of Southern California Information Sciences Institute, 2014).

Inference Graphs support the use of concurrency for both natural deduction and subsumption reasoning,
a feature no other system offers. Concurrency is taken advantage of by assigning priorities to messages, and scheduling the execution of message-node pairs according to several heuristics that try to ensure that messages that are closer to producing an answer to a query are processed before those further away.

Inference Graphs support several different modes of inference — forward, backward, bi-directional [Shapiro et al. 1982], and focused [Schlegel and Shapiro 2014b]. Forward inference derives everything possible from some new belief, and backward reasoning seeks to answer a question through reasoning backward from consequents to antecedents. Bi-directional inference includes various combinations of backward and forward inference. Focused inference is mostly new to this work, and allows inference (backward, forward, or bi-directional) to be resumed at a later time as soon as relevant facts or rules are added to the KB, with those new facts being “focused” toward completing the previously started inference task.

Inference Graphs have been designed with the ultimate future goal of human-level reasoning in mind. It is towards this goal that IGs have come to support concepts such as hybrid reasoning and focused reasoning. While the philosophical origins of these concepts are discussed throughout this dissertation, it is worth making clear that the applications of IGs are not meant to rely solely upon this philosophy (see Section 9.1 for some application ideas).

The main concepts of IGs fall into three categories: expressiveness, inference through message passing, and concurrency. The remainder of this chapter introduces these major concepts, and discusses some of the assumptions and philosophies that have impacted the design.

1.1 Expressiveness

Humans are able to express their knowledge using (among other things) natural language, and are able to understand natural-language explanations. We make the assumption that the language of thought is the language of some logic. Natural language is more expressive than first order predicate logic (FOPL, or L_S). Therefore, a human-level AI system must be able to express its beliefs in a formal logic at least as expressive as FOPL (see [Iwańska and Shapiro 2000]). Issues related to expressiveness and tractability are discussed in the next chapter (specifically, Section 2.1.2).

Inference graphs provide a method for reasoning using a first-order logic (FOL) which is more expressive than standard FOPL\footnote{In many papers and books about logic FOL and FOPL may be used interchangeably. This is not the case here. FOPL is a member of the class of FOLs, as is the logic used in this dissertation, but the logic used herein is not FOPL.}. The implemented logic is L_A — a Logic of Arbitrary and Indefinite Objects [Shapiro 2004]. L_A uses structured arbitrary and indefinite terms, collectively called quantified terms, to replace...
Li's universal and existential quantifiers. It is these structured, quantified terms that allow for subsumption reasoning in IGs (as will be discussed in more detail in Section 2.2).

1.2 Inference through Message Passing

As discussed, IGs support two kinds of inference, natural deduction and subsumption, and four modes of inference: forward, backward, bi-directional, and focused. Natural deduction (see (Pelletier and Hazen, 2012) for an overview) is a proof-theoretic reasoning technique with introduction and elimination rules for each connective, some of which use subproofs. Subsumption (see (Woods, 1991) for a discussion) allows new beliefs about arbitrary objects to be derived directly from beliefs about other, more general, arbitrary objects.

Forward reasoning allows deriving all new facts that can be derived from a specific proposition, while backward reasoning allows chaining backward through related logical expressions from some proposition to be proved or some query to be answered (see (Shapiro, 1987) for a thorough discussion of forward and backward reasoning). Bi-directional inference allows forward and backward reasoning to be used in combination to answer queries.\(^2\)

Focused reasoning is mostly new to IGs, though some previous systems (Shapiro et al., 1982) have implemented it to some extent. Humans often consider problems they may not yet have answers for, and push those problems to the “back of their mind.” In this state, a human is still looking for a solution to a problem, but is doing so somewhat passively — allowing the environment and new information to influence the problem-solving process, and hopefully eventually reaching some conclusion. That is, the examination of the problem persists beyond the time when it is actively being worked on.\(^3\) Focused reasoning is meant to mimic this human ability.

Each of these kinds and modes of inference are made possible because of the message-passing architecture that lies at the center of IGs. Message passing channels are created throughout the graph wherever inference (whether natural deduction or subsumption) is possible. Nodes for rules that use the logical connectives collect messages and determine when they may be combined to satisfy rules of inference. When an inference...

\(^2\) John Pollock has a different formulation of bi-directional inference (Pollock, 1999) from that of (Shapiro et al., 1982). The premise of Pollock’s bi-directional inference is that there are inference rules useful in forward reasoning, and others for backward reasoning, and as such, to reach some meeting point between premises and goals, you must reason backward from the goals, and forward from the premises. The bi-directional inference of Shapiro, et al. adopted here, assumes some procedure that has linked related terms in a graph so that arbitrary forward reasoning from premises is never necessary in backward inference.

\(^3\) Understanding this type of problem solving in humans has not yet been investigated; what we have discussed is only an intuitive explanation. It is distinct from the “Eureka effect” (Auble et al., 1979), which deals with insight and limitations of memory recall in humans.
rule is satisfied it “fires”, sending more messages onward through the graph through its outgoing channels. Messages may flow forward through channels from specific terms and through rules of inference during forward reasoning; may flow backward to set up backward reasoning; and a combination of the two for bi-directional inference. Focused reasoning uses properties of the channels whereby the channels are able to receive knowledge added after a query is asked, and propagate it through the graph without the user asking again.

1.3 Concurrency

Before multi-core computers, during the so-called gigahertz race, programmers and consumers alike took advantage of the fact that as their CPU got faster, so did their applications. Unfortunately having cores available makes no single application any faster, unless it has been designed to take advantage of multiple cores.

Since at least the early 1980s, there has been an effort to parallelize algorithms for logical reasoning. Prior to the rise of the multi-core desktop computer, this meant massively parallel algorithms such as that of Dixon and de Kleer [1988] on the (now defunct) Thinking Machines Corporation’s Connection Machine, or using specialized parallel hardware that could be added to an otherwise serial machine, as in Lendaris [1988]. Parallel logic-programming systems designed during that same period were less attached to a particular parallel architecture, but parallelizing Prolog (the usual goal) is a very complex problem Shapiro [1989], largely because there is no persistent underlying representation of the relationships between predicates. Parallel Datalog has been more successful (and has seen a recent resurgence in popularity Huang et al. [2011]), but is a much less expressive subset of Prolog. Both Prolog and Datalog are less expressive than FOL. Recent work on parallel inference using statistical techniques has returned to large-scale parallelism using graphical processing units (GPUs), but, while GPUs are good at statistical calculations, they do not do logical inference well Yan et al. [2009].

Inference Graphs provide a modern method for performing logical inference concurrently within a KR system. Inference Graphs are, in fact, the only natural deduction and subsumption reasoner to be able to make this claim. The fact that IGs are built as an extension of propositional graphs means that IGs have access to a persistent view of the underlying relationships between terms, and are able to use this to optimize inference procedures by using a set of scheduling heuristics.

4This paragraph adapted from Schlegel and Shapiro [2014a].
Given the message-passing architecture IGs employ, concurrency falls out rather easily. The primary work of the IGs is accomplished in the nodes, where messages are received, combined, evaluated for matching of inference rules, and possibly relayed onward. In addition, messages may arrive at many nodes simultaneously, and it is useful to explore multiple paths within the graph at once. Therefore, IGs execute many of these node processes at once — as many as the hardware allows.

In order to ensure that the nodes most useful for completing inference are the ones that are executed, messages are prioritized using several scheduling heuristics. For example, nodes that are the least distance from a query node during backward inference are executed before those further away, and messages that pass backward through the graph, canceling no-longer-necessary inference, are executed before other inference tasks, to ensure that time is not wasted.

1.4 Outline

In Chapter 2 we will discuss KR inference systems in general, the logic L_A, several inference mechanisms that IGs adopt features from, and the state of concurrency in inference systems.

Chapter 3 consists of a discussion of our KR system, CSNePS, including representation and the logic implemented in our IGs.

Chapters 4 through 7 detail IGs themselves, beginning with issues of unification (Chapter 4), communication of messages through channels in the graph (Chapter 5), and the actual inference procedures (Chapter 6). Finally, a discussion of concurrency (Chapter 7) is presented.

Chapter 7 additionally explores the characteristics of the concurrent processing system, and evaluates of the scheduling heuristics as compared to more naive approaches.

Inference graphs are applied to performing natural-language understanding of short intelligence messages as part of the Tractor natural-language understanding system (in Chapter 8). The CSNePS Rule Language is introduced, and it is evaluated against competing systems on similar tasks.

Finally, Chapter 9 concludes this dissertation with a discussion of potential applications and possibilities for future work.
Chapter 2

Background

2.1 Knowledge Representation Inference Systems

Knowledge representation inference systems come in many forms. Inference Graphs are designed to per-
form logical inference. As such, only existing systems that perform logical reasoning, and not those with
probabilistic or statistical components, are discussed here.

Logic-based KR inference systems implement some system of logic, of which there are many. What logics
have in common are: having a syntax, a formal grammar specifying the well-formed expressions; a semantics,
a formal means of assigning meaning to the well-formed expression; and a syntactic proof theory, specifying
a mechanism for deriving from a set of well-formed expressions additional well-formed expressions preserving
some property of the original set, often called “truth.” The systems of logic differ, most relevantly to this
work, in expressiveness.

Indeed, logic-based inference mechanisms differ most among each other along the axes of expressiveness
and reasoning style. Along the expressiveness axis, there is propositional logic, ground predicate logic, first-
order logic over finite domains, and full first-order logic. Propositional logic and ground predicate logic
can be shown to be equivalent, and are not expressive enough for most uses. First-order logic over finite
domains is useful in situations where there are finite sets of data and decidability is important, such as in
Datalog (Gallaire and Minker 1978). Among these, full first-order logic is most expressive. The others have
reduced expressiveness, often motivated by issues of tractability (Brachman and Levesque 1987).

1 Portions of this section are adapted from Schlegel and Shapiro (2013c).

2 Part of the semantics of a logic defines whether a well-formed expression, B, is logically entailed given some set of expressions,
 \{A_1, \ldots, A_n\}, written \{A_1, \ldots, A_n\} \models B. This is a semantic notion, and says nothing about whether B might be derived given
 the syntactic proof theory. The fact that \{A_1, \ldots, A_n\} derives B is written \{A_1, \ldots, A_n\} \vdash B.
several reasoners that implement some fragment of full FOL, with expressiveness somewhere between FOL over finite domains, and full FOL. Horn-clause logic (used in Prolog), and description logics fall into this category.

Along the axis of reasoning style, there is direct evaluation, model finding, resolution refutation, semantic tableaux refutation, and proof-theoretic derivation. Direct (or symbolic) evaluation does not extend past ground predicate logic, and won’t be discussed further. The approach of model finding is: given a set of beliefs taken to be true, find truth-value assignments of the atomic beliefs that satisfy the given set. The approach of the refutation methods is: given a set of beliefs and a conjecture, show that the set logically entails the conjecture by showing that there is no model that simultaneously satisfies both the given set and the negation of the conjecture. The approach of proof-theoretic derivation is: given a set of beliefs, and using a set of rules of inference from the proof theory, either derive new beliefs from the given ones (forward reasoning) or determine whether a conjecture can be derived from the given set (backward reasoning). Proof-theoretic derivation has a crucial advantage over the other techniques: it produces valid intermediate (atomic and non-atomic) results, allowing for less re-derivation.

Proof theoretic reasoning itself contains multiple different reasoning methods. Principal among these are axiomatic (or Hilbert-style) and natural deduction inference systems. Axiomatic reasoning, attributed to Frege and Hilbert, makes use of a (possibly large) set of axioms, and few rules of inference (usually only modus ponens for propositional logic, with the addition of universal generalization for FOL). Very few inference systems make use of axiomatic reasoning, because proofs are extremely difficult to construct and read. Natural deduction, on the other hand, makes use of very few (usually no) axioms, and a large set of inference rules. First devised by Gentzen [Gentzen, 1935] and Jaśkowski [Jaśkowski, 1934], natural deduction systems usually use a small set of structural rules, and a set of introduction/elimination rules for each connective. Natural deduction is distinguished from other methods that use rules of inference (e.g., resolution) by having rules of inference that make use of subproofs [Pelletier, 1999] [Pelletier and Hazen, 2012]. The first automated reasoner using natural deduction was likely that of Prawitz, et al. from 1960 [Prawitz et al., 1960]. Since then, a great number of natural deduction reasoning systems have been developed, using many different types of logic and reasoning strategies. Natural deduction is sometimes criticized for being slow, but John Pollock’s OSCAR system has shown [Pollock, 1990] that natural deduction can compete in performance with resolution theorem provers. In addition, natural deduction is probably the most widely taught form of logic to students, and there are many methods to write proofs on paper to keep track of
subproofs. One popular method is the Fitch-style3 proof which uses contours to help track the levels of subproofs.

Some reasoning systems make use of various combinations of these, for which there is no good name — for example, Pei Wang’s Non-Axiomatic Reasoning System \textit{[Wang 1995, 2006]}. Non-axiomatic in this sense is meant to be in contrast to proof systems with sets of axioms, such as those used in axiomatic-style proof systems.

Different logics define different sets of rules that may be used within a natural-deduction system, often having an impact on the kinds of things that are derivable. The logics that people are usually most familiar with are standard logics4. Some logics extend standard logics, such as modal logics (\textit{e.g.}, S1-S5 \textit{[Lewis and Langford 1932]}), which add operators expressing modalities, and rules to perform inference using these added operators. Intuitionistic logic \textit{[Brouwer 1907]} is different from classical logic in that it rejects certain axioms (double-negation elimination and the law of the excluded middle). Relevance logics (\textit{e.g.}, R \textit{[Anderson and Belnap 1975, Shapiro 1992]} and linear logic \textit{[Girard 1987]} are known as substructural logics — these lack one or more of the structural rules of inference common in classical logics. Relevance logics require the consequents of implications to be relevant to the antecedents, disallowing many nonsensical implications. Relevance logics are substructural, since they reject the rule of \textit{weakening} — just because \(p \vdash p \) does not mean it can be inferred that \(p,q \vdash p \) \textit{[Restall 2014]}. Linear logic combines some parts of classical logic with some parts of intuitionistic logic. Linear logic is substructural, since it does not allow premises to be re-used.

\textbf{2.1.1 The Inference Graph Approach}

Because the logic of thought must be at least as expressive as FOL, one such logic has been implemented in IGs. The implemented FOL is known as \(\mathcal{L}_A \) — a Logic of Arbitrary and Indefinite Objects \textit{[Shapiro 2004]}.

\(\mathcal{L}_A \) will be discussed further in Section 2.2.

Proof-theoretic derivation using natural deduction is implemented using the IGs that are the subject of this dissertation. As discussed, there are several \textit{modes} of inference that are possible. These include forward, backward, bi-directional, and focused reasoning. All four of these have been implemented to allow for the widest variety of uses. They will be discussed further in Chapter 6.

When implementing a full FOL, tractability may be a concern (addressed further in Section 2.1.2). To

3Really, the style is that of Jaśkowski \textit{[Jaśkowski 1934]}, but the popularity of Fitch’s introductory textbook \textit{Fitch 1952} led to the style being named after him.

4Also known as classical logics.
perform inference more quickly, IGs are implemented using concurrency and scheduling heuristics to take advantage of modern hardware. The IG can explore several paths toward completing an inference task simultaneously, limited only by the computational resources available and the branching factor of those paths being explored. In exploring these paths, IGs recognize when an inference may be canceled because it is redundant or simply no longer necessary.

2.1.2 A Short Aside: Expressiveness vs. Performance

There has been a significant push in certain communities toward understanding and operating within performance guarantees. This can be seen well in the description-logic community, where each logic generally has its own, well-defined, performance characteristics. The decidability and complexity of combining logic programming and ontologies has also been well studied [Rosati, 2005]. Full FOL is known to be undecidable. The expressiveness of many inference mechanisms is often severely limited because it’s hard to make reasonable performance guarantees on more expressive systems. Despite the allure of well-defined performance characteristics of inference systems, I reject the idea that higher expressiveness is intrinsically bad for performance or is worse than workarounds for poor expressiveness, for the reasons outlined in this section.

Examples of workarounds for poor expressiveness are often seen in systems that allow only binary relations, such as various reasoners for OWL-DL (a description logic). Data often becomes related in overly complex ways only because relations with greater than two arguments are not supported. The greater number of relations forces more reasoning steps than perhaps would be necessary otherwise. Limiting expressiveness only because of the possibility of leaving certain performance bounds leaves systems extremely limited. The person using the system should understand the performance characteristics and make decisions accordingly. To amplify the problem, even Datalog with its restricted expressiveness is capable of entering infinite loops if left recursion is used [Swift and Warren, 2012].

The usual methods for discussing the performance characteristics of any software program in computer science are capable of hiding a great deal of the complexity. One primary example is that there exists a linear time unification algorithm [Paterson and Wegman, 1978], but it is usually much slower than ones with apparently worse performance characteristics, such as [Martelli and Montanari, 1982]! In cases such as unification, it even turns out that algorithms with worse characteristics than either of these are faster in real-world applications, since the worst cases of those algorithms rarely arise in real-world scenarios [Hoder and Voronkov, 2009].

The issue can be even further compounded since, as McAllester and Givan have shown [McAllester and...
the syntax of a logical language can have as much impact on the computational characteristics of an inference system as the expressiveness.

Lesveque and Brachman suggested two pseudo-solutions to the tractability issue \cite{Brachman:1987:DLT:5707:5709}. The first one is to create the most efficient algorithms possible and make use of advances in hardware (such as multiple processors). Second, they suggested using timeouts or some similar mechanism to ensure that inference does not run forever. The work in this dissertation embraces the first of these suggestions, especially in the use of modern hardware. The algorithms presented are likely not the fastest among those that have been developed with guaranteed performance, but there is no reason why their optimizations could not be integrated with the presented system (it is simply a matter of research agenda that the most efficient algorithms are not implemented). The second solution should probably be implemented within the system that invokes the inference mechanism, but it is not currently of concern in this dissertation (though IGs support halting and canceling inference).

As the resurgence of logical inference continues, for example within the semantic web, it becomes more and more necessary to have expressive inference systems that also perform well in real-world scenarios. We provide good performance by utilizing concurrency, available commonly in today’s desktop computers and well believed to be the path computers will continue to follow to increase performance.

2.2 \(\mathcal{L}_A \) - A Logic of Arbitrary and Indefinite Objects

\(\mathcal{L}_A \) is a FOL designed for use as the logic of a KR system for natural-language understanding and for commonsense reasoning \cite{Shapiro:2004}. The logic is sound and complete, using natural deduction and subsumption inference. This logic is more expressive than \(\mathcal{L}_S \). That is, several semantically different \(\mathcal{L}_A \) expressions translate into a single expression in \(\mathcal{L}_S \), and a single expression in \(\mathcal{L}_S \) has multiple semantically distinct translations into \(\mathcal{L}_A \).

The logic makes use of arbitrary and indefinite terms (collectively, quantified terms) instead of the universally and existentially quantified variables familiar in FOPL. That is, instead of reasoning about all members of a class, \(\mathcal{L}_A \) reasons about a single arbitrary member of a class. For indefinite members, it need not be known which member is being reasoned about; an indefinite member itself can be reasoned about. Indefinite individuals are essentially Skolem functions, replacing FOPL’s existential quantifier. Throughout this dissertation, I’ll often refer to arbitrary terms simply as “arbitraries,” and to indefinite terms as “indefinites.”

To my knowledge, the only implemented system that uses a form of arbitrary term is ANALOG \cite{Ali:2000}.\footnote{Givan, 1992}
though arbitrary objects themselves were most notoriously attacked by Frege in his writings released posthumously, and most famously defended by Fine in the early 80s. The logic of \mathcal{L}_A is based on those developed by Ali and by Fine, but is different — notably it is more expressive than ANALOG. It is designed with computation in mind, unlike Fine’s work, which omits key algorithms. McAllester and Givan have developed a logic which syntactically is very similar to \mathcal{L}_A. This logic does not deal with arbitrary objects, though; instead, it revolves around the idea of manipulating sets of concrete objects.

Quantified terms are structured; they consist of a quantifier indicating whether they are arbitrary or indefinite, a syntactic variable, and a set of restrictions. The range of a quantified term is dictated by its set of restrictions, taken conjunctively. A quantified term q_i has a set of restrictions $R(q_i) = \{r_{i_1}, \ldots, r_{i_k}\}$, each of which makes use of q_i’s variable, v_i. Restrictions that are used to indicate the semantic type of a quantified term are called internal restrictions. Indefinite terms may be dependent on one or more arbitrary terms $D(q_i) = \{d_{i_1}, \ldots, d_{i_k}\}$. The syntax used throughout this dissertation for \mathcal{L}_A will be a version of CLIF. We write an arbitrary term as $\text{(every } v_{q_i} R(q_i))$ and an indefinite term as $\text{(some } v_{q_i} D(q_i) R(q_i))$.

As discussed, quantified terms in \mathcal{L}_A take wide scope. Sometimes it is necessary to limit variable scope to within a portion of an expression. This limitation is called a closure. To express closures we introduce the $(\text{close } v t)$ relation. The variable v, used within the term t, is limited in scope to within the close relation, while all other quantified terms within the close relation take wide scope, as usual.

In implementing \mathcal{L}_A as the logic of IGs, several implementation decisions have been made that affect the language of the logic. For example, since an arbitrary term represents an arbitrary entity, no two arbitrary terms have the same set of restrictions. Occasionally, it is useful to discuss two different arbitrary members with the same restrictions. Solutions to problems such as these are discussed in Section 3.3.

2.3 Hybrid Reasoning and Generic Terms

As discussed, \mathcal{L}_A supports reasoning both using natural deduction and subsumption. A system that combines multiple types of reasoning is a hybrid reasoner. Hybrid reasoning is possible because of \mathcal{L}_A’s use of structured quantifiers and generic terms. A generic term (sentence) in \mathcal{L}_A is defined as “A sentence containing an open occurrence of a variable” (Shapiro, 2004). In this work, that will be restricted somewhat. We’ll say that a...
generic term is an atom (and therefore contains no logical connectives). So, (\texttt{Isa (every x (Isa x Cat)) Mammal}) is a generic term, but (\texttt{if (Isa (every x) Cat) (Isa x Mammal)}) is not.

Modern hybrid reasoners focus mostly on combining ontologies containing description logic classes with logic programming. These systems generally apply a uni-directional or bi-directional translation of an ontology specification to some type of rule language. The results of this are knowledge representations with expressiveness at the intersection of the combined reasoning techniques, such as Description Logic Programs and Description Horn Logic (Grosof \textit{et al.} 2003), or some other decidable fragment of first order logic (Motik \textit{et al.} 2005). Indeed, the decidability and complexity of combining logic programming with ontologies has been well studied (Rosati 2005) and is often heralded as one of the most important features of these implemented systems.

The work of (Burhans and Shapiro 2007) deals with question answering where the result is a generic answer, though this is discussed within the context of a resolution refutation theorem prover. Adjusting for style of reasoning, generic terms as defined in (Burhans and Shapiro 2007) are implications with two conditions upon them: the consequent of the implication must unify with the query (question) which has been posed by the user; and each of the antecedents of the implication must use either one of the variables used in the consequent, or a variable which can be related to a variable used in the consequent through one or more of the antecedents (Burhans and Shapiro call this the “closure of variable sharing”).

Intuitively, there does seem to be a relationship between the two notions of generic-ness from Shapiro 2004, and (Burhans and Shapiro 2007). In fact, it turns out these two notions are equivalent.

\textbf{Theorem 2.1.} The conceptions of generic terms from L_A and generic answers from Burhans and Shapiro are equivalent.

\textit{Proof.} A term is generic in the sense of (Burhans and Shapiro 2007) if and only if it is also generic in the sense of Shapiro 2004.

\[\rightarrow \]

A generic term in (Burhans and Shapiro 2007) may be written as:

\[\forall x, y \ (\text{if } \{ (R_1 x y \ldots) (R_2 y \ldots) \ldots \} (P x \ldots)) \).

Begin by repeatedly applying the exportation rule\footnote{\((P \land Q) \rightarrow R) \leftrightarrow (P \rightarrow (Q \rightarrow R))\)} to the set of antecedents (taken conjunctively), so that, working backward from \((P x \ldots))\), each set of antecedents are made of of those terms which contain one or
more variables from the consequent. Applying this, and relocating \forall symbols to their most inner locations, we get:

$$\forall y \ (\text{if } (R_2 y \ldots) \ \forall x \ (\text{if } (R_1 x y \ldots)(P x \ldots))).$$

Next apply the translation steps from \mathcal{L}_S to \mathcal{L}_A in [Shapiro 2004]. The result of this translation is:

$$(P \ (\text{every } x \ (R_1 x (\text{every } y \ (R_2 y \ldots)\ldots)\ldots)\ldots).$$

This expression is identical to the conception of a generic in \mathcal{L}_A, so this direction of the proof is finished.

←

This direction is simply the reverse of the previous. By definition, every restriction of a quantified term must make use of that quantified term’s variable. So, a generic term in \mathcal{L}_A takes a form like:

$$(P \ (\text{every } x \ (R_1 x (\text{every } y \ (R_2 y \ldots)\ldots)\ldots)\ldots).$$

By the translation from \mathcal{L}_A to \mathcal{L}_S given in [Shapiro 2004], we find that

$$\forall y \ (\text{if } (R_2 y \ldots) \ \forall x \ (\text{if } (R_1 x y \ldots)(P x \ldots))).$$

By the exportation rule again, we derive:

$$\forall x, y \ (\text{if } \{(R_1 x y \ldots)(R_2 y \ldots)\ldots\}(P x \ldots)).$$

This completes the proof.

This will become more clear through the following example. In [Burhans and Shapiro 2007] an example generic is given that means “If an item is in a locked cabinet that has a key held by senior management, then that item is valuable.” The logical form of this in \mathcal{L}_S (but using CLIF syntax) is presented below.

$$\forall xyzkl \ (\text{if } \{(\text{cabinet } y) \ (\text{senior-manager } z) \ (\text{key } k) \ (\text{lock } l) \ (\text{item } x) \ (\text{in } x y) \ (\text{locks } l y) \ (\text{key-to } k l) \ (\text{held-by } k z)\}\ (\text{valuable } x))$$

This generic may be converted to a generic of the form used in \mathcal{L}_A by using the procedure outlined in the above proof. First, the rule of exportation will be applied four times, as follows:

1. $\forall yzkl \ (\text{if } \{(\text{cabinet } y) \ (\text{senior-manager } z) \ (\text{key } k) \ (\text{lock } l) \ (\text{locks } l y) \ (\text{key-to } k l) \ (\text{held-by } k z)\}\)
 $\forall x \ (\text{if } \{(\text{item } x) \ (\text{in } x y)\} \ (\text{valuable } x)))$
2. $\forall z k l \text{ (if } \{(\text{senior-manager } z) (\text{key } k) (\text{lock } l) (\text{key-to } k l) (\text{held-by } k z)\} \forall y (\text{if } \{(\text{cabinet } y) (\text{locks } l y)\} \forall x (\text{if } \{(\text{item } x) (\text{in } x y)\} (\text{valuable } x))))$

3. $\forall z k l \text{ (if } \{(\text{senior-manager } z) (\text{key } k) (\text{held-by } k z)\} \forall l (\text{if } \{(\text{lock } l) (\text{key-to } k l)\} \forall y (\text{if } \{(\text{cabinet } y) (\text{locks } l y)\} \forall x (\text{if } \{(\text{item } x) (\text{in } x y)\} (\text{valuable } x))))$

4. $\forall z \text{ (if } \{(\text{senior-manager } z)\} \forall k (\text{if } \{(\text{key } k) (\text{held-by } k z)\} \forall l (\text{if } \{(\text{lock } l) (\text{key-to } k l)\} \forall y (\text{if } \{(\text{cabinet } y) (\text{locks } l y)\} \forall x (\text{if } \{(\text{item } x) (\text{in } x y)\} (\text{valuable } x))))$

Next this will be translated from \mathcal{L}_S to \mathcal{L}_A. The first step in this procedure (see Shapiro 2004) which applies is step 5: “Change every subformula of the form $\forall x A(x)$ to $\forall x A((\text{any } x))$” (Shapiro 2004).

5. $\forall z \text{ (if } \{(\text{senior-manager } (\text{every } z))\} \forall k (\text{if } \{(\text{key } (\text{every } k)) (\text{held-by } (\text{every } k) (\text{every } z))\} \forall l (\text{if } \{(\text{lock } (\text{every } l)) (\text{key-to } (\text{every } k) (\text{every } l))\} \forall y (\text{if } \{(\text{cabinet } (\text{every } y)) (\text{locks } (\text{every } l) (\text{every } y))\} \forall x (\text{if } \{(\text{item } (\text{every } x)) (\text{in } (\text{every } x) (\text{every } y))\} (\text{valuable } (\text{every } x))))$)

Step 6 of the translation rules is now applied five times, working inside-out. Step 6 says: “Change every subformula of the form $\forall x A((\text{any } x)) \Rightarrow B((\text{any } x))$ to $\forall x B((\text{any } x A(x)))$” (Shapiro 2004). A later step deals with the removal of the $\forall x$, but since there are no scoping issues in this example, it’s removed now.

6. $\forall z \text{ (if } \{(\text{senior-manager } (\text{every } z))\} \forall k (\text{if } \{(\text{key } (\text{every } k)) (\text{held-by } (\text{every } k) (\text{every } z))\} \forall l (\text{if } \{(\text{lock } (\text{every } l)) (\text{key-to } (\text{every } k) (\text{every } l))\} \forall y (\text{if } \{(\text{cabinet } (\text{every } y)) (\text{locks } (\text{every } l) (\text{every } y))\} (\text{valuable } (\text{every } x (\text{item } x) (\text{in } x (\text{every } y)))))))$

7. $\forall z \text{ (if } \{(\text{senior-manager } (\text{every } z))\} \forall k (\text{if } \{(\text{key } (\text{every } k)) (\text{held-by } (\text{every } k) (\text{every } z))\} \forall l (\text{if } \{(\text{lock } (\text{every } l)) (\text{key-to } (\text{every } k) (\text{every } l))\} (\text{valuable } (\text{every } x (\text{item } x) (\text{in } x (\text{every } y (\text{cabinet } y) (\text{locks } (\text{every } l) (\text{key-to } (\text{every } k l) (\text{key-to } (\text{every } k l))))))))$

8. $\forall z \text{ (if } \{(\text{senior-manager } (\text{every } z))\} \forall k (\text{if } \{(\text{key } (\text{every } k)) (\text{held-by } (\text{every } k) (\text{every } z))\} (\text{valuable } (\text{every } x (\text{item } x) (\text{in } x (\text{every } y (\text{cabinet } y) (\text{locks } (\text{every } l) (\text{lock } l) (\text{key-to } (\text{every } k l)))))))))$

9. $\forall z \text{ (if } \{(\text{senior-manager } (\text{every } z))\} (\text{valuable } (\text{every } x (\text{item } x) (\text{in } x (\text{every } y (\text{cabinet } y) (\text{locks } (\text{every } l) (\text{lock } l) (\text{key-to } (\text{every } k (\text{key } k) (\text{held-by } k (\text{every } z (\text{senior-manager } z))) l)))))$)

10. $(\text{valuable } (\text{every } x (\text{item } x) (\text{in } x (\text{every } y (\text{cabinet } y) (\text{locks } (\text{every } l) (\text{lock } l) (\text{key-to } (\text{every } k (\text{key } k) (\text{held-by } k (\text{every } z (\text{senior-manager } z))) l)))))$)

\footnote{We use “every” instead of “any,” and require fewer parens than are used in the \mathcal{L}_A paper.}
This is the appropriate L_A generic term. The translation back to L_S is easy — simply apply these rules in reverse.

A notion related to this is that, for every generic term in the L_A sense, there is an equivalent non-generic term that uses an implication as its main connective (very similar to the sense of [Burhans and Shapiro, 2007], but without leaving L_A). This should be fairly obvious, as steps 5–9 above are all valid expressions in L_A if the \forall’s are removed. It turns out that this equivalence allows for more natural translation of English phrases into a logical form. Let’s consider some examples of reasoning involving both generic and hybrid terms.

The following sentence in L_A is meant to mean that “every owned dog is a pet.”

\[(\text{Isa} (\text{every } x \ (\text{Owned } x) \ (\text{Isa } x \ \text{Dog})) \ (\text{Pet}))\]

Now, given that, for example, Fido is a dog — (\text{Isa } Fido \ \text{Dog}) — and Fido is owned — (\text{Owned } Fido) — we can derive that Fido is a pet — (\text{Isa } Fido \ \text{Pet}) since Fido is subsumed by the arbitrary term (\text{every } x \ (\text{Isa } x \ \text{Dog}) \ (\text{Owned } x))

Any rule that uses subsumption inference can be rewritten to use implication as the main connective. For example, we can rephrase the above to mean “if a dog is owned, then it is a pet” as follows:

\[(\text{if} (\text{Owned} \ (\text{every } x \ (\text{Isa } x \ \text{Dog}))) \ \ (\text{Isa } x \ \text{Pet}))\]

As above, when given that Fido is a dog, and Fido is owned, we can derive that Fido is a pet. This time the inference is hybrid — both subsumption and deduction are used in the derivation. Arbitrary terms take wide scope, allowing x to be used in the consequent of the rule without re-definition.

For trivial examples such as this, it may not be particularly appealing that there are two ways to write derivationally equivalent expressions, but some expressions in English are difficult to express without one or more propositional connectives, at least without first re-wording the English expression. Consider “Two people are colleagues if there is some committee they are both members of.” It’s not very difficult to formalize this using a hybrid rule, as follows:

\[(\text{if} \ \ (\text{and} \ (\text{MemberOf} \ \ \ (\text{every } x \ (\text{Isa } x \ \text{Person}))))\]
(some z (x y) (Committee z)))
(MemberOf
 (every y (Isa y Person)
 (notSame x y))
 z))
(Colleagues x y))

A generic version of this rule does exist, as is more easily seen by rephrasing the English sentence to say “A person who is a member of some committee is a colleague of another person who is a member of that same committee.”

(Colleagues
 (every x (Isa x Person)
 (MemberOf
 x
 (some z (x y)
 (Committee z))))
 (every y (Isa y Person)
 (notSame x y)
 (MemberOf y z)))

That said, not every deductive rule may be translated into a pure generic which uses only subsumption inference. Consider a hybrid version of the xor rule given above, meant to mean “every dog is either owned or feral.”

(xor (Owned (every x (Isa x Dog)))
 (Feral x))

Therefore, this relationship between generics and deductive rules is useful for the purposes of translation into the logic, but does not eliminate the need for deductive rules.

2.4 Question Answering

Any AI system with aspirations toward human-level AI requires some method(s) for answering questions. Often, the answers to asked questions are simply the result of a proof — True or False, if a question with
no open variables was asked, and True or False accompanied with a substitution, if a question with open variables was asked.

Burhans and Shapiro (Burhans and Shapiro, 2007) explore the issue more deeply. From the set of answers which may be produced by a resolution refutation theorem prover, they define three partitions: specific, generic, and hypothetical. These partitions apply equally well to reasoners using deduction, such as the one presented in this dissertation. Given the question “Who is at home?”, a specific answer is something like “Mary is at home.” A generic answer could be “all children are at home.” A hypothetical answer might be “If it is not a school day, all children are at home.”

Specific answers are familiar to users of Prolog, who pose a question and receive individual matches. As Burhans and Shapiro note, that is not always desirable: when asking a question such as “What do cats eat?”, it would be inappropriate to list off every fish in the KB. Instead, generic responses are more suitable. As those authors note, “Rosch showed that people associate large amounts of information with basic level categories (Rosch and Mervis, 1975)” (Burhans and Shapiro, 2007). Hypothetical answers are of questionable use in the current context, and won’t be discussed further.

As discussed in Section 2.3, Burhans and Shapiro have an equivalent notion of generic to that of L_A, so IGs adopt the notion of generic answers, in addition to specific answers.

2.5 Set-Oriented Logical Connectives

The set-oriented logical connectives are generalizations of the standard logical connectives, and include the andor, thresh (Shapiro, 2010), and numerical entailment (Shapiro and Rapaport, 1992) connectives.

The andor connective, written $(\text{andor} (i \ j) \ p_1 \ldots p_n)$, $0 \leq i \leq j \leq n$, is true when at least i and at most j of $p_1 \ldots p_n$ are true (that is, an andor may be introduced when those conditions are met). It generalizes and ($i = j = n$), or ($i = 1$, $j = n$), nand ($i = 0$, $j = n - 1$), nor ($i = j = 0$, $n > 1$), xor ($i = j = 1$), and not ($i = j = 0$, $n = 1$). For the purposes of andor-elimination, each of $p_1 \ldots p_n$ may be treated as an antecedent or a consequent, since, when any j formulas in $p_1 \ldots p_n$ are known to be true (the antecedents), the remaining formulas (the consequents) can be inferred to be negated, and when any $n - i$ arguments are known to be false, the remaining arguments can be inferred to be true. For example, with xor, a single true formula causes the rest to become negated, and, if all but one are found to be negated, the remaining one can be inferred to be true.

The thresh connective, the negation of andor, and written $(\text{thresh} (i \ j) \ p_1 \ldots p_n)$, $0 \leq i \leq j \leq n$, is
true when either fewer than i or more than j of $p_1 \ldots p_n$ are true. The thresh connective is mainly used for equivalence (iff), when $i = 1$ and $j = n - 1$. As with andor, for the purposes of thresh-elimination, each of $p_1 \ldots p_n$ may be treated as an antecedent or a consequent.

Numerical entailment is a generalized entailment connective, written ($\Rightarrow i \{a_1 \ldots a_n\} \{c_1 \ldots c_m\}$) meaning that if at least i of the antecedents, $a_1 \ldots a_n$, are true, then all of the consequents, $c_1 \ldots c_m$, are true. The initial example and evaluations in this paper will make exclusive use of two special cases of numerical entailment — or-entailment, where $i = 1$, and and-entailment, where $i = n$.

2.6 The SNePS 3 Knowledge Representation and Reasoning System

Inference Graphs are implemented within an implementation (and extension of) the SNePS 3 knowledge representation and reasoning system specification (Shapiro, 2000), called CSNePS. In this section the SNePS 3 specification is discussed to provide a solid footing for later discussion. The SNePS 3 knowledge base can be seen as simultaneously logic, frame, and graph-based (Schlegel and Shapiro, 2012). The three views are tightly intertwined, but the types of reasoning possible because of each view are quite varied. While all the three views are discussed for context, in this dissertation the focus is on logical inference making use of the knowledge graph. The other types of reasoning are explored elsewhere (Shapiro, 1978).

2.6.1 The Logic View

The SNePS 3 knowledge base may be viewed as a set of logical expressions. Every well-formed logical expression in the KB is a term (i.e., it implements a term logic). This means that expressions that, in standard first order predicate logic (FOPL) would not be terms, such as propositions, are terms in SNePS 3. The effect of this is that propositions may be arguments of other expressions while still remaining in first order logic (FOL).

The KB may include propositional terms (including facts and rules) and non-propositional terms. Rules are expressed in the KB using the set-oriented logical connectives, discussed in Section 2.6. The syntax and semantics of the logical view is defined by the logic used (in this case, \mathcal{L}_A, discussed in Section 2.2). The logic of SNePS 3 is sorted. Each term has a semantic type which possibly may be adjusted as the KB is built, or inference occurs. The semantic type hierarchy, and selection of sorts is discussed in Section 3.4.
Restrictions on quantified terms are built as terms separate from the quantified term itself — the restrictions on \(\text{every } x \ (\text{Isa} \ x \ \text{Dog}) \ (\text{Scared} \ x) \) are \(\text{Isa} \ (\text{every } x \ (\text{Isa} \ x \ \text{Dog}) \ (\text{Scared} \ x)) \ \text{Dog} \) and \(\text{Scared} \ (\text{every } x \ (\text{Isa} \ x \ \text{Dog}) \ (\text{Scared} \ x)) \). That is, every scared dog is a dog, and every scared dog is scared.

2.6.2 The Frame View

Every well-formed SNePS 3 expression is an instance of a caseframe, called a frame. Caseframes are motivated by Fillmore’s case theory [Fillmore, 1976], and consist of a unique set of named slots (one for each expression argument), and are associated with one or more function symbols. Each caseframe is associated with a semantic type.

Each slot of a caseframe maps to an argument position of an expression. A slot includes a name, the minimum and maximum number of terms that may fill the slot, and the semantic type of the fillers. A slot may be filled by one or a set of terms which have the proper semantic type.

There is a direct mapping from the logical expression to caseframe instance. The term \((F \ x_1 \ldots x_n) \) is represented by an instance of the caseframe with function symbol \(F \), whose semantic type is the type specified when defining the caseframe for \(F \), and whose slots, \(s_1, \ldots, s_n \) are filled by the representations of \(x_1, \ldots, x_n \), respectively.

Caseframes exist for the deductive rules as well as for non-rules. For example, there is an and caseframe of semantic type Proposition, which has a single slot that may be filled with two or more fillers, to be taken conjunctively when the rule is used by the inference system.

A caseframe is similar to a relational database table schema, if you take the slots to be the columns, and frames to be the rows of the table. There are two important differences though: slots may contain sets of fillers, and may also contain instances of other caseframes.

2.6.3 The Graph View: Propositional Graphs

In the tradition of the SNePS family [Shapiro and Rapaport, 1992], propositional graphs are graphs in which every term in the knowledge base is represented by a node in the graph. Every frame — an instance of a caseframe — and every slot filler is represented by a node in the graph. An arc emanates from the node for a frame to each of its slot fillers, labeled with the name of the slot that the argument fills. Isolated atomic nodes are those that are not in any caseframe.
If a node n has an arc to another node m, we say that n immediately dominates m. If there is a path of arcs from n to m, we say n dominates m.

Every node is labeled with an identifier. Nodes representing individual constants, proposition symbols, function symbols, or relation symbols are labeled with the symbol itself. Nodes for frames are labeled wft_i, for some integer, i. Since every SNePS expression is a term, we say wft instead of wff. An exclamation mark, “!” is appended to the label if it represents a proposition that is asserted in the current context. Arbitrary and indefinite terms are labeled arbi and indi, respectively.

We’ll define a node in the propositional graph formally as a four-tuple: $<\text{id}, \text{upcs}, \text{downcs}, \text{cf}>$, where id is the node identifier, upcs is the set of incoming edges, downcs is the set of outgoing edges, and cf is the caseframe used, if the term is molecular. The arcs in the graph are defined as a three-tuple: $<\text{start}, \text{end}, \text{slot}>$, where start is the node the edge begins at, end is the one it ends at, and slot is the slot in the frame view which the end node fills in the start nodes cf.

No two nodes represent syntactically identical expressions; rather, if there are multiple occurrences of one subexpression in one or more other expressions, the same node is used in all cases. Propositional graphs are built incrementally as terms are added to the knowledge base, which can happen at any time.

Quantified terms are represented in the propositional graph just as other terms are. Arbitrary and indefinite terms also each have a set of restrictions, represented in the graph with special arcs labeled “restrict”, and indefinite terms have a set of dependencies, represented in the graph with special arcs labeled “depend.”

2.6.4 Contexts

A context in SNePS 3 is a set of hypothesized propositional terms. Terms are asserted within a specific context. Contexts are marked if they are known to be internally inconsistent. Contexts represent different belief spaces that may be switched between, and so may be inconsistent with each other.

One context may inherit from one or more others, called its parent contexts. All terms hypothesized in the parent context are considered to be hypothesized in the child context.

By default, two contexts are defined in SNePS 3: the base context and the default context. All other contexts must inherit from the base context. Assertions in the base context are intended to not be subject to belief revision, and are oftentimes tautological (or analytic terms (Kant [1781]). Non-analytic (synthetic)

8In this dissertation the analytic terms we use align mostly with Kant's rather simplistic definition: analytic terms are those in which the predicate concept is contained in the subject concept (Kant [1781]). For example, “Scared dogs are dogs.” More refined conceptions of the analytic-synthetic distinction due to Frege (Frege [1980]) and others may also be used, but have no
terms are asserted in other contexts, and are therefore subject to belief revision. Unless otherwise noted, when it is said that a term is asserted, it is implied that it is within the default context, unless otherwise specified.

2.7 Antecedent Inference Components

There are three inference components which when taken together exhibit many of the features desired for IGs. These components are RETE nets (as part of production systems), Truth Maintenance Systems (TMSs), and Active Connection Graphs (ACGs, a part of the SNePS 2 inference engine, which preceded the development of SNePS 3). We call these inference components rather than inference engines or some other term since these systems have various degrees of applicability as a general inference mechanism. In this section we will introduce the concepts from each of these components and briefly mention specific concepts which IGs build upon. Later, in Section 2.8 we will compare and contrast these inference components.

2.7.1 Production Systems and RETE Networks

A production system is often one component of an expert system. It allows basic reasoning towards some goal. Production systems use sets of production rules consisting of a set of condition elements on the left hand side (LHS), and actions, principally changes to working memory, on the right hand side (RHS). Working memory (WM) is made up of working memory elements (WMEs), which represent the current state of the world from the perspective of the system. In other words, WM is the KB. When the conditions on the LHS of a rule are met, an instance of the rule is added to the conflict set, which contains a list of all the rule instances that completely match the current set of elements in WM. From this set, one rule instance is selected by the system to execute (or fire). When a rule instance fires it changes WMEs - either adding, deleting, or modifying them. This process repeats itself until the system reaches stasis (a state where no production instances can fire). All the rules are defined and compiled before the system is run. A RETE net is often used for matching WMEs to the LHS of a rule.

The goal of RETE is to find, given the current set of WMEs, a set of production rule instances that are candidates to be fired (that is, those that belong in the conflict set). The basic RETE algorithm as originally described by Charles Forgy [Forgy 1979] builds a network of comparison nodes for the LHS of each production rule. The changes to WM since the last run of the matching algorithm are represented by

bearing on this work.

9 Implemented commonly as delete, then add.
tokens, which are then “dropped” through the network. A token consists of a single WME added or deleted from WM, along with a tag indicating whether the change was addition or deletion. If a token reaches the terminal node, the node that lies at the bottom of one of these networks, the rule it represents matches and, if the token was for working memory addition, should be instantiated and added to the conflict set. Otherwise the instance should be removed from the conflict set if it is present.

A RETE net is made up of two levels, called the alpha and beta networks. The former of these is a discrimination network, which acts as a generalized prefix tree analyzing the token linearly, condition by condition. This network determines if the intra-element features of the token match the production rule. Rules can have multiple condition elements, meaning they must match more than one token at a time. The separate condition elements being matched can have shared variables between them (known as inter-element features). This requires comparisons not possible in the alpha network, and is instead handled in the beta network.

The beta network consists of two-input nodes (often called join nodes, or beta nodes), which collect tokens from the output of other alpha or beta nodes. In a beta node, tokens from two inputs are joined, meaning the inter-element features are resolved and the tokens are combined to form an extended token. Join nodes have two memories — left and right — one for each of the two inputs. These contain the entire set of still valid tokens that have arrived at the node. When a token arrives via one of the inputs, it is checked against the opposite input’s memory for a compatible token. If one is found, the tokens are joined and become extended tokens, which are passed further down the network. The two-input nodes maintain copies of previously matched tokens in the proper memories for the input on which they arrived for later joining. A rule is matched when a token reaches a terminal node, and the activated instance of that rule is added to the conflict set.

A token representing the deletion of a WME follows the same processes as above, except instead of storing the relevant token in a beta node, it is removed. Extended tokens are built as above, and the removal process continues down the network. When a token identified as a deletion reaches a terminal node, if there is an equivalent instance of the production in the conflict set it is removed [Forgy 1982].

It is often the case in a set of rules that there is some overlap in the conditions that must be matched. The discrimination chains for two condition elements that have the same first condition can be shared from that first condition up until the point where they differ. This reduces overall processing in some cases when a token matches - or nearly matches - many similar rules.

This matching algorithm, along with the remainder of a production system, can be recognized as a
method for implementing a form of forward chaining through one-way unification (where there are variables
in only one of the two formulas to be matched).

2.7.1.1 From RETE to IGs

RETE networks use discrimination networks for pattern matching in the alpha network, use beta nodes
to solve inter-condition dependencies, and use tokens to represent changes in working memory. Inference
graphs need to solve more complex versions of each of these problems (unification rather than one-way
pattern matching, nodes with many inputs rather than just the two of beta nodes, and more complex
message passing), but the techniques can be adapted.

Unification can be accomplished using a discrimination network, as shown in Chapter 4. This allows
for the advantages of sharing portions of alpha chains, as displayed by RETE alpha networks, with a more
powerful matching system.

Beta nodes provide a method for testing whether two tokens are compatible with each other, and joining
them if possible. The inference graph must perform this type of conjunctive joining in quantified terms,
and some types of rule nodes (e.g., conjunctions and generics). One of the drawbacks of RETE is that it
has significant linear slowdown as the number of rules increases (more specifically, in the number of rules
affected by a working memory change). This occurs largely due to extra work completed in matching items
in the beta nodes when it is not necessary. Several solutions to this problem have been discussed in the
literature (Batory, 1994; Doorenbos, 1995; Miranker, 1987) with specific applications to RETE, though as
will be discussed later, IGs use an alternate approach developed for SNePS 2 by Joongmin Choi (Choi and
Shapiro, 1992).

It can be seen that if the RHS of every rule in the conflict set were executed in a production system we
would have something resembling a full forward chaining inference system. Inference Graphs need to be able
to perform inference which only partially forward chains, along with backward and bi-directional inference.
RETE’s graphs are compiled and are unable to change once the system is running, and as such uses tokens
passing through the graph to make non-structural changes to working memory. Our graphs on the other
hand, are not compiled, and our rules and facts are combined within a single graph structure. Inference
Graphs adopt the concept of message passing like RETE uses, but add several types of messages, including
ones which flow backward, and add the concept of valves, to limit message flow.
2.7.2 Truth Maintenance Systems

A TMS graph (Doyle 1977a,b) is a graph structure separate from the inference engine in an AI system which, given a monotonically growing set of justifications, maintains the non-contradictory truth values of all ground atomic propositions discovered during inference, and can report the justifications for beliefs. In a TMS graph, nodes are created for each ground atomic proposition and justification, with edges connecting them. Three significant TMSs have been developed: the Justification-Based TMS (or JTMS), the Logic-Based TMS (or LTMS), and the Assumption-Based TMS (or ATMS). Only the LTMS will be discussed in detail here, with some notes about the JTMS and ATMS.

The first TMS, the JTMS, was originally designed by Jon Doyle for his master’s thesis in 1977 (Doyle 1977a,b). This system is quite limited in that it deals only with definite clauses and uses a very weak logic wherein propositions are said to be either IN or OUT, where IN means that a proposition is believed and OUT means that the proposition is either false or unknown.

The LTMS (McAllester 1978, 1980, 1990) uses a three-valued logic (True, False, and Unknown) and allows for justifications made of generalized clauses. The nodes in an LTMS graph are premises if they are added with no justifications. Each node is labeled with a truth value, initially unknown. Nodes have an assumption property, which can be enabled or disabled by the inference engine. The assumption property is enabled if the inference engine signals that it would like to give the node a truth value of either True or False. The links between the nodes are Boolean constraints created from the justifications, and new labels for the nodes are computed based on local propagation of these constraints. The system is designed such that it should notify the inference engine in the case that a contradiction is detected, but the graph does not represent this contradiction in any way.

Local propagation of truth values is accomplished using the Boolean Constraint Propagation algorithm. Boolean constraint propagation is a simple forward propagation algorithm. When a proposition is made to be an assumption by the inference engine, the algorithm determines if it must change the truth value of connected propositions and propagates outward either depth- or breadth-first, detecting contradictions as it goes until no more changes can be made. When a justification is added, the appropriate nodes are created and a set of clauses for the logical connective used are referenced to generate the constraints connecting the nodes. The constraints for or are written out in English below, and the same concept is used for all of the logical connectives.

1. Either $p \lor q$ is false, or p is true, or q is true.
2. Either \(p \lor q \) is true or \(p \) is false.

3. Either \(p \lor q \) is true or \(q \) is false.

Because of these constraints, if \(q \) is known to be True, \(p \) is Unknown, and \(p \lor q \) is Unknown, the system would determine that \(p \lor q \) is True by the application of the third constraint.

The ATMS has no constraint nodes, instead working only with definite clauses, operating in a similar manner as the JTMS. The primary contribution of the ATMS has to do with how the TMS works within a system that has frequent changes of the set of assumptions. The ATMS uses complex labels in contrast to the LTMS’s True, False, or Unknown and the JTMS’s IN and OUT. These complex labels contain the set of environments under which some proposition is True, where an environment is a set of assumptions. The ATMS algorithm described by De Kleer [de Kleer 1990] must recalculate all labels possibly affected every time a new justification is added to the graph. The worst case of this is EXPTIME and EXPSPACE with the label growing exponentially, when a node is both a premise and an assumption. Because of this, though, a change in the set of assumptions doesn’t require any recalculation of labels in the graph.

2.7.2.1 From TMSs to IGs

Truth maintenance systems perform two particularly important tasks relevant to IGs: they maintain the current beliefs in an easily accessible graph structure that can be used to prevent the inference engine from re-deriving results; and they provide a method for determining which rules and literals have resulted in a given belief.

TMSs compute the labels for all nodes. In an LTMS, this is the logical truth value. The inference engine can therefore use the LTMS as a KB for facts to prevent re-deriving results the LTMS has already calculated. It’s not particularly efficient to compute the logical closure of all facts in the KB — many of them may never be needed. Storing them in a graph that allows the derivation upon request (and storage of the result) would be better, and is the strategy IGs take.

The TMS methods for providing justifications for beliefs are inefficient. In truth maintenance systems other than the ATMS, dependency directed backtracking is employed to find the root premises. Neither this solution nor that of the ATMS, which has potentially very slow execution time, is particularly appealing for a system that may contain large KBs. Inference Graphs take an ATMS-like strategy, but instead of

\footnote{EXPTIME means a problem is solvable in \(O(2^p(n)) \) time, where \(p \) is a polynomial function of \(n \). EXPSPACE means a problem is solvable in \(O(2^{p(n)}) \) space.}

\footnote{As an aside, it’s worth noting that McAllester’s ONTIC [McAllester 1989] reasoning system seems in many ways to extend the LTMS for mathematical theorem proving by adding additional reasoning methods to Boolean constraint propagation.}
recomputing all complex labels every time a justification is added, labels are maintained only when used in inference. This latter strategy is used by the Multiple Belief Space Reasoner (Martins and Shapiro, 1983; Martins, 1983) and the SNePS belief revision system (SNeBR) (Martins and Shapiro, 1988). One deficiency of the work on MBR and SNeBR is that issues surrounding propositions being both derived and hypothesized were not addressed.

2.7.3 Active Connection Graphs

The Active Connection Graph (McKay and Shapiro, 1981; Shapiro et al., 1982) is the primary structure used in SNePS 2 (Shapiro and Rapaport, 1992) for performing logical inference. In essence, the ACG works by first building a graph representation of a query. The query is unified with rules in the KB, and this match is used to perform backward inference until ground assertions are found, which then flow back through the ACG to the original query.\(^\text{12}\)

ACGs contain two kinds of nodes: nodes for propositions that may be True, False, or Unknown (henceforth “p-nodes”), and may be atomic or non-atomic; and nodes for rules such as implications (henceforth “r-nodes”). Edges link p-nodes in antecedent positions (henceforth “ap-nodes”) to their r-nodes, r-nodes to their consequent p-nodes (henceforth “cp-nodes”), and cp-nodes to unifiable ap-nodes.

An edge that connects a cp-node to an ap-node is called a channel, and contains a “filter” and a “switch” (Shapiro and McKay, 1980; McKay and Shapiro, 1981). Cp-nodes act as producers, sending substitutions representing asserted or derived instances of their propositions to ap-nodes, which act as consumers of the substitutions. Filters permit through the channel only those substitutions the attached consumer is interested in, and switches convert the substitutions from being in terms of the variables of the cp-node to being in terms of the variables of the ap-node. Ap-nodes send their substitutions to their r-nodes, which, when the rule is satisfied, send substitutions to their cp-nodes. This flow of substitutions through the channels is the reason ACGs are called “active.”

P-nodes and r-nodes are implemented as processes that act in an asynchronous, concurrent fashion (McKay and Shapiro, 1980). Cp-nodes cache the substitutions they produce so that if a new consumer is attached, the producer can send it all the cached substitutions without having to re-derive them, and then send all consumers any additional substitutions produced.

R-nodes collect substitutions passed to them by their ap-nodes in structures called RUIs (Rule Use Information), stored in either P-Trees or S-Indexes (Choi and Shapiro, 1992; Choi, 1993). A P-Tree is a

\(^{12}\)An ACG can be thought of as encompassing only the parts of the KB that are relevant to the query. Somewhat similar (but less dynamic) approaches were later developed in logic programming, for example see (Levy and Sagiv, 1992).
binary tree in which the leaves are individual substitutions, and each successive level is the conjunction of levels below it. An S-Index is a map-based index of disjunctive antecedents. An r-node uses its P-Tree or S-Index to determine when a sufficient number of antecedents are satisfied in a compatible substitution so that the rule can fire.

Active connection graphs can be created for forward inference, backward inference, and bi-directional inference (Shapiro et al., 1982). In backward inference, the system creates an ap-node representing the query made to the system. The query is matched against consequents in the KB to determine which rules to include in the next level of the ACG, along with the connecting filters and switches, which are factored versions of the computed most general unifiers. This process repeats until cp-nodes for asserted, ground propositions are created, which then start sending substitutions through the ACG back to the initial ap-node. If the query can’t be answered, the ACG persists.

In forward inference, the ACG is built incrementally, as inference occurs. However, old, persisting ap-nodes might be found ready to consume and propagate the new information to answer previous queries. The standard regime followed is that if a new producer finds old consumers interested in its information, it doesn’t look for other unifiable rules in the KB. In this way an ACG can be seen as a way of creating a sort of “dynamic context” wherein only activated rules—those used in the ACG—are used if they are appropriate for answering the question at hand, limiting the search space and performing focused reasoning. To change this dynamic context, the ACG is destroyed and is rebuilt for the next inference task.

SNePS 2 maintains a structure, called origin sets, similar to the complex labels used in the ATMS for very fast context switching. Where the ATMS labels contain assumptions in which a proposition is True, the origin set of a proposition contains a set of believed rules and hypotheses used in its derivation. Origin sets are calculated during logical inference. When a contradiction is detected, belief revision is performed by SNeBR (the SNePS Belief Revision subsystem) (Martins and Shapiro, 1983, 1988). However, propositions disbelieved by SNeBR are not sent through the ACG, so producers’ caches and the information in the RUIs become out of date, and the ACG is destroyed.

2.7.3.1 Tabling: A Partial Re-Conception of ACGs

A concept similar to that of ACGs (for backward reasoning, at least) is tabling (Chen and Warren, 1996; Swift and Warren, 2012) in some Prolog implementations. Two of the main characteristics of ACGs are the ability to reason with recursive rules (including not repeating completed inference), and to leave paths through the graph “activated” so that later assertions (asserted with forward inference) may freely flow
through those paths. Tabling brings both of these characteristics to Prolog, including some of the drawbacks of ACGs.

Using tabling in Prolog, and like ACGs, when a query is posed by the user, a graph structure is built for the inference task. In this case, that structure is an SLG resolution tree. This tree provides two major enhancements over Prolog’s standard SLD resolution: it provides a table of subgoals and their answers, which are used to factor out redundant subcomputations (among other things, it cuts the loop in left recursion); and it allows paths of inference that cannot complete to be suspended, and later resumed if useful facts are found via the exploration of other paths within the same inference procedure.

Again like ACGs, tables are rather volatile since they are caches of inference tasks that rely on the underlying knowledge base. When the knowledge base changes in certain ways, the ACG has to be thrown away, and the same is true of tables. Tables can’t always persist from one inference task to the next. Tables may be defined as incremental, so that they may be updated when items are added or removed from the KB if specific functions are called which tell the tables to update. Not all types of tables support incremental updating, and sometimes the updating, when it is supported, is extremely slow. For this reason, many operations are supplied to destroy some or all of the tables when it is necessary.

2.7.3.2 From ACGs to IGs

The ACG is the only inference component discussed here that is capable of reasoning using a FOL. As such, it has several interesting aspects that are desirable for IGs, but not covered by TMSs or RETE nets. Some of these are: structures to combine RUIs from multiple conjunctive and disjunctive input sources; the use of multiprocessing; the use of origin sets as opposed to ATMS complex labels; and a direct relation with the knowledge representation.

Rule Use Information is used to store and process substitutions in RUI structures, such as P-Trees and S-Indexes. Inference Graphs adopt the use of P-Trees and S-Indexes (see Chapter 6), and pass messages between nodes (messages subsume RUIs).

The ACG uses MULTI, a multiprocessing system for Lisp. One of the primary goals of IGs is to take advantage of multiple processors/cores, but MULTI makes use of continuants, which are not modern multiprocessing constructs. Instead, a new multiprocessing system using modern techniques has been developed for IGs.

When the ACG derives a term, the origin set contains the set of beliefs used in the derivation, but not necessarily the set of beliefs for every possible derivation of the term (as ATMSs do). This is a useful
compromise made between the JTMS and ATMS style justification maintenance, which is continued in IGs. Unfortunately, origin sets require frequently checking that a proposition in question has an origin set that is a subset of the current context. More worryingly, when a proposition is both derived and asserted, it can result in the proposition’s belief status being “lost” during a context change, and forcing re-derivation.

Both IGs and ACGs are extensions of propositional graphs, but IGs are built at assert time, and ACGs at inference time. ACGs, like Prolog tabling, can encounter conditions where they need to be discarded (e.g., during belief revision, or after focused reasoning). Inference Graphs have operations that allow them to remain up-to-date regardless of changes to the KB, allowing them to persist permanently.

2.8 A Comparison of Inference Components

RETE nets, TMSs, and ACGs have many structural similarities. The main differences between them arise from the functionality implemented in each.

2.8.1 Structural Similarities

The three inference components contain similar graph structures, which are called by different names. RETE nets have three types of nodes, one of which is the terminal node. When reached, the terminal node performs the task of seeing that the instantiated production gets added to the conflict set, and eventually fired. We’ll now call these the rule nodes since they represent the rule in its instantiable state. In a TMS the constraint or justification nodes are what we would now call rule nodes; they only allow further work to be done when satisfied. ACGs have r-nodes, which serve this same purpose.

Both ACGs and TMS graphs may contain cycles. Recursive rules in the ACG are represented as cycles and do not result in infinite loops since a cp-node will not produce the same substitution more than once to the same ap-node [McKay and Shapiro 1981]. Cycles in a TMS are allowed, since, when retracting an assumption, the labels for all assumptions whose justification contains it are recursively retracted before being recalculated [Forbus and Kleer 1993]. RETE networks cannot contain cycles explicitly since rules are not connected to each other — the conflict set lies in between. Loops can occur during execution, and can only be broken if the production system supports the Halt action in the RHS of productions.

A production rule can be thought of as an implication where the antecedents of the rule are the condition elements on the LHS, and the consequents are the actions on the RHS. A justification in a JTMS or ATMS is already a definite clause, which has an antecedent and consequent. The LTMS uses generalized clauses
with BCP. BCP allows the truth value of any \(n - 1 \) of the propositions in a justification to be thought of as the antecedents used to compute the label of the other proposition (consequent). The same is the case for the \textbf{ANDOR} and \textbf{THRESH} connectives supported by ACGs (Choi and Shapiro, 1992; Shapiro, 2010), though for logical implication the antecedents and consequents are as given in the rule.

The alpha network of a RETE net can be seen as a filter that only allows tokens that match the production’s individual condition elements to pass. The filters created from the target binding in ACGs perform the same task - they only allow through substitutions that satisfy certain conditions. TMS graphs have no need for filters since they deal only with ground (variable-free) atomic propositions.

A RETE net’s beta network consists of two-input nodes, which output the conjunction of the two inputs should they be compatible. For this reason we’re going to call the beta network a \textit{conjunct tree}. The ACGs P-Trees perform this same task — determining if a set of antecedents combined in a pairwise fashion produces the required set of antecedents for activation of a conjunctive rule.

All three components rely on the existence of a KB. For a RETE net, the KB is the WM, with each rule being informed of changes to KB through the use of tokens. For a LTMS, the KB consists of all terms in the TMS graph, True, False or Unknown. In an ATMS, the KB contains only terms with a label containing a non-contradictory environment. ACGs have a KB containing all terms - True, False or Unknown. In ACGs this includes rules.

\section*{2.8.2 Functional Differences}

The definition of context differs among the systems discussed. We will use the term \textit{context} to refer to a set of assumptions (what the ATMS calls an environment), and the term \textit{belief space} to be what an ATMS calls a context - the set of all propositions which hold within a context. This comparison is presented above in Table 2.8.2 for clarity. To change contexts means to change the currently held set of assumptions. RETE nets have no method for changing the set of assumptions without removing WMEs from or adding WMEs to WM. This is because production systems have no notion of stored, but not held to be true, WMEs. The LTMS does not handle contexts as a design decision, requiring truth values to be recalculated upon context change. The ATMS is designed to solve this problem. The ATMS does allow for low-cost context switching,
but it comes at the expense of recalculating the set of contexts in which all affected nodes hold upon addition to the graph, and subset operations confirming one of a node’s contexts is a subset of the current context. ACGs generate origin sets as inference occurs, containing all of the propositions used in the derivation. This is a subset of all the contexts the formula is True in. ACGs must perform the subset operation whenever determining if a proposition’s origin set is part of the current context. Since the various caches used in the ACG (in the cp-nodes and P-Trees/S-Indexes) are not notified upon context change, it must be destroyed and rebuilt.

Each of the three systems is capable of some form of forward inference. Production systems forward chain through rules. Depending on the rules for conflict resolution this may or may not be full forward inference. TMS graphs perform a very limited sort of inference where only truth values of known items are changed and no entirely new nodes are created by the TMS itself. ACGs are capable of full or partial forward inference and are the only structures discussed here that can perform backward or bi-directional inference.\(^\text{13}\)

The types of inference which are possible with each inference component rely partially on when the component reaches stasis — a point where it is doing no work — and whether new work can then be assigned. ACGs are the only inference component discussed here that can reach stasis when not everything that is derivable has been derived. Therefore it can be the case for some proposition \(P\) that \(\text{KB} \models \neg P\), but \(P\) has not been derived yet and is not in the process of being derived. Since the goal of a TMS graph is to have an up-to-date label set at all times, it only reaches stasis when its labels are up-to-date. While this is true, a TMS is a separate component from the inference engine and the inference engine may support, for example, quantified terms (which a TMS does not). In this case the TMS may not represent the entire KB, so it’s possible that \(KB_{IE} \models P\), but \(KB_{TMS} \not\models P\). \(^\text{14}\) In general, production systems that use RETE have no way to reach stasis without deriving everything which can be derived. Some production systems support a halt action in RHSs of rules to stop derivation, but it cannot be started again. If the production system provided some user-interactive interface to WM and the dynamic addition of the halt action to a production it would be possible to create a system that performed forward inference only until \(P\) has been derived. Back-chaining on \(P\) would be very inefficient, since it would essentially involve testing all of the productions effects against \(P\) (for which there is no structure in RETE).

The ACG is the only component discussed here that is capable of continuing an incomplete inference task as another is performed. Due to the asynchronous nature of the ACG and the caches used for storing

\(^{13}\)What is commonly called “backward inference” in production systems is actually forward inference using WMEs containing a Goal symbol. See Shapiro (1987) for the proper distinction.

\(^{14}\)The knowledge base may entail \(P\) (a semantic notion) given the complete knowledge base held by the inference engine, but the subset of the knowledge base held by the TMS may not be able to derive \(P\) (a syntactic notion).
partial results, it is possible for an ACG to find and report new solutions to old queries during inference on a new query. This is a form of focused reasoning.

Both TMS graphs and RETE nets support some notion of non-monotonicity. In a TMS15 graph while the set of justifications grows monotonically, the set of assumptions need not. An assumption’s truth value may change, prompting the re-calculation of labels throughout the graph. Rules in a production system can remove WMEs from WM. This removal can then result in the removal of yet-to-be-fired productions from the conflict set, and newly matched productions that have negated condition elements being added. The WM of a production system has no concept of justification though. For example, say some rule, R_1, adds WME P to WM, causing some other rule, R_2, to fire, which adds Q to WM. If P is later removed from WM, Q will still persist.

The ACG is the only system described which natively supports multiprocessing. It uses a notion of continuants, where some portion of work is completed in one process, then other processes complete work, and the original process may be continued. There are many different methods for parallelizing production systems, ranging from parallelizing the matching algorithm (Kuo and Moldovan 1992) to removing the conflict set altogether (Aref and Tayyib 1998). Only one parallel ATMS has been created (Dixon and de Kleer 1988), using the massively parallel Connection Machine.

2.9 Parallelism and Concurrency in Inference Systems

For many years there has been a mostly academic effort to create parallel versions of many algorithms within the related domains of inference systems, theorem provers, and logical programming languages. Only recently has there been a surge in cheap multiprocessing desktop and server computers, making this research more practical. Indeed, it is unlikely that we will see processing power within a single core increase at the rates we have been used to for much longer. Instead, the use of more and more cores is taking hold (see Sutter 2005 for a nice overview of the reasons for this transition).

Prior to the rise of the multi-core desktop computer, parallel reasoners were largely theoretical, or used massively parallel machines such as the Connection Machine sold by the now defunct Thinking Machines Corporation. Some of these massively multiprocessing systems are still of interest since they were built on message passing machines - a paradigm used by some modern programming languages that stress the immutability of data, such as Erlang, which uses an adaptation of the Actor (Hewitt et al. 1973) message

15This is different from, for example, a Non-Monotonic JTMS, which has both monotonic and non-monotonic justifications (Doyle 1979).
passing model of concurrency. Others of the massively multiprocessor systems unfortunately are no longer
still of interest, such as much of the research in generalized parallel KR systems and parallel TMSs (Dixon
and de Kleer 1988).

SNePS 2 is one of the few KR systems with multiprocessing not based on either message passing or
specialized architectures, instead designed for a more modern multiprocessing environment. Unfortunately,
while it’s designed for a modern multiprocessing environment, the technique of continuants used is not a
modern enough technique to be of use to us.

In this section we will review some parallel production systems, theorem provers, and concepts from
parallel logical programming languages. We will also briefly discuss the approaches to concurrency allowed
by current functional programming languages, motivating our choice to implement IGs in Clojure.

2.9.1 Production Systems

Many attempts have been made to produce production systems that perform in parallel. The earliest of
these have involved parallelizing the RETE matching algorithm itself (Kuo and Moldovan 1992). In general
this strategy involves either partitioning the RETE network or breaking up the beta nodes and allocating the
data in them to different processors. While RETE does consume around 90% of the total execution time of a
production system, the standard match-select-fire cycle produces an inherently single-processing bottleneck
at the select phase (Amaral and Ghosh 1994). This causes the entire system to wait for all portions of the
network to update the conflict set if necessary before any further progress can be made.

The first class of solutions to this bottleneck is to modify the conflict resolution strategy to execute all
rules as they are added to the conflict set, instead of just one. There are two problems with this approach
though: rules may be incompatible, and the system is no longer deterministic. Two rules are said to be
incompatible if they conflict with each other such that executing one makes the other no longer satisfied, or
if the effect of the rules is to add and remove the same WME. Detecting whether rules are compatible requires
building dependency graphs. The non-determinism of the system results in a burden largely placed on the
knowledge engineer, and is known as the convergence problem. The engineer must prove that whichever
sequence of rules is executed, the intended result will be produced - a non-trivial task for large KBs. An
alternative to this is restricting the parallelism by using meta-rules to disallow parallelism in problematic
parts of the program (Kuo and Moldovan 1992).

The second solution to the match-select-fire bottleneck is to eliminate the conflict set entirely. The Lana-
Match (Aref and Tayyib 1998) algorithm, which it appears has never been implemented, in theory solves the
issues of compatibility and convergence by applying a technique from database systems. Rules are executed in parallel on separate processors producing a localized set of changes to working memory, but a centralized timestamp system is used so that the rules are committed to a Master Fact List sequentially in the proper order.

2.9.2 Theorem Provers

Many theorem provers support various types of parallelism and concurrency, such as the MP refiner (Moten 1998), a concurrent rewriting logic in Maude (Meseguer and Winkler 1992), PARTHEO (Schumann and Letz 1990), and SiCoTHEO (Schumann 1996). In addition, there has been significant work on distributed theorem provers and parallel SAT solvers. We won’t discuss either of these since Inference Graphs are not (yet) distributed, and SAT solvers have simpler parallel implementations because of their use of propositional logic.

Most similar to the concurrency methodology used in IGs are those of Wenzel’s Isabelle/Isar (Wenzel 2009; Matthews and Wenzel 2010; Wenzel 2013) and ACL2 (Rager et al. 2013), both of which parallelize at subcomponents of a theorem’s proof. Wenzel’s work parallelizes at what he calls the sub-proof level, using techniques to simplify “subgoals separately and recombine the results by back-chaining with the original goal state” (Wenzel 2013). It’s worth noting that parallelism is only used in Isabelle/Isar during proof checking.

Parallel ACL2, known as ACL2(p) is both a Lisp programming language, and a theorem prover. For each premise clause and recursively thereafter, their proof process attempts to “produce zero or more clauses with the property that if each produced clause is a theorem, then so is the input clause.” (Rager et al. 2013). This continues recursively until it cannot continue further. Each of these steps is a nontrivial prover step. Within these prover steps, ACL2 uses a rewriting system. Their experiments show that the most appropriate granularity of parallelism is at the prover step, and not during rewrite. They have implemented parallel programming primitives for early termination of some functions where the arguments can be processed in parallel, such as and and or.

2.9.3 Parallel Logic Programming and Datalog

Parallel logic programming (PLP) systems face many of the same problems as IGs in building a concurrent inference system with regards to efficiency. The literature on PLP systems discusses two types of parallelism: OR-parallelism and AND-parallelism (de Kergommeaux and Codognet 1994; Shapiro 1989).

OR-parallelism deals with the concept of examining multiple paths in the standard Prolog top-down left-
right SLD tree simultaneously by examining resolvents in parallel instead of sequentially. There is significant
overhead in maintaining consistency between paths, ensuring work is not duplicated, and preventing an
explosion in the number of processes. The use of a single consistent underlying graph representation such
as the ACG or IG, or the use of tabling (Swift and Warren, 2012) can eliminates these issues, and therefore
we will not discuss the issues in PLP related to OR-parallelism further.

AND-parallelism is concerned with computing several goals from the resolvent simultaneously and comes
in two varieties: independent AND-parallelism and dependent AND-parallelism. Independent AND-parallelism
computes in parallel the goals of the resolvent that have no variables in common so that there are no con-
flicts. Dependent AND-parallelism does not concern itself with this and attempts to compute goals that may
conflict. This has the problem of incompatible bindings being produced, which can be expensive to resolve.

Most of the work in dependent AND-parallelism has gone into determining when it is worthwhile and
when it should be avoided. The literature revolves around ways to detect variables which will be shared
between goals and performing their unifications sequentially instead of in parallel (Costa et al., 1991; Shen
1996). Static analysis (i.e., compile-time) techniques have been used to determine appropriate scheduling
orders for goals to efficiently exploit AND-parallelism as well, mostly using abstract interpretation techniques
de Kergommeaux and Codognet, 1994). What doesn’t seem to have been explored are efficient ways to
resolve bindings, as in the RUIs discussed above, likely due to the lack of a persistent underlying graph
structure and the perceived expense of generating binding resolution data structures for one-time use.

Related to the work on PLP is research on parallel implementations of Datalog - a language for interacting
with a deductive database. The Datalog language is similar to Prolog with (among others) the restriction
that predicates are function free Horn (FFH) clauses. It also aims to produce all results for a query,
instead of Prolog’s standard single answer. One solution to AND-parallelism type problems is to resolve the
dependencies between predicates to order them so that selections occur before joins (Shao et al., 1990). This
is fairly obvious and has to do with ordering partially bound predicates before fully unbound ones, as in the
static analysis of AND-parallelization in PLP mentioned above. (Shao et al., 1990) goes further to build a
pipelining structure to ensure all dependencies of a rule have been completed before a join happens. They
do this because much like with AND-parallelism discussed above, there is no persistence of rule information.
There are other issues similar to those of PLP: joins are expensive and processing may not be appropriately
balanced. These techniques have been combined with data segmentation in an OR-parallelism like way to
achieve better results (Shao et al., 1991).
2.9.4 Building on Concurrency Techniques

There are two primary issues exposed by the literature on concurrency and parallelism. The first is finding the proper granularity, so threads (or processes, depending on the architecture) do a sufficient amount of work to justify their creation, but not so much that a single processor ends up doing work while the others sit idle. The second concern is ensuring work completed by multiple processors can be combined appropriately once they finish. The structure of IGs has provided appropriate solutions to both of these.

The parallelization of ACL2, and Isabelle/Isar has shown that the sub-goal level is an appropriate one for parallelizing. As such, we have chosen to parallelize at the node level in IGs. Nodes deal with message combination, which is a moderately resource intensive process, so they are a good candidate.

Inference Graphs make use of AND/OR parallelism, where multiple paths through the graph are considered simultaneously, and multiple substitutions found along each path are considered simultaneously. The primary issue with this is, as has been discussed, combining the substitutions resulting from each process. Efficient methods for performing the combination, which we adopt, have been discussed in Choi’s work (Choi and Shapiro, 1992).

That said, many of the techniques for achieving AND-parallelism involve the use of static analysis techniques to improve performance. Inference graphs are a hybrid — some parts of IGs can be thought of as static processing done at assert-time, and other parts as dynamic processing at inference-time. This distinction is discussed further in Section 5.3.

2.10 Parallelism and Functional Programming Languages

Pure functional programming languages have many advantages over other types of programming languages, such as immutable state and the absence of side effects. These two attributes allow for easy program parallelization, as separate threads cannot interfere with program state. Of course, there are disadvantages — without being able to modify state, it’s difficult for a program to do anything, so very few languages are purely functional. Two functional programming languages have taken it upon themselves to deal with the issues of concurrency in functional languages explicitly, Erlang (Armstrong, 1997, 2007) and Clojure (Hickey, 2008).

Originally developed by Ericsson with an application to telephony in mind, Erlang was designed for writing concurrent programs. It uses lightweight processes that communicate with each other using message

\footnote{Some ML implementations also confront the issue of concurrency, but still use concurrency primitives such as locks.}
passing. There is no global state, all variables may only be assigned to once, and data structures are immutable. Functions are used to transform input, and assign it to a new variable, which may then be used elsewhere.

Clojure is a more recent development, again focused on concurrency. Instead of using a message passing approach, Clojure allows for global state (and therefore direct access without messages) by using persistent data structures. As with Erlang, Clojure’s data structures are immutable, but transformations are very efficient. While variables are also single assignment in Clojure, the assignment may be a reference or atom, which may have their contents changed. Updating references uses Software Transactional Memory. This is very efficient on multi-core machines. In addition, Clojure is built upon Java, and therefore allows access to the full suite of Java libraries.

A knowledge base may be very large, so sending it around in messages is inefficient. Moreover, many parts of it may be seldom changed, so as shared state it makes sense. For these reasons, IGs are implemented in Clojure.
Chapter 3

CSNePS Knowledge Representation

Inference Graphs have been implemented as part of the CSNePS KRR system. While IGs could be implemented elsewhere, it will be easier to discuss the way IGs work with some context. CSNePS is a somewhat improved implementation of the SNePS 3 specification (Shapiro, 2000) in Clojure (Hickey, 2008), and stands for either Concurrent SNePS or Clojure SNePS. This chapter discusses CSNePS as it exists as of the writing of this dissertation, including the implemented logic (including some decisions made in implementing \mathcal{L}_A) and extensions made to SNePS 3.

3.1 Implemented Logic

Inference Graphs implement the major concepts of \mathcal{L}_A, including arbitrary and indefinite individuals, according to the specification of \mathcal{L}_A in (Shapiro, 2004). The rules of inference which have been implemented are a combination of those from (Shapiro, 2004), those for the set-oriented logical connectives, and from the relevance logic \mathbf{R} (Anderson and Belnap, 1975; Shapiro, 1992). Moreover, the logic of CSNePS is implemented as a term logic, meaning that beliefs may be nested without leaving first order logic.

\mathbf{R} is a substructural paraconsistent logic. As discussed earlier, \mathbf{R} is substructural in that it disallows the rule of weakening. The result of this is the condition on the implication introduction rule that all premises are made use of in deriving the conclusion. In order to ensure that this is the case, origin sets are ascribed to each term during derivation, indicating the set(s) of hypotheses used in deriving that term. \mathbf{R} is paraconsistent in that a contradiction does not entail anything whatsoever.

The rest of this section is organized as follows. First, origin sets will be formally defined, and functions
for convenient modification of them will be detailed. Then, the inference rules implemented in CSNePS will be described.

3.1.1 Origin Sets and Sets of Support

As briefly discussed in the previous chapter, origin sets are sets of hypotheses that justify the belief of a term. Origin tags expose the reason for belief: either it is hypothesized, derived, or extended (abbreviated hyp, der, and ext, respectively). The extended origin tag is used when an origin set contains more hypotheses than are strictly necessary, disallowing some elimination rules from being used under the constraints of \(R \).

Definition 3.1. A support set is a set of pairs, \(< t, o >\) where \(t \) is an origin tag, and \(o \) is an origin set. ■

Every proposition has a support set (also called a set of support), made up of origin sets and origin tags. Together we’ll call this an assertion.

Definition 3.2. An assertion is a pair \(< p, s >\) where \(p \) is a proposition, and \(s \) is a support set. ■

During inference, sets of support (along with their internal origin sets and origin tags) must be combined in various ways to maintain the proper reasons for belief. The following function definitions will describe ways these may be combined.

First, adapted from (Shapiro, 1992), is a function for combining several origin tags, \(t_1, \ldots, t_n \).

\[
\Lambda(t_1, \ldots, t_n) = \begin{cases}
\text{ext} & \exists t_i \in \{t_1, \ldots, t_n\} \text{ such that } t_i = \text{ext} \\
\text{der} & \text{otherwise}
\end{cases}
\]

Next, a function, \(\cup_{SS}(s_1, s_2) \) is defined for combining two sets of support. This function produces the combinatorial union of \(s_1 \) and \(s_2 \). The function \(\cup_{SS}(S) \) is the generalization of \(\cup_{SS}(s_1, s_2) \) to a set of any number of sets of support. For \(\cup_{SS}(S) \), we’ll say \(S = \{s_1, \ldots, s_n\} \).

\[
\cup_{SS}(s_1, s_2) = \{ < t, o > : \forall < t_i, o_i > \in s_1, \text{ and } \forall < t_j, o_j > \in s_2, t = \Lambda(t_i, t_j) \text{ and } o = o_i \cup o_j \}
\]

\[
\cup_{SS}(S) = \begin{cases}
\emptyset & \text{if } |S| = 0 \\
s_1 & \text{if } |S| = 1 \\
\cup_{SS}(s_1, s_2) & \text{if } |S| = 2 \\
\cup_{SS}(\cup_{SS}(s_1, s_2), s_3, \ldots, s_n) & \text{if } |S| > 2
\end{cases}
\]

ders(S) is a function which, given a set of support \(S \), returns a subset of \(S \) containing only the members with the der origin tag.
ders(S) = {<t_s, o_s>: \forall <t_s, o_s> \in S, where t_s = der}.

hypsToDers(S) is a function that takes a set of support, and in each origin set replaces any “hyp” origin tag with “der”.

hypsToDers(S) = {<t'_s, o_s>: \forall <t_s, o_s> \in S if t_s = hyp, then t'_s = der, otherwise t'_s = t_s}.

Finally, makeExt(S) is a function that takes a set of support, and in each origin set replaces the origin tag with “ext”.

makeExt(S) = {<ext, o_s>: \forall <t_s, o_s> \in S}.

In the following two subsections, the rules of inference that have been implemented will be introduced. First, the introduction and elimination rules will be defined, followed by the structural rules. The syntax used for defining the rules is that of (Shapiro, 1992).

3.1.2 Introduction and Elimination Rules

To begin, andor, thresh, and numerical entailment rules are all implemented as described in Section 2.5 on the set oriented logical connectives. After each rule of introduction and elimination, a short example is given showing CSNePS using the rule.

Andor Introduction:

From $\langle p_1, s_1 \rangle \ldots \langle p_k, s_k \rangle$,
where $i \leq k \leq j$,
and $\exists o$ such that $<t_1, o> \in s_1, \ldots, <t_k, o> \in s_k$,
infer $\langle \text{andor}(i \ j) \ p_1 \ldots p_n, \{<\Lambda(t_1, \ldots, t_k), o>\} \rangle$.

From $\langle p_1, s_1 \rangle \ldots \langle p_k, s_k \rangle$,
where $i \leq k \leq j$,
and $\not\exists o$ such that $<t_1, o> \in s_1, \ldots, <t_k, o> \in s_k$,
infer $\langle \text{andor}(i \ j) \ p_1 \ldots p_n, \text{makeExt}(\cup_{S}(\{s_1 \ldots s_k\})) \rangle$.

From $\langle p_1, s_1 \rangle \ldots \langle p_k, s_k \rangle$,
where $i > k$ or $k > j$,
and $\exists o$ such that $<t_1, o> \in s_1, \ldots, <t_k, o> \in s_k$,
infer $\langle \text{not}(\text{andor}(i \ j) \ p_1 \ldots p_n), \{<\Lambda(t_1, \ldots, t_k), o>\} \rangle$.
From \(<p_1, s_1> \ldots <p_k, s_k> \),
where \(i > k \) or \(k > j \),
and \(\not \exists o \) such that \(<t_1, o> \in s_1, \ldots, <t_k, o> \in s_k \),
infer \(<\not (\text{andor } (i \ j) \ p_1 \ldots p_n), \text{makeExt} \big(\cup S \big(S\{s_1 \ldots s_k\}\big) \big)> \).

From \(\emptyset \),
infer \(<\text{andor } (0 \ 0), <\Lambda(\emptyset), \emptyset>> \).

From \(<\not (\text{thresh } (i \ j) \ p_1 \ldots p_n)), s >, \)
infer \(<\text{andor } (i \ j) \ p_1 \ldots p_n), s >. \)

To illustrate the andor-introduction rule, consider a simple example in which Dorothy is carrying Toto, but not the Tin Woodman’s oil can. It’s then wondered if she is carrying between one and two of: her full basket, Toto, and the oil can. This can be derived, since regardless of whether she is carrying her full basket or not, she is still carrying one or two items from the list. As with each of the examples in this section, a trace of this inference using CSNePS is given below.

;;; Dorothy carries Toto
(\text{assert}'(\text{Carries Dorothy Toto}))

\text{wft1!}\!: (\text{Carries Dorothy Toto})

;;; Dorothy does not carry the Tin Woodman's oil can
(\text{assert}'(\not (\text{Carries Dorothy OilCan})))

\text{wft3!}\!: (\not "(\text{Carries Dorothy OilCan})")

;;; Does Dorothy carry between one and two of:
;;; her full basket, Toto, and the oil can?
(\text{askif}'(\text{andor } (1 \ 2) \ (\text{Carries Dorothy FullBasket})
\quad (\text{Carries Dorothy Toto})
\quad (\text{Carries Dorothy OilCan})))

\text{Since: wft1!}\!: (\text{Carries Dorothy Toto})

and: \text{wft3!}\!: (\not (\text{Carries Dorothy OilCan}))

I derived: \text{wft5!}\!: (\text{andor } (1 \ 2) \ ((\text{Carries Dorothy OilCan})
\quad (\text{Carries Dorothy Toto})
\quad (\text{Carries Dorothy FullBasket}))) \text{ by andor-introduction}
Andor Elimination:

From $< (\text{andor } (i \ j) \ p_1 \ldots p_n), s >,$
and $< p_i, s_l > \ldots < p_m, s_m >,$
where $\{p_l \ldots p_m\} \subseteq \{p_1 \ldots p_n\}$
and $\{|\{p_l \ldots p_m\}\| = j$
let $P = \{p_1 \ldots p_n\} - \{p_l \ldots p_m\}$
infer $< (\text{nor } P), \cup_{SS}(s, s_l, \ldots, s_m) >.$

From $< (\text{andor } (i \ j) \ p_1 \ldots p_n), s >,$
and $< p_i, s_l > \ldots < p_m, s_m >,$
where $\{p_l \ldots p_m\} \subseteq \{p_1 \ldots p_n\}$
and $\{|\{p_l \ldots p_m\}\| = n - i$
let $P = \{p_1 \ldots p_n\} - \{p_l \ldots p_m\}$
infer $\forall p_h \in P, < p_h, \cup_{SS}(s, s_l, \ldots, s_m) >.$

For andor-elimination, consider an example where Dorothy can either carry the scarecrow, or carry one or two objects from the list: her full basket, Toto, and the Tin Woodman’s oil can. We know that she does not carry the scarecrow, and this is asserted with forward inference (meaning anything that can be derived from this fact, will be). From this we derive that Dorothy carries one or two objects from the list: her full basket, Toto, and the Tin Woodman’s oil can. This example uses xor elimination, which is a kind of andor elimination.

;;;; Dorothy can either carry the scarecrow,
;;;; or carry one or two objects from the list:
;;;; her full basket, Toto, oil can.
(assert '(xor (Carries Dorothy Scarecrow)
 (andor (1 2) (Carries Dorothy FullBasket)
 (Carries Dorothy Toto)
 (Carries Dorothy OilCan))))

wft6!: (xor (Carries Dorothy Scarecrow)
 (andor (1 2) (Carries Dorothy OilCan)
 (Carries Dorothy FullBasket)
 (Carries Dorothy Toto)))
Dorothy does not carry the Scarecrow. What can be derived from this?

(assert! '(not (Carries Dorothy Scarecrow)))

wft7!: (not "(Carries Dorothy Scarecrow")

Since: wft6!: (xor (andor (1 2) (Carries Dorothy FullBasket)
(Carries Dorothy Toto)
(Carries Dorothy OilCan))
(Carries Dorothy Scarecrow))

and: wft7!: (not (Carries Dorothy Scarecrow))

I derived: wft4!: (andor (1 2) (Carries Dorothy FullBasket)
(Carries Dorothy Toto)
(Carries Dorothy OilCan)) by xor-elimination

Thresh Introduction:

From <p₁,s₁> ... <pₖ,sₖ>,
where k < i or k > j,
and ∃o such that <t₁,o> ∈ s₁,...,<tₖ,o> ∈ sₖ,
infer <(thresh (i j) p₁...pₙ),{<Λ(t₁,...,tₖ),o>}>.

From <p₁,s₁> ... <pₖ,sₖ>,
where k < i or k > j,
and ¬∃o such that <t₁,o> ∈ s₁,...,<tₖ,o> ∈ sₖ,
infer <(thresh (i j) p₁...pₙ), makeExt(∪SS(s₁...sₖ))>.

From <p₁,s₁> ... <pₖ,sₖ>,
where i < k < j,
and ∃o such that <t₁,o> ∈ s₁,...,<tₖ,o> ∈ sₖ,
infer <(not (thresh (i j) p₁...pₙ)),{<Λ(t₁,...,tₖ),o>}>.

From <p₁,s₁> ... <pₖ,sₖ>,
where i < k < j,
and ¬∃o such that <t₁,o> ∈ s₁,...,<tₖ,o> ∈ sₖ,
infer <(not (thresh (i j) p₁...pₙ)), makeExt(∪SS(s₁...sₖ))>.

From ∅,
infer <(not (thresh (0 0))), <Λ(∅),∅>>.
For thresh introduction, consider that planets orbit the sun, are nearly round, and have cleared their orbits. From this we wonder if it is the case that: the arbitrary planet orbits the sun, is nearly round, and has cleared its orbit are all true or all false. Since each condition is true, we can decide that this is true. This example uses if-and-only-if introduction, which is a kind of thresh introduction.\footnote{This is truth-functional iff, not relevant iff.}

\begin{verbatim}
;; The arbitrary planet orbits the sun. => (assert '(orbitsSun (every x Planet)))
wft2!: (orbitsSun (every x (Isa x Planet)))

;; The arbitrary planet is nearly round. => (assert '(nearlyRound (every x Planet)))
wft3!: (nearlyRound (every x (Isa x Planet)))

;; The arbitrary planet has cleared its orbit. => (assert '(clearedOrbitalNeighborhood (every x Planet)))
wft4!: (clearedOrbitalNeighborhood (every x (Isa x Planet)))

;; Is it the case that: the arbitrary planet orbits the sun; ;; the arbitrary planet is nearly round; and the arbitrary ;; planet has cleared its orbit are all true or all false? => (askif '(iff (orbitsSun (every x Planet)) (nearlyRound x) (clearedOrbitalNeighborhood x)))

I wonder if wft5?: (iff (orbitsSun (every x (Isa x Planet)))
(clearedOrbitalNeighborhood x) (nearlyRound x))

Since: wft2!: (orbitsSun (every x (Isa x Planet)))
and: wft3!: (nearlyRound (every x (Isa x Planet)))
and: wft4!: (clearedOrbitalNeighborhood (every x (Isa x Planet)))
I derived: wft5!: (iff (orbitsSun (every x (Isa x Planet)))
(clearedOrbitalNeighborhood x) (nearlyRound x))
by iff-introduction
\end{verbatim}
Thresh Elimination:

From \(< (\text{thresh} \ (i \ j) \ p_1 \ldots p_n), s >,\)
and \(P_T = \{< p_1, s_1 > \ldots < p_m, s_m >\}\) such that \(|P_T| \geq i,\)
and \(P_F = \{< (\text{not} \ p_1), s_o >, \ldots, < (\text{not} \ p_p), s_p >\}\) such that \(|P_F| = j - n - 1,\)
infer \(\forall p_k \in \{\{p_1, \ldots, p_n\} - P_T - P_F\}, < p_k, \cup_{SS}(s, s_1, \ldots, s_m, s_o, \ldots, s_p) >.\)

From \(< (\text{thresh} \ (i \ j) \ p_1 \ldots p_n), s >,\)
and \(P_F = \{< (\text{not} \ p_1), s_1 > \ldots < (\text{not} p_m), s_m >\}\) such that \(|P_F| \geq (n - j),\)
and \(P_T = \{< p_1, s_o >, \ldots, < p_p, s_p >\}\) such that \(|P_T| = i - 1,\)
infer \(< (\text{not} \ P), \cup_{SS}(s, s_1, \ldots, s_m, s_o, \ldots, s_p) >\) where \(P = \{p_1, \ldots, p_n\} - P_T - P_F.\)

To show thresh elimination in action, consider that a dog is carried by the person that owns it if and only if that dog is scared, and Toto is a dog. We wonder what we can learn from that fact that Toto is scared. Since Toto is a dog and Toto is scared, we can derive that Toto is carried by the person who owns Toto, by both instantiating the arbitrary dog with Toto, and using if-and-only-if elimination (a type of thresh elimination).

;; A dog is carried by the person who owns it, if and only if the dog is scared.
(assert '(iff (Scare (every x Dog)) (Carries (every y Person (Owns y x)) x)))
wft6!: (iff (Scare (every x (Isa x Dog)))
(Carries (every y (Owns x y) (Isa y Person)) x))

;; Toto is a dog.
(assert 'Isa Toto Dog))
wft7!: (Isa Toto Dog)

;; Toto is scared. What can be derived from this?
(assert! '(Scare Toto))
wft8!: (Scare Toto)

Since: wft6!: (iff (Scare (every x (Isa x Dog)))
(Carries (every y (Owns y x) (Isa y Person)) x))
and: wft8!: (Scare Toto)
and: wft7!: (Isa Toto Dog)
I derived: wft11!: (Carries (every y (Isa y Person) (Owns y Toto)) Toto)
by iff-elimination

;; Therefore Toto is carried by his owner.

Numerical Entailment Introduction\(^2\)

From \(<c_1, s_{c_1}>, \ldots, <c_m, s_{c_m}>

and \(\forall s_j \in ders(s_{c_1}) \ldots ders(s_{c_m})\), \(s_j\) contains origin sets \(O_j\) which contain every cardinality \(i\) subset of \(<a_1, s_{a_1}>, \ldots, <a_n, s_{a_n}>\),

then remove \(<a_1, s_{a_1}>, \ldots, <a_n, s_{a_n}>\) from each \(O_j\), and

infer \(<(=^i (setof a_1 \ldots a_n) (setof c_1 \ldots c_m)) \cup SS(all O_j s)\).

Consider that if Dorothy is scared then so is Toto, and that if Toto is scared he yelps. If it’s the case that if Dorothy is scared, then Toto yelps, then Toto cares for Dorothy. We wonder if Toto cares for Dorothy. Since if Dorothy is scared then so is Toto, and if Toto is scared he yelps, it follows that if Dorothy is scared, Toto yelps, and therefore Toto cares for Dorothy.

;; If Dorothy is scared, then so is Toto.

\(\text{assert '}(\text{if (Scare Dorothy) (Scare Toto)})\)

wft3!: (if (Scare Dorothy) (Scare Toto))

;; If Toto is scared, he yelps.

\(\text{assert '}(\text{if (Scare Toto) (Yelp Toto)})\)

wft5!: (if (Scare Toto) (Yelp Toto))

;; If it's the case that if Dorothy is scared, then Toto yelps,

;; then Toto cares for Dorothy.

\(\text{assert '}(\text{if (if (Scare Dorothy) (Yelp Toto)) (CaresFor Toto Dorothy)})\)

wft8!: (if (if (Scare Dorothy) (Yelp Toto)) (CaresFor Toto Dorothy))

;; Does Toto care for Dorothy?

\(\text{askif '}(\text{CaresFor Toto Dorothy})\)

Since: wft5!: (if (Scare Toto) (Yelp Toto))

and: wft3!: (if (Scare Dorothy) (Scare Toto))

\(^2\)Note, the full numerical entailment introduction rule has not yet been implemented. The cases for \(i = 1\) and \(i = n\) have thus far been implemented.
I derived: wft6!: (if (Scare Dorothy) (Yelp Toto)) by if-introduction

Since: wft8!: (if (if (Scare Dorothy) (Yelp Toto)) (CaresFor Toto Dorothy))
and: wft6!: (if (Scare Dorothy) (Yelp Toto))
I derived: wft7!: (CaresFor Toto Dorothy) by if-elimination

Numerical Entailment Elimination:

From \(<\ (=\!}\)
and at least \(i\) of the antecedents, \(<a_j, s_j>\ ... <a_k, s_k>\)
infer \(<c_1, \cup SS(s, s_j, ..., s_k)>, ..., <c_m, \cup SS(s, s_j, ..., s_k)>\)

To show numerical entailment elimination, consider that if Dorothy is chased, or Toto is being chased, Toto is scared, and that Dorothy is being chased. We can then wonder if Toto is scared and find that he is. This example makes use of or-entailment elimination.

;; If Dorothy is chased or Toto is being chased, Toto is scared.
(assert '(=v> #{(Chase Dorothy) (Chase Toto)} (Scare Toto)))
wft4!: (=v> #{(Chase Dorothy) (Chase Toto)} (Scare Toto))

;; Dorothy is being chased.
(askif '(Chase Dorothy))
wft1!: (Chase Dorothy)

;; Is Toto scared?
(askif '(Scare Toto))

Since: wft4!: (=v> #{(Chase Dorothy) (Chase Toto)} (Scare Toto))
and: wft1!: (Chase Dorothy)
I derived: wft2!: (Scare Toto) by numerical-entailment-elimination

CSNePS does not yet implement the standard rule of negation introduction via *reductio ad absurdum*[^1] but does implement negation elimination through double negation elimination.

Negation Elimination:

[^1]: See Section [9.2.2.3](#) in the chapter on future work for an explanation of why.
From \(<\text{not (not } A)>, s >,\)
infer \(<A, \Lambda_{s}(s) >.\)

To show negation elimination consider that it is not the case that Obama is not president. When it is asked if Obama is president, this is found to be true, since “it is not the case that Obama is not president” is a double-negative.

;; It’s not the case that Obama is not president.
(assert '(not (not (isPresident Obama))))

wft3!: (not (not (isPresident Obama)))

;; Is Obama president?
(askif '(isPresident Obama))

Since wft3!: (not (not (isPresident Obama)))

I derived: wft1!: (isPresident Obama) by negation-elimination

Closure introduction and elimination rules are directly adapted from \([\text{Shapiro, 2004}]\).

Closure Introduction:

From \(<A, s >\)
where \(A\) contains quantified term \(x\)
infer \(<\text{close } x A, \text{hypsToDers}(s) >.\)

Both closure introduction and closure elimination are implemented via rewrite rules in the object language, which will be discussed further in Section 3.2. As seen in the following example (and the one for closure elimination), rewrite rules make use of if-and-only-if rules added to the knowledge base.

;; The arbitrary mammal is an animal.
=> (assert '(Isa (every x (Isa x Mammal)) Animal))

wft2!: (Isa (every x (Isa x Mammal)) Animal)

=> (askif '(' (close (x) (Isa (every x (Isa x Mammal)) Animal)))

I wonder if wft3?: (close (x) (Isa (every x (Isa x Mammal)) Animal))

Since: wft4!: (iff (Isa (every x (Isa x Mammal)) Animal) (close (x) (Isa x Animal))
and: wft2!: (Isa (every x (Isa x Mammal)) Animal)
I derived: wft3!: (close (x) (Isa (every x (Isa x Mammal)) Animal)) by iff-elimination

Closure Elimination:

From <(close x A), s>,
infer <A, hypsToDers(s)>.

;; The arbitrary mammal is an animal. What can be derived from this?
=> (assert! '(close x (Isa (every x (Isa x Mammal)) Animal)))
wft3!: (close (x) (Isa (every x (Isa x Mammal)) Animal))

Since: wft4!: (iff (Isa (every x (Isa x Mammal)) Animal) (close (x) (Isa x Animal)))
and: wft3!: (close (x) (Isa (every x (Isa x Mammal)) Animal))
I derived: wft2!: (Isa (every x (Isa x Mammal)) Animal) by iff-elimination

Generic terms have previously been defined as atoms containing open arbitrary terms. The different components of a generic term may be made more concrete: a generic term is a term which has one or more generic or arbitrary subterms (\{g_1, \ldots, g_j\}, and \{a_1, \ldots, a_k\}, respectively), and possibly some subterms with no open arbitrariess, \{p_1, \ldots, p_i\}. Therefore, we write a generic R as \(R\{p_1, \ldots, p_i\}\{g_1, \ldots, g_j\}\{a_1, \ldots, a_k\}\). Any number of the \{g_1, \ldots, g_j\}, and \{a_1, \ldots, a_k\} may be instantiated to create a new generic with the applied substitution.

Generic Instantiation:

From <(R \{p_1, \ldots, p_i\}\{g_1, \ldots, g_j\}\{a_1, \ldots, a_k\}), s>,
where there are compatible substitutions \(\{\sigma_{g_1}, \ldots, \sigma_{g_j}, \sigma_{a_1}, \ldots, \sigma_{a_k}\}\),
then let \(\sigma_R = \) the combination of all \(\sigma_{g_j}\)’s and \(\sigma_{a_k}\)’s
and \(P = \sigma_R(R\{p_1, \ldots, p_i\}\{g_1, \ldots, g_j\}\{a_1, \ldots, a_k\})\),
and \(s_P = \cup SS(\text{all terms in } \sigma_R)\),
infer <P, s_P>.

Generic instantiation by a constant has already been seen in the thresh elimination example, so here it will be shown how a generic can instantiate another. Consider that the arbitrary lion eats the arbitrary animal. From the fact that the arbitrary antelope is an animal, what can we derive? It is clear that since
the arbitrary antelope is an animal, and the arbitrary lion eats the arbitrary animal, the arbitrary lion eats
the arbitrary antelope.

;;; The arbitrary lion eats the arbitrary animal.
(assert '(eats (every x (Isa x Lion)) (every y (Isa y Animal))))

wft3!: (eats (every x (Isa x Lion)) (every y (Isa y Animal)))

;;; The arbitrary antelope is an animal. What can we derive from this?
(assert! '(Isa (every z Antelope) Animal))

wft5!: (Isa (every z (Isa z Antelope)) Animal)

Since: wft3!: (eats (every x (Isa x Lion)) (every y (Isa y Animal)))

and: wft5!: (Isa (every z (Isa z Antelope)) Animal)

I derived: wft6?: (eats (every x (Isa x Lion)) (every z (Isa z Antelope))) by generic-instantiation

3.1.3 Structural Rules

The only exclusively structural rule used in CSNePS is one that eliminates negated closures. A term that
contains an arbitrary \(x \), is closed over \(x \), and negated must treat \(x \) as an indefinite term. A term that contains
an indefinite \(x \), is closed over \(x \), and negated must treat \(x \) as an arbitrary term. The negated closure rule
below allows for these transformations.

Negated Closure:

From \(< A, s >,\)

which has a subterm \(\text{not} \ (\text{close} \ x \ B) \),

where \(x \) is the variable for arbitrary term \(\text{arb}_x \),

infer \(< \{(\text{some} \ x \ R(\text{arb}_x))/\text{arb}_x, B/(\text{close} \ x \ B)\} \) applied to \(A, s >.\)

From \(< A, s >,\)

which has a subterm \(\text{not} \ (\text{close} \ x \ B) \),

where \(x \) is the variable for indefinite term \(\text{ind}_x \),

infer \(< \{(\text{every} \ x \ R(\text{ind}_x))/\text{ind}_x, B/(\text{close} \ x \ B)\} \) applied to \(A, s >.\)

The implementation of this rule will be explored in more detail in the following section.
3.2 Rewrite Rules

Some rules of inference are particularly difficult to implement in IGs because negations alter the behavior of inner logical connectives. For this reason, we have implemented a series of “rewrite rules” for these cases. These rules are not true rewrite rules, since they do not replace the expression written by the user. Instead, the portion of the expression which can be re-expressed is made logically equivalent to the original using \textit{iff}. This way, the user’s entered term is still in the KB, and a rule easier to reason about is present as well. The rules which require re-expression are negated closure, negated \textit{andor}, and negated \textit{thresh}.

There are several advantages to this approach of re-expression. Inference Graphs make the assumption that it is possible to match all terms which should communicate during inference with each other. The rules surrounding such a match become very cumbersome should, for example, a negated \textit{thresh}, and equivalent \textit{andor} be used in the KB. The automatic generation of the equivalency at assert-time makes the matching trivial. Another concern is that negated closures change the behavior of the closed-over quantified term. This would force all quantified terms to to act the same until some decision point is reached. This forces a great deal of overhead in the collection of instances for indefinite terms, which otherwise would do no such thing.

3.2.1 Closures

In inference, closures exhibit themselves most strongly when combined with negation. Consider the following two terms (from (Shapiro, 2004)):

1. \texttt{(not (White (every x (Isa x Sheep))))}

2. \texttt{(not (close x (White (every x (Isa x Sheep))))})

The first is intended to mean that “every sheep is not white”, and the second that “it is not the case that every sheep is white”. The \texttt{close} relation has the effect of limiting the scope of the closed variable. When used in combination with a negation, the effect is that of negation on standard FOL quantifiers, as in:

\[
\neg\forall x R(x) \equiv \exists x \neg R(x), \text{ and}\\
\neg\exists x R(x) \equiv \forall x \neg R(x).
\]

This equivalence is made explicit using a rewrite rule. In the second case above, \texttt{(not (close x (White (every x (Isa x Sheep))))}) is added to the KB, but so is:
\begin{align*}
(\text{iff} & \ (\text{not} \ (\text{close} \ x \ (\text{White} \ (\text{every} \ x \ (\text{Isa} \ x \ \text{Sheep})))))) \ (\text{not} \ (\text{White} \ (\text{some} \ x \ () \ (\text{Isa} \ x \ \text{Sheep})))))
\end{align*}

3.2.2 andor and thresh

As with closures, the **andor** and **thresh** connectives act differently when negated. As defined in the implemented rules of inference, they act as the opposite connective.

Consider the proposition that Eric believes that if a fruit is edible, it is not the case that that fruit is any of: poisonous, shriveled, or rotten.

\[(\text{Believes Eric} \ (\text{if} \ (\text{Edible} \ (\text{every} \ x \ \text{Fruit})) \ (\text{not} \ (\text{or} \ (\text{Poisonous} \ x \ (\text{Shriveled} \ x) \ (\text{Rotten} \ x)))))\]

This proposition makes use of a negated **andor**, since \((\text{or} \ ...\) is equivalent to \((\text{andor} \ (1 \ 3) \ ...)\) in this case (meaning at least one and at most three of the arguments are true). We therefore rewrite the **or** to use **thresh**, as follows:

\[(\text{iff} \ (\text{not} \ (\text{or} \ (\text{Poisonous} \ (\text{every} \ x \ \text{Fruit})) \ (\text{Shriveled} \ x) \ (\text{Rotten} \ x)))) \ (\text{thresh} \ (1 \ 3) \ (\text{Poisonous} \ (\text{every} \ x \ \text{Fruit})) \ (\text{Shriveled} \ x) \ (\text{Rotten} \ x))))\]

When this proposition is being built into CSNePS, it will convert \((\text{thresh} \ (1 \ 3) \ ...)\) to \((\text{nor} \ ...)\), since none of the arguments may be true. So the final translation is:

\[(\text{iff} \ (\text{not} \ (\text{or} \ (\text{Poisonous} \ (\text{every} \ x \ \text{Fruit})) \ (\text{Shriveled} \ x) \ (\text{Rotten} \ x)))) \ (\text{nor} \ (\text{Poisonous} \ (\text{every} \ x \ \text{Fruit})) \ (\text{Shriveled} \ x) \ (\text{Rotten} \ x))))\]

Note that we do not rewrite the entire proposition, but rather only the parts which require it. Using this rewrite, our original expression means that Eric believes that if a fruit is edible, that fruit is neither poisonous, nor shriveled, nor rotten. The rewriting of \((\text{not} \ (\text{thresh} \ ...))\) to \((\text{andor} \ ...)\) works similarly.

3.3 Implementation Decisions Regarding \(\mathcal{L}_A\)

CSNePS and IGs make two important decisions in implementing \(\mathcal{L}_A\), solving issues and enhancing what was defined in [Shapiro, 2004]. The first of these deals with the possibility of having more than one arbitrary
term with the same restriction set, and how to ensure that terms that should be taken to be identical (or not) are treated as such. The second is really a group of enhancements, designed to make using \mathcal{L}_A more pleasant through the introduction of some syntactic sugar.

3.3.1 Sameness of Quantified Terms

The issue of when quantified terms may be bound to the same term in a knowledge base is one that requires some thought. Scott Fahlman in his 1979 book on NETL ([Fahlman 1979](#)) discussed the difficulty in capturing the intended meaning of $\text{hates Arbitrary-Elephant Arbitrary-Elephant}$, where Arbitrary-Elephant represents the arbitrary elephant. There are three possible meanings of this:

1. The arbitrary elephant hates itself.

2. The arbitrary elephant hates all other elephants.

3. The arbitrary elephant hates all elephants (including itself).

To solve this problem he introduced the other operator to distinguish between two arbitraries. Item 1 stays $\text{hates Arbitrary-Elephant Arbitrary-Elephant}$, item 2 becomes $\text{hates Arbitrary-Elephant Other-Arbitrary-Elephant}$, and item 3 becomes the conjunction of the two.

We solve this problem for arbitraries through the use of \mathcal{L}_A’s variable labels. The use of different variable labels for otherwise identical arbitrary terms indicates that the user intended the two arbitraries to be different. Below we give the \mathcal{L}_A representation for each of the above three intended meanings:

1. $\text{hates (every x (Isa x Elephant)) x}$

2. $\text{hates (every x (Isa x Elephant)) (every y (Isa y Elephant))}$

3. $\text{hates (every x (Isa x Elephant)) \#x (every y (Isa y Elephant))}$

In \mathcal{L}_A, arbitrary terms are not the only ones which users may wish to explicitly make different from one another. Indefinite individuals which use different variable labels as described above are also assumed to be different. For example, in $\text{hates (some x (Isa x Elephant)) (some y (Isa y Elephant))}$, some elephant hates some other elephant, the two indefinite Elephants are assumed to be different because of their different variable labels. If it is desired that an indefinite be different from an arbitrary, the issue is more complex (as the two must, by definition, have different variable labels).
Different types of quantified terms with different variable labels are able to be bound to the same term unless it is explicitly noted that they should not. Consider that every elephant hates some elephant: \(\text{hates} \ (\text{every} \ x \ (\text{Isa} \ x \ \text{Elephant})) \ (\text{some} \ y \ (\text{Isa} \ y \ \text{Elephant})) \). Since there are two different types of quantified terms in action, it’s necessary that \(x \) and \(y \) have different variable labels. In this case, \(x \) and \(y \) may both be bound to the same term. In order to make explicit that \(x \) and \(y \) should not be bound to the same term, we introduce the \(\text{notSame} \ q_1 \ldots q_k \) relation. The \(\text{notSame} \) relation is special (i.e., it is not represented in the graph like other restrictions) and can be used to ensure that any two quantified terms are bound to different terms. The naming apart of arbitrary and indefinite variables as described above is simply a shortcut for using the \(\text{notSame} \) relation. The user could have, for example, written item 2 above as:

\(\text{hates} \ (\text{every} \ x \ (\text{Isa} \ x \ \text{Elephant})) \ (\text{every} \ y \ (\text{Isa} \ y \ \text{Elephant}) \ (\text{notSame} \ x \ y)) \)

with the identical meaning.

3.3.2 Syntactic Sugar

Over time, writing expressions in \(\mathcal{L}_A \) can become rather tiring (as in just about any logic), as the syntax is often a bit too verbose for the situation at hand. For this reason we introduce four abbreviations that may be used when writing quantified terms. The system automatically converts the abbreviations to their un-abbreviated form.

1. The restriction \(\text{Isa} \ x \ C \), where \(C \) is a category, may be written simply as \(C \).

 Ex: The arbitrary term written \((\text{every} \ x \ (\text{Isa} \ x \ \text{Person}) \ (\text{Isa} \ x \ \text{Officer})) \) may be rewritten simply as \((\text{every} \ x \ \text{Person Officier}) \).

2. A relational term \(P \) abbreviates \((P \ x) \), where \(x \) is the variable for the immediately enclosing quantified term.

 Ex: The arbitrary term written \((\text{every} \ x \ (\text{Isa} \ x \ \text{Person}) \ (\text{Alive} \ x)) \) may be rewritten as: \((\text{every} \ x \ \text{Person Alive}) \).

3. A relational term \((R \ y_1 \ldots y_n) \) abbreviates \((R \ x \ y_1 \ldots y_n) \), where \(x \) is the variable for the immediately enclosing quantified term, unless \(x \in \{y_1 \ldots y_n\} \), or the number of arguments given for \(R \) already equal its maximum allowable.

 Ex: The arbitrary term written \((\text{every} \ x \ (\text{eats} \ x \ \text{Grain})) \) may be rewritten as: \((\text{every} \ x \ (\text{eats} \ \text{Grain})) \).
4. The variable for a quantified term may be omitted if it is not used elsewhere. Quantified terms which are identical will be automatically named apart and considered different arbitraries.

Ex: The arbitrary term written \((\text{every } x \ (\text{Isa } x \ \text{Animal}) \ (\text{eats } x \ (\text{some } y () \ (\text{Isa } y \ \text{Grain})))\) may be rewritten as: \((\text{every Animal } (\text{eats } (\text{some Grain})))\)\(^4\). It is important to remember that while this looks like it may represent the proposition that “every animal eats some grain”, it does not. Instead it represents the arbitrary term meaning “every animal \textit{that} eats some grain.”

3.4 Semantic Types and Term Properties

Every term in the CSNePS knowledge base has a semantic type (as in SNePS 3), and a (possibly empty) set of term properties. Semantic types are used to apply restrictions on where terms may be used in relations. Terms which are used incorrectly result in syntax errors. Term properties deal with the structure of terms, and are used during inference to decide how to treat a term.

```
Entity
  ├── Act
  │    ├── Policy
  │    │    └── Propositional
  │    │        ├── Proposition
  │    │        └── WhQuestion
  │    └── Thing
  │        ├── Action
  │        └── Category
```

Figure 3.1: The default CSNePS Semantic Type ontology.

Each semantic type exists within an ontology of semantic types that the user can add to (see Figure 3.1). Parent types are inherited by instances of child types, and sibling types are mutually disjoint, but not exhaustive of their parent. All terms are descendants of the type Entity. Objects in the domain should be an instance of Thing. The types Act, Policy, and Action are not used to their full potential, as the complete CSNePS acting system is out of the scope of this dissertation. They are designed to allow integration with the MGLAIR cognitive architecture \cite{Bona2013}. Terms with the type Propositional are those used to

\(^4\)There is a significant similarity between this syntax and the Montagovian Syntax of \cite{Givan1992, McAllester1991, Givan1991}, which is not entirely coincidental.
express Propositions and “wh-” style queries (WhQuestion, see Section 2.4). Only Propositions may be asserted (taken to be true) in the knowledge base.

A term is given a semantic type based on its usage. Each argument in a CSNePS expression is associated with a semantic type. As a term is used in argument positions with different types, the type of the term is adjusted downward.

For example, consider the addition of Organism as a subtype of Entity, and Mammal as a subtype of Organism. Also consider two unary relations: hasParent, which takes an Organism argument, and hairy which takes a Mammal argument. As we’ve said, non-quantified terms may have their types inferred, so it is allowed to say (hasParent Alex), at which point Alex is determined to be an Organism, and later say (hairy Alex) at which point Alex is determined to be a Mammal.

The semantic type of arbitrary terms may not change after they have been created. Arbitrary terms have internal and external type restrictions. The internal restriction is the lowest type corresponding to a categorization in the term’s restrictions. The external restriction is the type of the argument position they are used in. Their final type is specified by the internal restriction, and must always agree with the external restriction. This decision was made to ensure soundness of the logic as items are added to the KB after inference has already occurred. Indefinite terms, which act like constants, do not share this property.

Continuing the above example, it’s clear that the arbitrary in (hasParent (every x (Isa x Organism))) should not be able to be used in the hairy relation, since the arbitrary matches all Organisms, and the definition of hairy said that only Mammals qualified. So, it is legal to say that (hairy (every x Mammal)), but not (hairy (every x Organism)), since the internal restrictions do not allow it.

In addition to having a semantic type, each term has a set of properties. The two properties currently made use of by the Inference Graph are Generic and Analytic. Generic terms are, as we’ve discussed, those with open variables. They need not be a proposition though, the generic parent of someone: (parent (some x Person)) where the parent relation may be an Entity, is an equally valid generic as the generic rule that the parent of someone has a child: (hasChild (every x (parent (some y Person))))).

3.5 Question Answering

As discussed in Section 2.4 there are two types of questions we are concerned with answering using IGs — specific, and generic questions. The same machinery will be used to answer both of these types of questions. The distinction we will make is between questions which may be answered with yes or no, such as “Is Mary
at home?” or “Are all children at home?” and what are often called wh-questions, such as “Who is at home?”

Since CSNePS implements a term logic, yes-or-no questions such as “Is Mary at home?” are answered with the satisfying term itself, (e.g., “Mary is at home.”) rather than yes or no (or true or false). The open world assumption means that if no answer is forthcoming to the asked question, than none is returned to the user.

3.5.1 Wh-Questions

Wh-questions may have no answers, one answer, or many answers. In order to answer wh-questions, a new type of quantified term, called a query term, is introduced. A query term acts identically to an arbitrary, but restricts the semantic type of a containing expression. While the query expression may on the surface look like a Proposition, it is clearly not, as it contains no proposition. Groenendijk and Stokhof call the semantic content of interrogative expressions “Questions” (Groenendijk and Stokhof, 2008). Since our query variables cover only wh-questions, we call the semantic type for them WhQuestion. The similarity between the WhQuestion and the Proposition is not lost on us though, both are direct descendents of the semantic type Propositional. One reason for creating a new type of quantified term, rather than re-using arbitraries for this purpose, is an issue mentioned in (Burhans and Shapiro, 2007) — often humans ask questions about generics, and it’s inappropriate in those cases to return instances of the generic. This allows us to separate the question “Are all children at home?” which uses an arbitrary term, from “Which children are at home?” which uses a query term.

Syntactically, query terms are expressed much like other quantified terms. CSNePS allows such questions to be asked by using the askwh function[^1] and giving it a CSNePS expression as an argument, with one or more of the expression’s slots filled by a query term, expressed as (?x r₁...rₙ), where r₁...rₙ are restrictions. When no special restrictions are desired by the user, they may use a question-mark prefixed placeholder, such as ?x, instead of writing the full quantified term.

When a question is asked of the system, the question asked is added to the knowledge base, and backward inference is performed upon it. Instead of asserting instances found as a generic term would, it caches them and returns them to the user. Since questions are added to the KB, it is possible to reason about questions asked of the system, though we have not yet explored this in detail.

[^1]: The complete CSNePS syntax and definition of functions is available in the CSNePS manual, distributed with CSNePS. See Section 9.3 about availability.
Chapter 4

Term Unification and Matching

As previously described, inference operations in the IG are carried out through the transmission of messages through channels, and their combination in nodes. Many of the channels within the graph are added between terms that match each other. When a term is added to the graph, it is determined whether the added term and any other terms might need to communicate during inference. This determination is accomplished through the match process. This process occurs in two phases: first, the added term is unified with all other terms in the graph; then the resulting substitutions are checked for appropriate type and subsumption relationships.

In order to efficiently perform the matching operation, we make use of term trees to index the KB and efficiently perform one-to-many unification, detailed in Sections 4.1 and 4.2. Since sets of terms may need to be unified, a flavor of set unification has been developed, presented in Section 4.3. Finally, the match operation, which encompasses unification and other relationships, is discussed in Section 4.4.

4.1 Term Trees

A term tree is a discrimination tree for terms, acting as an index of the knowledge base. Term trees contain two types of nodes: t-nodes, which represent terms; and f-nodes, which represent function symbols (or other terms in function position).

Term trees are created by examining each term in the knowledge base. Terms are traversed using a post-order tree traversal. In the term being traversed, leaf nodes are literals, and inner nodes are molecules. When a molecular node is visited on the way down, an f-node is created for it. When it is visited on the
way back up the tree, a t-node is created for it. T-nodes are created for each literal. Edges connect nodes in the order of traversal. Nodes are created for arbitrary and indefinite terms, but not their restriction sets. For example, the term \((R \ (f \ a \ b) \ (\text{every} \ x \ (P \ x)))\) becomes the “tree” (really, chain):

\[
R \rightarrow f \rightarrow a \rightarrow b \rightarrow (f \ a \ b) \rightarrow (\text{every} \ x \ (P \ x)) \rightarrow (R \ (f \ a \ b) \ (\text{every} \ x \ (P \ x))).
\]

\(R\) and \(f\) in this example are f-nodes, and the others are t-nodes.

When a new term is added to a term tree, the existing term tree and the new term are traversed in parallel. At the point where the two differ, a new branch of the term tree is created. This is similar to the method used for creating the RETE net alpha network.

Term trees are particularly easy to produce, since quantified terms in \(\mathcal{L}_A\) need not be named apart\(^1\) as variables need to be in other FOLs. Therefore adding a term to the term tree requires only a single walk through a term linear in time with the total number of literals and function symbols used in the term.

Term trees are most closely related to downward substitution trees \(^{[\text{Hoder and Voronkov, 2009}]}\) (DSTs), which have one or more substitutions instead of a single term in each of their nodes. The lack of variable renaming in \(\mathcal{L}_A\) accounts for why term trees may use terms and function symbols instead of substitutions. DSTs may contain multiple substitutions at a single node, while a term tree cannot have multiple terms or function symbols at a single node. This is a space/time tradeoff, since a DST may need to spend the time splitting a node, while a term tree does not, but the term tree must use more memory for the extra branches of the tree. Given the abundance of cheap memory available today, we feel the extra space usage is not of concern.

Figure 4.1: A term tree for the terms: \(wft1: (P \ arb1 \ (f \ arb1) \ a)\), \(wft2: (P \ arb1 \ (f \ arb2) \ a)\), and \(wft3: (P \ arb1 \ arb1 \ a)\).

\(^1\)Remember, there is only one arbitrary with a particular set of restrictions (including the special, and often implicit, notSame restriction). Using the terms identifier (e.g., \(arb1\)) is sufficient naming apart. Indefinite terms can never be assumed to be equivalent, so the CSNePS build system creates a new (already named-apart) indefinite each time one is encountered.
arb2) a), and wft3: (P arb1 arb1 a). Our unification algorithm does not examine the restrictions of arbitrary terms (this is an issue of subsumption, not unification, so is handled later), so we won’t worry about the full structure of arbitrary terms throughout this example, only labeling them using names like arb1. Function symbols (f-nodes) are superscripted with their arity. The final node in each chain (shown as wft1 – wft3) represents the propositions being matched to in the KB.

4.2 Unification

Hoder and Voronkov (2009) have shown that the Robinson unification algorithm (Robinson 1965), along with a slight modification of it to solve the exponential case, called PROB, are the fastest unification algorithms on an assortment of real-world problems when used in combination with downward substitution trees. The Robinson and PROB algorithms apply substitutions at each intermediate step of the algorithm, and, in the process, generate a lot of intermediate structures that need to be cleaned up by garbage collection later.

As discussed in Norvig (1991), there are two common solutions to this: the Prolog method of representing logic variables as cells to be updated destructively, and maintaining a history for backtracking; and building up the substitutions as the algorithm progresses, but delaying the application of the substitution until the end. The algorithm we use is of this second variety. Again as Norvig (1991) points out, this algorithm is widely used in several AI texts, and is used in the MRS (Russell 1985) reasoning system. It is also used in the core.unify library (Fogus 2014), which we base our implementation on. This algorithm has the possibility to be faster than PROB, especially in cases where the number of variables is much less than the length of the patterns being matched.

Our unification algorithm is given in Algorithm 4.1, without the portions that flatten recursive substitutions, and test the bindings, as these are uninteresting in the current discussion.

Unification can be seen as a series of comparisons between two predicates with the additional step of creating and maintaining relevant substitutions at each comparison. The series of comparisons can be “un-rolled” into a chain of comparisons, which match up with the structure of the term tree. For this reason, the exact algorithm used for the unification operation itself is important only from a performance point of view — any unification algorithm that can be un-rolled in this fashion may be used. It can be easily seen that the unification algorithm we make use of is of this variety: if \(s \) and \(t \) are two terms of arity \(i \) to be unified, and \(s' \) and \(t' \) are identical to \(s \) and \(t \) but with extra arguments \(s_1 \) and \(t_1 \), respectively (and therefore they have arity \(i + 1 \)), then by examining the algorithm it’s obvious that \(\text{unify}(s', t', \{\}) = \text{unify}(s_1, t_1, \text{unify}(s, t, \{\})) \).
Algorithm 4.1 Our implemented unification algorithm, as discussed in (Norvig, 1991), with minor modifications to operate on CSNePS terms. Note that while really molecular CSNePS terms have set arguments, we’re ignoring sets for the moment.

```plaintext
function UNIFY(x, y, subst)
    if x = y then
        return subst
    else if subst = nil then
        return nil
    else if VARTERM?(x) then
        UNIFY-VARIABLE(x, y, subst)
    else if VARTERM?(y) then
        UNIFY-VARIABLE(y, x, subst)
    else if LIST?(x) and LIST?(y) then
        sx ← REST(x)
        sy ← REST(y)
        fx ← FIRST(x)
        fy ← FIRST(y)
        fsubst ← UNIFY(fx, fy, subst)
        return UNIFY(sx, sy, fsubst)
    else
        return nil
    end if
end function

function UNIFY-VARIABLE(var, term, subst)
    if var = term then
        return subst
    else if BOUND?(var, subst) then
        binding ← GET(var, subst)
        return UNIFY(binding, term, subst)
    else if VARTERM?(term) and BOUND?(term, subst) then
        binding ← GET(term, subst)
        return UNIFY(var, binding, subst)
    else if OCCURSIN?(var, term, subst) then
        return nil
    else
        return ASSOC(var, term, subst)
    end if
end function
```
The term tree allows unification to occur simultaneously for multiple predicates with shared prefixes, only performing unification on them separately when they differ. Given that unification is among the most expensive processes that occur in an inference system, this provides a significant performance advantage over simply performing unification against each term in the KB independently.

Terms to be unified against the existing term tree flow through the term tree, along with a substitution generated from the in-progress unification, initially empty. T-nodes perform unification between the node’s term, and the appropriate part of the passing term, given the substitution already produced. Failure occurs in a branch when unification usually would (e.g., failure of the occurs check, or two different constant terms). F-nodes ensure that the passing term has the appropriate function symbols in the appropriate positions (or, a variable where that function symbol should go, indicating that the passing term may proceed to that function symbol’s corresponding t-node for unification). Should a term and its substitution reach the t-node at a leaf of the tree, it unifies with the wft that that leaf stands for, with that substitution. The algorithm is presented more formally in Algorithm 4.2.

Theorem 4.1. Algorithm 4.2 will result in a most general unifying substitution wherever possible.

Proof. We will show that given a term, T, and term tree and substitution, that the result is a set of most general unifying substitutions, one for each term in the term tree that unifies with T. We will start by showing this is true for a term “tree” containing only a single term, then show that it is a trivial extension to operate on the entire tree.

Invariant: At position i in term T, and node j in the term tree, subst represents a most general unifier for positions $0 \ldots i - 1$ of T and $0 \ldots j - 1$ of the term tree, where 0 is the root of the tree, and $0 \ldots j$ represents a path through the tree.

Base Case: For $i = 0$, the examination of the nodes has not yet begun, so $\text{subst} = \{}$.

Inductive Step: At position n in term T and node m in the term tree, subst is a most general unifier for positions $0 \ldots n - 1$ in T and $0 \ldots m - 1$ in the term tree. There are six cases to consider:

1. n is a function symbol, and m is an f-node.

2. n is an arbitrary or query variable, and m is an f-node.

3. n is a non-arbitrary or query variable term, and m is an f-node.

4. n is a function symbol, and m is an t-node.

5. n is an arbitrary or query variable, and m is an t-node.
Algorithm 4.2 The algorithm for traversing a term and unifying it with the term tree. The argument \([t|\text{Term}]\) indicates a post-order traversal of \text{Term}, as was done in creation of the term tree itself. \(t\) is the current sub-term being considered, and \text{Term} is the unexplored portion of the term. \text{Unify} is a call to the unification algorithm of [Norvig (1991)], as described earlier.

```
function \text{TREEUNIFY}([t|\text{Term}], \text{node}, \text{subst})
    if \text{isFsymbol}(t) \text{and isFNode(node)} then
        if \(t = \text{getFSymbol(node)}\) then
            return the set of:
            for all children \(c\) of node do
                \text{TREEUNIFY} \(\text{Term}, c, \text{subst}\)
            end for
        else
            return FAIL
        end if
    else if (\text{isArbitrary}(t) \text{or isQvar}(t)) \text{and isFNode(node)} then
        return the set of:
        for all t-nodes, \(\text{tnode}\), for node do
            \text{TREEUNIFY}(t, \text{tnode}, \text{subst})
        end for
    else
        \(nt \leftarrow \text{GETTERM(node)}\)
        \(\text{subst} \leftarrow \text{UNIFY}(t, nt, \text{subst})\)
        if \(\text{subst} = \text{nil}\) then
            return FAIL
        else if \text{Term} is empty then
            return [\text{node subst}]
        else
            return the set of:
            for all children \(c\) of node do
                \text{TREEUNIFY(\text{Term}, c, subst)}
            end for
        end if
    end if
end function
```
6. \(n \) is a non-arbitrary or query variable term, and \(m \) is an t-node.

These are each handled by the algorithm, maintaining the invariant, as follows:

1. If the function symbols are identical, then proceed to \(n + 1 \) and \(m + 1 \) with \(\text{subst} \). If not, then fail.

2. Jump to the t-node for \(m \) since \(m \) represents the function symbol for the larger term indicated by it’s t-node, and begin testing these six cases again.

3. A call to unify will be attempted, and as the unification algorithm is known to be correct, will result in proceeding to \(n + 1 \) and \(m + 1 \) with an updated \(\text{subst} \) if it succeeds, otherwise a failure state.

4. This will result in failure when unify is attempted.

5. A call to unify will be attempted, and as the unification algorithm is known to be correct, will result in proceeding to \(n + 1 \) and \(m + 1 \) with an updated \(\text{subst} \) if it succeeds, otherwise a failure state.

6. A call to unify will be attempted, and as the unification algorithm is known to be correct, will result in proceeding to \(n + 1 \) and \(m + 1 \) with an updated \(\text{subst} \) if it succeeds, otherwise a failure state.

Therefore, in all non-failure states, the invariant is maintained.

This may be extended to the case of multiple items in the tree, with the added condition that instead of proceeding to \(m + 1 \) in the tree, all children of \(m \) must be considered.

Figure 4.2 presents two examples of attempted unification, given the existing term tree created in the previous section (Figure 4.1). In Figure 4.2a, it is shown that \(\text{wft4} \) unifies with both \(\text{wft1} \) and \(\text{wft2} \), but not \(\text{wft3} \). \(\text{wft4} \) enters the term tree at \(P^3 \) with an empty substitution, \(\{\} \). Since \(\text{wft4} \) also has the function symbol \(P \) with arity 3, it passes to the next node. \(\text{arb1} \) is compared against \((g \ \text{arb3}) \). These unify with the substitution \(\{(g \ \text{arb3})/\text{arb1}\} \) (read, “\((g \ \text{arb3}) \) for \(\text{arb1} \)”). \(\text{wft4} \) along with the substitution \(\{(g \ \text{arb3})/\text{arb1}\} \) pass now along two paths — to \(f^1 \) and \(\text{arb1} \). At \(\text{arb1} \) unification fails, since the existing substitution \(\{(g \ \text{arb3})/\text{arb1}\} \) and new substitution \(\{(f \ (g \ \text{arb4}))/\text{arb1}\} \) may not be combined. At the f-node \(f^1 \), it is found that \(\text{wft4} \) also has the function symbol \(f \) of arity 1 in its second argument position, and it passes on to both \(\text{arb1} \) and \(\text{arb2} \). This process continues all the way to the f-nodes for \(\text{wft1} \) and \(\text{wft2} \). Figure 4.2b shows a second example where \(\text{wft3} \) unifies with the given term, and \(\text{wft1} \) and \(\text{wft2} \) fail.

In practice, unification is slightly more difficult than this. When two terms, \(t_i \) and \(t_j \), are unified, instead of producing an mgu, a factorization is produced that contains bindings for each of the terms being unified. While the exact process by which these bindings are produced is available in \cite{McKay and Shapiro 1981},
Figure 4.2: Two examples of unification. In part a, it is found that \texttt{wft4} unifies with both \texttt{wft1} and \texttt{wft2}, but not \texttt{wft3}, since \texttt{arb3} and \texttt{arb4} are different. In part b, it is found that \texttt{wft5} unifies with \texttt{wft3} but neither \texttt{wft1} nor \texttt{wft2}, since \texttt{b} cannot unify with a functional term.
the main idea is that unification is performed as usual, except that instead of forming a single substitution, two are formed — \(\sigma_i \) and \(\sigma_j \) — such that all and only quantified terms in \(t_i \) are given bindings in \(\sigma_i \), and all and only quantified terms in \(t_j \) are given bindings in \(\sigma_j \). These substitutions allow for the creation of structures within the channels, as will be discussed in the next chapter.

4.3 Set Unification

Formulating the set unification problem is difficult, and is dependent upon the ultimate goal of the unification. Some formulations (Dovier et al., 2006) aim to find a unifier that makes the two sets equivalent, therefore requiring the sets to be of the same size. We concern ourselves more with unifying specific elements between the two sets. The definition of set unification used in this dissertation is given below.

Definition 4.2. Two sets \(S_1 \) and \(S_2 \) where \(|S_1| \leq |S_2| \), unify if every \(x \in S_1 \) unifies\(^2\) with some unique \(y \in S_2 \). ■

The formulation presented here is limited in that each term in one set may unify with only one set element in the opposite set in each solution, and each result necessarily has the cardinality of the smaller set. It is currently undetermined whether these limitations are significant and need to be addressed in the future.

In order to determine if two sets unify, and find their mgu, it is clear from the definition of set unification that some combinatorial algorithm will be necessary. To make this more concrete, let’s consider an example. Using the above definition of set unification, the two sets \(s = \{arb1, arb2, (caregiver arb2)\} \) and \(t = \{arb3, Alex\} \) have four unifiers:

1. \{Alex/arb1, arb3/arb2\}
2. \{arb3/arb1, Alex/arb2\}
3. \{(caregiver arb2)/arb3, Alex/arb2\}
4. \{(caregiver arb2)/arb3, Alex/arb1\}

Note that the recursive replacement of subterms in these substitutions has not yet taken place. So, for example, a unifier of the intermediate form \(\{(caregiver arb2)/arb3, Alex/arb2\} \) is given, instead of the final form \(\{(caregiver Alex)/arb3, Alex/arb2\} \). This is because set unification makes use of the unification\(^2\).

\(^2\)By the standard definition of unification.
function given in the previous section. Later, after all unification is complete (including the term that might contain a set), these recursive replacements are made.

The algorithm for computing set unifiers is divided into four phases. Each phase of the algorithm will be described using the example sets \(s \) and \(t \) given above.

In the first phase, \textbf{findSetUnifiers}, each \(s_i \in s \) is unified with each \(t_j \in t \), and put into a two-dimensional array (shown below as a table), where each row \(j \) represents a term from \(t \) (see the first row) and each column \(i \) represents a term from \(s \) (see the first column). A nil entry indicates that the two terms do not unify.

<table>
<thead>
<tr>
<th></th>
<th>arb3</th>
<th>Alex</th>
</tr>
</thead>
<tbody>
<tr>
<td>arb2</td>
<td>{arb3/arb2}</td>
<td>{Alex/arb2}</td>
</tr>
<tr>
<td>arb1</td>
<td>{arb3/arb1}</td>
<td>{Alex/arb1}</td>
</tr>
<tr>
<td>(caregiver arb2)</td>
<td>{(caregiver arb2)/arb3}</td>
<td>nil</td>
</tr>
</tbody>
</table>

In phase two, \textbf{subset-combination}, all \(|s| \) combinations of rows from the two-dimensional array (resulting from the first phase) are found.

\[
\begin{align*}
((\{arb3/arb2\} \{Alex/arb2\}) \{arb3/arb1\} \{Alex/arb1\}) \\
((\{arb3/arb2\} \{Alex/arb2\}) \{(caregiver arb2)/arb3\} \text{nil}) \\
((\{arb3/arb1\} \{Alex/arb1\}) \{(caregiver arb2)/arb3\} \text{nil})
\end{align*}
\]

The result of this is \(|s| \) different row combinations. The next phase is \textbf{extract-combinations}: for each row combination, the \(|t| \) possible combinations of the substitutions are identified, where a single substitution comes from each element of the row combination.

\[
\begin{align*}
((\{arb3/arb2\} \{Alex/arb1\}) \\
(\{Alex/arb2\} \{arb3/arb1\}) \\
(\{arb3/arb2\} \text{nil}) \\
(\{Alex/arb2\} \{(caregiver arb2)/arb3\}) \\
(\{arb3/arb1\} \text{nil}) \\
(\{Alex/arb1\} \{(caregiver arb2)/arb3\}))
\end{align*}
\]

Finally, any of the above that have a "nil" list entry may be safely ignored, since they do not satisfy all the constraints of the smaller set. For the ones that remain, the unifiers for the variables are combined, and the valid results are returned.

\{Alex/arb1, arb3/arb2\}
4.4 Match

The match operation makes use of the above methods for performing unification, and also checks unifying terms for proper type and subsumption relationships. When a new term, \(t_i \), is added to the knowledge base, it is unified against all other terms in the KB using the term trees. As discussed in Section 4.2 for every \(t_j \) that \(t_i \) unifies with, the result of unification is two substitutions, \(\sigma_i \) and \(\sigma_j \).

Unification is bi-directional, but the channels being built are directed. Remember channels are directed, since the terms they connect should not only unify, but have proper subsumption and type relationships, which are directional operations. Subsumption and type relations allow more specific propositions to send instances to less specific ones. For example, instances of the arbitrary albino elephant should be shared with terms making use of the arbitrary elephant (using subsumption) or the arbitrary animal (using the type relation). Once \(t_i \) and \(t_j \) have unified, it must be determined in which direction(s) (if any) their substitutions are compatible in their subsumption relationship and in type.

Definition 4.3. There are three subsumption relationships between quantified terms:

1. an arbitrary, \(\text{arb}_i \), subsumes another, \(\text{arb}_k \), if \(\forall r_{ij} \in R(\text{arb}_i), \exists r_{ki} \in R(\text{arb}_k) \) such that \(r_{ij} \) matches \(r_{ki} \),
2. an arbitrary, \(\text{arb}_i \), subsumes an indefinite, \(\text{ind}_k \), if \(\forall r_{ij} \in R(\text{arb}_i), \exists r_{ki} \in R(\text{ind}_k) \) such that \(r_{ij} \) matches \(r_{ki} \), and
3. an indefinite, \(\text{ind}_i \), subsumes another, \(\text{ind}_k \), if \(\forall r_{kj} \in R(\text{ind}_k), \exists r_{li} \in R(\text{ind}_i) \) such that \(r_{kj} \) matches \(r_{li} \).

That is, more specific terms may share their instances with less specific ones. If \(t_i \) and \(t_j \) unify, and for each substitution pair \(t_l/v_l \in \sigma_i \), \(t_l \) has type equal or lower than \(v_l \), and if \(t_l \) is a quantified term, \(v_l \) subsumes \(t_l \), then we call \(t_i \) an originator, and \(t_j \) a destination, and add the 4-tuple \(< t_i, t_j, \sigma_i, \sigma_j >\) to the set of matches to return. \(\sigma_i \) and \(\sigma_j \) are called the originator bindings and destination bindings, respectively. If \(t_i \) and \(t_j \) unify and for each substitution pair \(t_l/v_l \in \sigma_j \), \(t_l \) has type equal or lower than \(v_l \), and if \(t_l \) is
a quantified term, v_l subsumes t_i, then we call t_j an originator, and t_i a destination, and add the 4-tuple $<t_j, t_i, \sigma_j, \sigma_i>$ to the set of matches to return. σ_j and σ_i are called the originator bindings and destination bindings, respectively. So, 0, 1, or 2 4-tuples are the result of the process, from which channels may be constructed.
Chapter 5

Communication within the Network

The results of the match process are used to create some of the channels in the graph. Channels are a pre-computation of every path inference might take. We call the node the channel starts at the originator, and that which it ends at the destination. Each node has channels to every node that it can derive and to every node that can make use of inference results that the originator has derived. Messages are sent through the channels. Messages come in several types, and either communicate newly inferred knowledge (inference messages) or control inference operations (control messages).

This chapter begins by discussing channels and messages in detail (Sections 5.1 and 5.2). Since channels may be conceived of as a rather static structure, issues of static vs. dynamic processing are outlined in Section 5.3. Related to this is the issue of unasserting propositions, finally discussed in Section 5.4.

5.1 Channels

In addition to the originator and destination, each channel has a type and contains three structures — a valve, a filter, and a switch. Valves control the flow of inference; filters discard inference messages that are irrelevant to the destination; and switches adjust the variable context of the substitutions that inference messages carry from that of the originator to that of the destination.

There are three types of channels — i-channels, g-channels, and u-channels. I-channels are meant to carry messages that say “I have a new substitution of myself you might be interested in”, and u-channels carry messages that say “you or your negation have been derived with the given substitution.” G-channels are i-channels, but used only within generic terms.
Definition 5.1. A channel is a 6-tuple $< o, d, t, v, f, s >$, where o is the originator, d is the destination, t is the type, v is the valve, f is the filter, and s is the switch.

5.1.1 Valves (Version 1)

A valve allows or prevents messages from passing the channels originator onward to the filter, switch, and destination. We will begin by discussing an initial version of valves, sufficient for performing inference, which will be referred to as a valve$_1$ for clarity. Later, once some preliminaries are discussed, the implemented version of valves will be presented.

Definition 5.2. A valve$_1$ is a pair $< (\text{open}|\text{closed}), wq >$ where the first position indicates whether the valve is opened or closed, and wq is a waiting queue.

When an inference message is submitted to a channel, it first reaches the valve$_1$. The valve$_1$, depending on whether it is open or closed, allows the message to pass or prevents it from doing so. If a reached valve$_1$ is closed, the message is added to that valve$_1$'s waiting queue. When a valve$_1$ is opened, the items in the waiting queue are sent on to the filter, then to the switch.

5.1.2 Filters

A filter serves to stop messages with irrelevant substitutions from flowing through a channel. The filter ensures that the incoming message's substitution is relevant to d by ensuring that, for every substitution pair ft/y in the destination bindings (from the match process described in the last chapter), there is a substitution pair st/y in the passing message substitution such that either $ft = st$ or st is a specialization of ft, determinable through one-way pattern matching. If a message does not pass the filter, it is discarded.

5.1.3 Switches

Switches change the substitution’s context to that of the destination term. The switch applies the originator binding substitution to the term of each pair in the passing message substitution. This adjusts the substitution to use quantified terms required by the destination. The updated substitution is stored in the passing message.
5.1.4 Channel Locations

The previous chapter discussed the match process in detail, and it should now be clear where channels from that process are built. All channels from the match operation are i-channels, since they involve the communication of new substitutions for the originator, which the destination may be interested in.

Channels are built in several other locations as well: within deductive rules, within generic terms, and within quantified terms. Each of these channels is somewhat simpler than those created from the match process, as their filters and switches are essentially no-ops.

Within deductive rules, i-channels are built from each antecedent to the node for the rule itself, and u-channels are built from the rule node to each consequent. This allows the antecedents to inform the rule of newly satisfying substitutions, and it allows the rule node to send substitutions produced when the rule fires (discussed further in the next chapter) to its consequents. Note that some deductive rules such as andor and thresh do not have well-defined antecedents and consequents. Instead, every argument of those connectives may act as either antecedent or consequent, and channels are created accordingly.

A generic term, g, is defined recursively as a term that immediately dominates one or more arbitrary terms a_1, \ldots, a_n, or one or more other generic terms, g_1, \ldots, g_m. Each a_i and g_k has an outgoing g-channel to g. This allows substitutions to begin at the arbitrary terms, and be built up successively as higher level generic terms are reached.

Arbitrary terms have i-channels from each restriction to the arbitrary itself. This will allow arbitrary terms to find instances of themselves through the combination of substitutions from terms matching each restriction (discussed further in the next chapter). Query terms are treated similarly to arbitrary terms. Each indefinite term has incoming g-channels from each arbitrary term that it depends on.

5.2 Messages

Messages of several types are transmitted through the inference graph’s channels, serving two purposes: relaying derived information and controlling the inference process. A message can be used to relay the information that its origin has a new asserted or negated substitution instance (an i-infer or g-infer message), or that it has found a substitution for the destination to now be asserted or negated (u-infer). These messages all flow forward through the graph. Other messages flow backward through the graph controlling inference by affecting the channels: backward-infer messages open them (possibly only partially), and cancel-infer messages close them (again, possibly only partially). i-infer, g-infer, and u-infer
messages are called inference messages. **backward-infer** and **cancel-infer** messages are control messages.

Definition 5.3. A message is an 11-tuple:

\[< \text{priority}, \text{taskid}, \text{orig}, \text{subst}, \text{type}, \text{pos}, \text{neg}, \text{flaggedNS}, \text{support}, \text{true}?, \text{fwd}? > \]

where:

- **priority** is the priority of the message (discussed further in Chapter 7);
- **taskid** says for which inference task this message was created (again, discussed further in Chapter 7);
- **orig** is the originator of the message;
- **subst** is a substitution;
- **type** is the type of message;
- **pos** and **neg** are the number of known true (“positive”) and negated (“negative”) antecedents of a rule, respectively;
- the **flaggedNS** is the **flagged node set**, which contains a mapping from each antecedent with a known truth value to its truth value;
- **support** is the set of support for the assertional statuses in the \(fNS \) to hold;
- **true?** indicates whether the message regards a true or negated term; and
- **fwd?** indicates whether this message is part of a forward inference process.

Each type of message performs a different task in the IG. The next several subsections provide further details on each type of message.

5.2.1 i-infer

An **i-infer** message is sent along a node’s outgoing i-channels, relaying a newly found substitution and assertional status, when the originator node determines that the destination may be interested. The sent

1 Some other publications on IGs ([Schlegel and Shapiro 2013a,b](#), [Schlegel 2013](#), [Schlegel and Shapiro 2014a](#)) have discussed Rule Use Information as a separate structure from a Message. We have since combined the two.
i-infer message contains a support set that consists of every node used in deriving the message’s substitution. These messages optionally can be flagged as part of a forward inference operation, in which case they ignore the state of any valve they reach. The priority of an i-infer message is one more than that of the message that caused the originator to produce the i-infer message. Chapter 7 will discuss why this is important.

5.2.2 g-infer

Messages that pass along g-channels are g-infer messages. These messages are differentiated from i-infer messages only in that they communicate satisfying substitutions between quantified terms and generic terms, and between pairs of generic terms.

5.2.3 u-infer

Rule nodes that have just learned enough about their antecedents to fire send u-infer messages to each of their consequents, informing them of what their new assertional status is — either true or false — along with a substitution to instantiate any generic terms in the consequents. As with i-infer messages, u-infer messages contain a support set, and can be flagged as being part of a forward inference operation, and have a priority one greater than the message that preceded it.

5.2.4 backward-infer

When it is necessary for the system to determine whether a node can be derived, backward-infer messages are used to open the valves in all incoming channels to that node. These messages set up a backward inference operation by passing backward through channels and, at each node they reach, opening all incoming channels to that node. The priority of these messages is lower than any inference tasks that may take place. This allows any messages waiting at the valves to flow forward immediately and begin inferring new formulas towards the goal of the backward inference operation.

5.2.5 cancel-infer

Inference can be canceled either in whole by the user or in part by a rule that determines that it no longer needs to know the assertional status of, or find substitutions for, some of its antecedents. 2 cancel-infer

2For example a rule representing the exclusive or of a and b could tell b that it is true when it learns that a is false, or could tell b that it is false when it learns that a is true.

3We recognize that this can, in some cases, prevent the system from automatically deriving a contradiction.
messages are sent from some node backward through the graph. These messages are generally sent recursively backward through the network to prevent unnecessary inference, closing incoming channels at each node they reach, and removing any backward-infer messages scheduled to re-open those same valves, halting inference. cancel-infer messages always have a priority higher than any inference task.

5.3 Static vs. Dynamic Processing

Channels can be thought of as a type of static analysis on the underlying propositional graph. Without any indication of how the network will be used (e.g., which queries will be asked, which propositions are believed), channels are created in the same way, at the time when nodes are created (i.e., before inference time).

This static analysis is sufficient for the inference graphs to perform inference properly, but does not ensure that all unnecessary inference is not performed. Consider the following simple knowledge base:

;; If a Person, x, is arrested at Time t, then x is held by the Police at time t.
(if
 (arrested (every x Person) (every t Time))
 (heldBy x Police t))

;; Azham, Mohammad, and Phillip have all been arrested.
(arrested Azham 1800)
(arrested Mohammad 1930)
(arrested Phillip 2125)

;; Azham, Mohammad, and Phillip are all persons.
(Isa Azham Person)
(Isa Mohammad Person)
(Isa Phillip Person)

;; 1800, 1930, and 2125 are all times.
(Isa 1800 Time)
(Isa 1930 Time)
Now, the user asks what time Azham was held by the police: (\texttt{heldBy Azham Police ?t}). The i-channel from (\texttt{heldBy x Police t}) to the query contains a filter: \texttt{Azham/(every x (Isa x Person))}, so irrelevant inferences will not reach the query. But, as backward infer flows backward, opening valves, messages from (\texttt{arrested Mohammad 1930}) and (\texttt{arrested Phillip 2125}) flow forward through the graph, and, when they reach the implication, inference is performed. This extra inference could not be stopped by static techniques alone.

A similar issue arises when propositions are not asserted in the context of interest. Inference graphs perform inference in all contexts simultaneously, and the results of queries are checked against the current user context. So, if (\texttt{arrested Azham 1930}) were not asserted to be true in the current user context, it would still be derived that (\texttt{heldBy Azham Police 1930}) in the context in which both the conditional and (\texttt{arrested Azham 1930}) hold.

The issue at play here is that the conditions relevant to the dynamic context do not flow backward through the graph, and the valves are either open or closed — there is no way to only partially open a valve to allow only terms matching some specific dynamic context to flow forward.

5.3.1 Valves (Version 2)

Given the need for both dynamic and static processing for efficient inference, valves may be redefined to make use of dynamic data carried in messages. This is the actual implementation used in IGs. Instead of being open or closed, valves maintain dynamic data about inference in \textit{valve selectors}.

\textbf{Definition 5.4.} A \textit{valve selector} is a pair $\langle \sigma, \phi \rangle$ where σ is a substitution and ϕ is a context (set of hypotheses).

Now re-define a valve as follows:

\textbf{Definition 5.5.} A valve is a pair $\langle v\text{set}, wq \rangle$, where $v\text{set}$ is a set of valve selectors, and wq is a waiting queue.

A message passes a valve if it passes any single valve selector within that valve. A message m passes a valve selector vs if $\exists s \in m_{\text{support}} \text{ st. } s \subseteq vs_\phi$ and $vs_\sigma \subseteq m_{\text{subst}}$. Messages that do not pass any existing valve selector are placed in the waiting queue. When a new valve selector is added, messages in the queue are examined; matching ones pass the valve and are removed from the queue.
5.3.2 A Revision of Control Messages

Because of the change to valves, control messages must also be modified to make use of valve selectors. Instead of opening valves, **backward-inf** er messages should install new valve selectors, and instead of closing valves, **cancel-inf** er messages should remove valve selectors.

When control messages pass backward through the graph, they must calculate a substitution appropriate for the addition or deletion of valve selectors. When a control message passes backward through a channel, σ is calculated, the substitution for the valve selector. It is calculated as follows:

$$\sigma = (\sigma' \cup \sigma_{dest}) \sigma_{orig},$$

where all variables substituted for are used in the channel originator.

where σ' is either \emptyset if the destination of the channel is the node that caused the control message to be spawned, otherwise it is the σ stored in the control messages subst slot. σ_{dest} and σ_{orig} are the destination and originator bindings used to create the channel being traversed. The resulting σ is stored in the messages subst slot, and a valve selector is either created or removed based on it.

5.4 Unasserting Propositions

Inference Graphs support the notion of disbelieving propositions after they have been believed. One case where this may happen is belief revision, though belief revision is outside the scope of this dissertation. Another is in the use of condition-action rules within an acting system, as can be seen in Chapter 8.

Perhaps the most obvious method for unasserting propositions would be the use of another type of message that could flow through the graph and perform, essentially, the opposite of inference. This is the strategy adopted by RETE networks when WMEs are removed from WM. RETE networks, of course, are completely static, and as we have discussed, IGs are hybrid. Tabled logic programs attempt to take a similar approach, but without great success.

The IG strategy for unasserting propositions is very simple: since every valve selector has a context associated with it, when a hypothesis is removed from a context, the affected valve selectors are updated. This immediately changes the terms that the affected valve selectors allow to pass in the future, since a valve selector only allows a proposition to pass should it have an origin set that is a subset of the hypotheses of the context for that valve selector. This resolves one of the major issues with ACGs, that they would need to be destroyed whenever a proposition was unasserted, since the internal structures were not informed of the changes to the context.
For example, consider a channel from \(P \text{arb1} \) to \(P \text{arb2} \) that contains a valve selector whose substitution is empty (meaning there is no restriction on substitution) and whose context contains only the hypothesis \(P \text{arb1} \). If the substitution \(\{a/\text{arb1}\} \) with the origin set \(P \text{arb1} \) were generated at the origin of the channel, it would pass the valve selector. If \(P \text{arb1} \) were first unasserted from the context, it would not, as the origin set \(P \text{arb1} \) would no longer be a subset of the valve selector’s context.

5.5 Example

To better illustrate the creation of channels and their use in a combined static/dynamic inference system, an example follows in which channels are created for a KB, and appropriate valve selectors are built during backward inference. The resulting inference will not be shown, as that is the topic of the next chapter.

Consider the following knowledge base:

;;; Fido and Lassie are dogs.
(Isa Fido Dog)
(Isa Lassie Dog)

;;; Going outside and barking at the door are actions.
(Isa goOutside Action)
(Isa barkAtDoor Action)

;;; Fido and Lassie both like going outside.
(likesDoing Fido goOutside)
(likesDoing Lassie goOutside)

;;; Every dog that likes doing something, wants to do that thing.
(wantsTo (every d Dog) (every a Action (likesDoing d a)))

;;; If a dog wants to go outside, it barks at the door.
(if (wantsTo (every d Dog) goOutside)
 (performs d barkAtDoor))

This knowledge base is meant to mean that Fido and Lassie are dogs, and that going outside, and barking
at the door are actions. Fido and Lassie both like to go outside. Every dog who likes performing some action wants to perform that action. If a dog wants to perform the action of going outside, that dog barks at the door.

The question is now posed to the system, what action does Fido perform? That is, \((\text{performs Fido} \ (?x \text{ Action}))\). Of course, we can see that the answer is \text{barkAtDoor}, though the actual inference won’t be discussed here, as some concepts have not yet been introduced. Using channels and dynamic reasoning contexts, the IGs will not derive irrelevant intermediate facts, such as the fact that Lassie barks at the door.

![IG Diagram](image)

Figure 5.1: The IG for the knowledge base meant to mean that Fido and Lassie are dogs (\(\text{wft1}\) and \(\text{wft2}\), respectively), and going outside is an action (\(\text{wft3}\)). Fido and Lassie both like to go outside (\(\text{wft6}\) and \(\text{wft5}\)). Every dog who likes performing some action, wants to perform that action (\(\text{wft10}\)). If a dog wants to perform the action of going outside, that dog barks at the door (\(\text{wft13}\)). Channels are drawn with dotted lines as indicated by the key. Some of the substitutions for filters, switches, and valve selectors (abbreviated \(\text{vs}\)) are detailed in the inset. See the text for a more detailed description of this figure.

The IG for this KB is shown in Figure 5.1. Several relations are used in this example which have not
previously been described. As described in [2.6.3] edges of the IG are labeled with semantic roles. The
Isa relation is meant to mean that something is a member of a class, represented (Isa member class),
where the italicized entries represent the graph edge labels, in the appropriate argument position of the
logical representation. So, (Isa Fido Dog) means that Fido is a member of the class Dog. The likesDoing
relation means some liker likes doing something, represented (likesDoing liker likes). The wantsTo relation
is similar, having a wanter, and something that wanter wants to do, (wantsTo wanter wantsto). Finally the
performs relation means that some actor performs some action, represented as (performs actor action).

In the figure, wft1 and wft2 represent the facts that Lassie and Fido are dogs, respectively. arb1 is the
arbitrary dog (because of the restriction wft7), and arb2 is the arbitrary action the arbitrary dog likes to
do (because of restrictions wft8 and wft9). goOutside and barkAtDoor are both actions, as represented
by wft3 and wft4, respectively. Lassie and Fido both like going outside is represented by wft5 and wft6.
wft10 represents the generic term that every dog (arb1) that likes doing something (arb2) wants to do that
thing. The rule that if a dog wants to go outside, then it barks at the door is represented by wft13, with
the antecedent being wft11, and consequent wft12. wft14 is the query asking what Fido is doing.

The lone deduction rule, wft13, has an i-channel drawn from its antecedent (wft11) to the rule node,
and a u-channel from the rule node to its consequent (wft12). Generic terms that make use of the arbitrary
terms arb1 and arb2 have g-channels drawn from the arbitrary to the generic term itself (e.g., arb1 to wft9).
I-channels are drawn in the appropriate directions between matching terms, such as wft10 to wft11, and
wft12 to wft14.

This IG assumes that backward inference has already been performed on the query. Detailed in the inset,
are some channels' filter, switch, valve selector substitution. The context of the valve selector is not shown.
Only i-channels created from the match process are detailed, as they are the only ones with non-empty filters
and switches.

The channel labeled 1 has the filter \{Fido/arb1\}, and switch \{barkAtDoor/qvar1\}, computed during
the match process. Since the incoming \(\sigma = {}\), the valve selector is equal to the filter, \{Fido/arb1\}. At the
channel labeled 2, the filter is \{goOutside/arb2\}, and the switch is empty. The valve selector is computed by
combining the incoming \(\sigma\) (which is the same as the one computed at channel 1) with the filter, applying the
switch (which is empty), and removing any substitutions for variables not in the originator (which doesn’t
matter here) so the valve selector is \{Fido/arb1, goOutside/arb2\}. This process continues as backward
inference continues. Channels labeled 1-5 will allow substitutions related to the query through. The channel
labeled 6 will not, since it requires Fido/arb1, and wft5 clearly has Lassie/arb1.

80
Chapter 6

Performing Inference

The nodes of the IG perform inference. Until now, our focus has been on the channels within the IG. A node performs inference by combining messages received on its incoming channels, determining if the received messages satisfy the constraints of the node, and, if so, sending messages along its outgoing channels.

Message combination occurs in several different types of nodes. Rule nodes combine messages from antecedents to determine if the rule may “fire,” reporting new derivations to its consequents. Arbitrary terms combine instances of their restrictions to find instances of themselves. Generic terms combine substitutions from each of their generic and arbitrary subterms to find instances of themselves. Indefinite terms produce partial instances of themselves by combining substitutions from their arbitrary dependencies.

Not all nodes need to combine messages. Some just act as relays. For example, the restrictions on an arbitrary receive substitutions from matching terms, and simply relay those substitutions to the arbitrary node. We’ll call nodes that combine messages combination nodes, and those that simply relay messages relay nodes.

6.1 Inference Graph Nodes

As discussed in Section 2.6.3, every term in the knowledge base is represented as a node in the graph. In that section, a node in the propositional graph was defined as a four-tuple, \(<id, upcs, downcs, cf>\), where \(id\) is the node identifier, \(upcs\) is the set of incoming edges, \(downcs\) is the set of outgoing edges, and \(cf\) is the caseframe used, if the term is molecular. The nodes of an IG are an extension of this:

Definition 6.1. An IG node is a 12-tuple,
where \(id, \) \(upcs, \) \(downcs, \) and \(cf \) are as defined in the propositional graph; \(ich, \) \(uch, \) and \(gch \) are outgoing channels of the corresponding type; \(inch \) are incoming channels; \(properties \) is the set of term properties discussed in Section 3.4. \(msgs \) is the set of messages received or created at the node; \(support \) is the node’s set of support; and \(fBR \) and \(fFwR \) are used for focused reasoning and discussed further in Section 6.4.3.

6.2 Message Combination

Combination nodes make use of the \(msgs \) part of the node, which is a cache used to maintain a complete set of messages that have arrived at, or been combined at, that node. Whenever a new message is added to the cache, it is combined with any messages already in the cache. Two messages may be combined if they are compatible — that is, if their substitutions and flagged node sets are compatible. We say that two substitutions, \(\sigma = \{ t_{\sigma_1}/v_{\sigma_1} \ldots t_{\sigma_n}/v_{\sigma_n} \} \) and \(\tau = \{ t_{\tau_1}/v_{\tau_1} \ldots t_{\tau_m}/v_{\tau_m} \}, \) are compatible if whenever \(v_{\sigma_i} = v_{\tau_j} \) then \(t_{\sigma_i} = t_{\tau_j} \), and that two flagged node sets are compatible if they have no contradictory entries (that is, no antecedent of the rule is both true and false).

Two messages that are compatible are combined in the following way. Let

\[
m_1 = < \text{priority}_1, \text{taskid}_1, \text{orig}_1, \text{subst}_1, \text{type}_1, \text{pos}_1, \text{neg}_1, \text{flaggedNS}_1, \text{support}_1, \text{true}_1 ?, \text{fwd}_1 ?>
\]

and

\[
m_2 = < \text{priority}_2, \text{taskid}_2, \text{orig}_2, \text{subst}_2, \text{type}_2, \text{pos}_2, \text{neg}_2, \text{flaggedNS}_2, \text{support}_2, \text{true}_2 ?, \text{fwd}_2 >
\]

where \(m_2 \) is the most recently received message. The combined message, \(m_3 \), combines most fields from \(m_1 \)
and m_2 as follows.

\[
m_3 = \langle \max(prioriry_1, priority_2),
 \text{nil},
 \text{nil},
 \text{merge} (\text{subst}_1, \text{subst}_2),
 \text{nil},
 \text{|posEntries} (\text{flaggedNS}_3),
 \text{|negEntries} (\text{flaggedNS}_3),
 \text{flaggedNS}_3,
 \cup_{SS} (\text{support}_1, \text{support}_2),
 \text{nil}
 \rangle >
\] (6.1)

Some fields in m_3 are made nil, to be later filled in as necessary. The combined flaggedNS, flaggedNS_3, is the addition of all entries from flaggedNS_2 to flaggedNS_1.

The message combination process happens within several different data structures, outlined in Section 6.2.1, to allow for maximal efficiency wherever possible. The result of the combination process is a set of new messages seen since just before the message arrived at the node. The newly created messages are added to the inference node’s cache, and examined to determine if the conditions of the combination node are met. If the message arriving already exists in the cache, no work is done. This prevents re-derivations, and can cut cycles.

The pos and neg portions of the messages in the new combined set are used to determine if the conditions of the combination node are satisfied. For a rule node, this determines whether the rule may fire. For example, for a numerical entailment rule to fire, pos must be greater than or equal to the i defined by the rule. For the non-rule-node combination nodes, this process determines if an instance has been found, by waiting until pos is equal to the number of required restrictions or subterms.

A disadvantage of this approach is that some rules are difficult, but not impossible, to implement, such as negation introduction and proof by cases. For us, the advantages in capability outweigh the difficulties of implementation.
6.2.1 Data Structures for Message Combination

6.2.1.1 P-Trees

Rule nodes for logical connectives that are conjunctive in nature can use a structure called Pattern Trees (or P-Trees) \cite{ChoiShapiro1992} to combine messages. The other types of combination nodes also use P-Trees to combine received instances from restrictions or subterms, since they are taken conjunctively.

A P-Tree is a binary tree generated from the antecedents of the rule. The leaves of the tree are each individual conjunct, and the parent of any two nodes is the conjunction of its children. The root of the tree is the entire conjunction.

When a message is added to a P-Tree, it enters at the leaf for the antecedent that the message came from. The P-Tree algorithm then attempts to combine that message with another one contained in the current node’s sibling. A message resulting from a successful combination (using the compatibility check described above) is promoted to the parent node, and the process recurs until no more combining can be done, either because not enough information is present, or the root node is reached. When a message reaches the root node of a P-Tree it is a successful match of the rule node’s antecedents.

The P-Tree concept is closely related to that of the beta network of a RETE net \cite{Forgy1982}, which is a binary tree for examining compatibility of tokens used in production systems.

6.2.1.2 S-Indexes

Rules that are non-conjunctive in nature, and that use the same variables in each antecedent, can combine messages using a Substitution Index, or S-Index \cite{ChoiShapiro1992}. This index is a hash-map that uses as a key the set of variable bindings, and maps to the appropriate message. Given that the same variables are used in each antecedent, each compatible antecedent instance will map to the same message, which can then be updated and stored again, until enough positive and negative instances have been found.

6.2.1.3 Default Approach

The default approach to combining messages is to compare an incoming message with every existing message and attempt to combine them. This can result in a combinatorial explosion in the number of messages, and should be avoided whenever possible.

This method is most easily comparable to the RETE Beta node operation, but since the beta node has two and only two inputs, that node can maintain two memories — one for the tokens received from each

\footnote{S-Indexes do not support the compatibility check above, only equality — correcting this is a topic for future work.}
side. This allows the beta node to only combine tokens with appropriate opposite-memory tokens. Instead of maintaining a memory for each input, we can easily filter out which messages we know are not compatible since they came from the same antecedent based on the contents of their flagged node set.

6.2.2 Combination Rules

Rule nodes fire when appropriate conditions are met, based on messages received on incoming i-channels, and the results of inference are sent on outgoing u-channels. The firing conditions for rule nodes are detailed in Section 3.1 on the implemented logic of CSNePS.

6.2.2.1 Arbitrary Instantiation

An arbitrary term, a, has one or more restrictions, r_1, \ldots, r_n that must be satisfied for an instance of the arbitrary to be determined. Each r_i is a generic term that is always true since they contain the arbitrary term itself. For this reason, each of the restrictions is asserted in the base context and has the property of being AnalyticGeneric.

As terms are added to the KB that unify with a restriction, substitutions are sent to that restriction. We build i-channels from each r_i to a, along which these substitutions flow. The arbitrary term itself is responsible for checking compatibility and combining each received substitution. When a combined substitution is created from substitutions received from each r_i, the new substitution is sent out each of a's i-channels.

6.2.2.2 Generics

A generic term is a term that immediately dominates one or more arbitrary terms a_1, \ldots, a_n, and may also dominate one or more other terms, t_1, \ldots, t_m. Each a_i has an outgoing i-channel to the generic term G. As instances are discovered by a_i, substitutions for those instances are sent to G via the i-channel from a_i to G. G combines these substitutions should they be compatible. G can be thought of as a rule, where each of a_i is an antecedent, and the application of s to G is the consequent.

Unlike arbitraries where all restrictions must be satisfied for an instance to be made, generics require instances for only as many compatible subterms as are available. For example, instances of $(\text{hasSchool (every Child) (every Day)})$ may be $(\text{hasSchool (every Child) Monday})$, $(\text{hasSchool Jenna Thursday})$, and $(\text{hasSchool Adam (every Day)})$.
6.3 Closures

We have discussed in Chapter 3 the rewrite rules surrounding negated closures. A much more subtle reasoning case arises when negations are not involved. Quine tackled this issue in 1956 (Quine, 1956). Consider the ambiguous sentence “Ralph believes that someone is a spy.” This could be interpreted as either of the following two sentences:

1. (Believes Ralph (Spy (some x (Isa x Person)))))

2. (Believes Ralph (close x (Spy (some x (Isa x Person))))))

Proposition 1 means that “There is someone (specific) whom Ralph believes is a spy”, while proposition 2 means that “Ralph believes that there are spies”. Proposition 1 is the de re interpretation of the ambiguous sentence, meaning literally “about the thing”, or in this case meaning picking out some individual who is the spy. Proposition 2 is the de dicto interpretation, meaning literally “about what is said,” or in this case meaning that (Spy (some x (Isa x Person))) is satisfied, but without picking out someone specific. This concept extends to terms with closed arbitrary terms as well. Consider the following:

3. (Believes Ralph (Spy (every x (Isa x Person)))))

4. (Believes Ralph (close x (Spy (every x (Isa x Person))))))

Proposition 3 means that Ralph believes that each person (individually) is a spy (the de re interpretation). Proposition 4 means that Ralph believes that everyone is a spy (the de dicto interpretation). Given some specific person, for example (Isa Alex Person), only the proposition 3 can can derive that Ralph believes that Alex is a spy. This is because in proposition 4 Ralph may have no beliefs about Alex whatsoever (Ralph may not even know of Alex!). During inference, this is accomplished by not allowing substitutions for closed variables to be passed on to other terms which have the closure as its subterm.

The de re/de dicto distinction has no special effect on the match process — a closure is built just like any other molecular term and can be matched as such. For example, it is possible to ask: “Who believes that someone specific is a spy?” That is,

(ask '(Believes ?x (Spy (some y (Isa y Spy))))).

This would not match persons who simply believe that there are spies (e.g., both propositions 2 and 4). This is a question the FBI, for instance, might be very interested in asking.
6.4 Modes of Inference

6.4.1 Forward Inference

Forward inference derives everything that follows from a single new belief. We speak of propositions being asserted with forward inference, meaning that the term is hypothesized in the current context and that the forward inference procedure is performed. The forward inference used in IGs is different from the concept of full-forward inference, where everything that is derivable is derived from every new belief (similar to production systems).

In inference graphs, when a term, t, is asserted with forward inference, a message m for the new belief of t is created and sent along t’s outgoing channels as usual, except with the modification that $fwd? = true$. When a message with $fwd? = true$ reaches a valve, it automatically continues through the channel, regardless of whatever valve selectors might be present. Messages that are derived from m inherit the property that $fwd? = true$, allowing inference to continue flowing forward. Inference stops when no further derivations from t can be performed.

Sections 6.4.3.2 and 6.4.3.3 discusses ways in which inference may be continued given new knowledge.

Consider a small KB containing facts about what certain animals eat. Birds eat grain, cows eat plants, and lions eat animals. It’s also known that grains are plants and that antelopes are animals. This KB is expressed in the syntax of our logic below:

;;; The arbitrary Grain is a Plant.
(Isa (every Grain) Plant)

;;; The arbitrary Bird eats the arbitrary Grain.
(eats (every Bird) (every Grain))

;;; The arbitrary Cow eats the arbitrary Plant.
(eats (every Cow) (every Plant))

;;; The arbitrary Lion eats the arbitrary Animal.
(eats (every Lion) (every Animal))

;;; The arbitrary Antelope is an Animal
With forward inference, it is now asserted that the arbitrary wheat is a grain, \((\text{Isa (every Wheat) Grain})\). It is then derived that the arbitrary wheat is a plant (since all grains are plants), and that the arbitrary cow eats wheat (since cows eat all plants, and wheat is a plant), and that every bird eats wheat (since wheat is a grain, and birds eat all grains). Even though it is derivable that the arbitrary lion eats antelope (since antelope are animals, and lions eat all animals), it is not derived, since the fact that antelope are animals was not asserted with forward inference. Likewise, since it was not asserted with forward inference that all grains are plants, it is not derived that cows eat all grains. The trace output\(^2\) of running this example in CSNePS is shown below.

\[
=> (\text{assert '(Isa (every x Grain) Plant)})
\]
\[
wft2!: (\text{Isa (every x (Isa x Grain)) Plant})
\]
\[
=> (\text{assert '(eats (every x Bird) (every y Grain))})
\]
\[
wft4!: (\text{eats (every x (Isa x Bird)) (every x (Isa x Grain))})
\]
\[
=> (\text{assert '(eats (every x Cow) (every y Plant))})
\]
\[
wft7!: (\text{eats (every x (Isa x Cow)) (every y (Isa y Plant))})
\]
\[
=> (\text{assert '(eats (every x Lion) (every y Animal))})
\]
\[
wft10!: (\text{eats (every x (Isa x Lion)) (every y (Isa y Animal))})
\]
\[
=> (\text{assert '(Isa (every x Antelope) Animal))}
\]
\[
wft12!: (\text{Isa (every x (Isa x Antelope)) Animal})
\]
\[
=> (\text{assert! '(Isa (every x Wheat) Grain))}
\]
\[
wft14!: (\text{Isa (every x (Isa x Wheat)) Grain})
\]

Since \(wft2!: (\text{Isa (every x (Isa x Grain)) Plant})\)
and \(wft14!: (\text{Isa (every x (Isa x Wheat)) Grain})\)

I derived: \(wft15!: (\text{Isa (every x (Isa x Wheat)) Plant})\) by \text{generic-instantiation}.

Since \(wft4!: (\text{eats (every x (Isa x Bird)) (every x (Isa x Grain)))}\)
and \(wft19!: (\text{Isa (every x (Isa x Wheat)) Grain})\)

I derived: \(wft16!: (\text{eats (every x (Isa x Bird)) (every x (Isa x Wheat))})\)

\(^2\)All traces in this dissertation have been adjusted for readability, but represent the true reasoning result of running the example in CSNePS.
Since wft7!: (eats (every x (Isa x Cow)) (every y (Isa y Plant)))
and wft15!: (Isa (every x (Isa x Wheat)) Plant)
I derived: wft17!: (eats (every x (Isa x Cow)) (every x (Isa x Wheat)))
by generic-instantiation.

Figure 6.1: A knowledge base containing the facts that every grain is a plant (wft2), every bird eats every grain (wft4), every cow eats every plant (wft7), every lion eats every animal (wft10), and antelope are animals (wft11). Then, the fact that wheat is a grain (wft14) is asserted with forward inference. Channels are shown as dotted lines according to the key (see the text). Channels drawn with heavier weight indicate paths taken during forward inference. The inference itself is explained in the text.

Figure 6.1 shows the IG for this example. To assist in understanding the figure, the complete set of terms in the graph is listed below.

wft1!: (Isa (every x Grain) Grain)
wft2!: (Isa (every x Grain) Plant)
wft3!: (Isa (every x Bird) Bird)
wft4!: (eats (every x Bird) (every y Grain))
wft5!: (Isa (every x Cow) Cow)
wft6!: (Isa (every x Plant) Plant)
wft7!: (eats (every x Cow) (every y Plant))
wft8!: (Isa (every x Lion) Lion)
wft9!: (Isa (every x Animal) Animal)
wft10!: (eats (every x Lion) (every y Animal))
wft11!: (Isa (every x Antelope) Antelope)
wft12!: (Isa (every x Antelope) Animal)
wft13!: (Isa (every x Wheat) Wheat)
wft14!: (Isa (every x Wheat) Grain)
arb1: (every x Grain)
arb2: (every x Bird)
arb3: (every x Cow)
arb4: (every x Plant)
arb5: (every x Lion)
arb6: (every x Animal)
arb7: (every x Wheat)
arb8: (every x Antelope)

In this example one new relation is used: (eats eater eats). In this graph, arb1 is the arbitrary grain (because of its restriction, wft1, indicated by a dotted arc labeled “restrict.”), arb2 is the arbitrary bird, arb3 is the arbitrary cow, arb4 is the arbitrary plant, arb5 is the arbitrary lion, arb6 is the arbitrary animal, arb7 is the arbitrary wheat, and arb8 is the arbitrary antelope. wft2 indicates that the arbitrary grain is a member of the class plant. wft12 indicates that the arbitrary antelope is a member of the class animal, and wft14 indicates that the arbitrary wheat is a member of the class grain. The eats relations are represented by wft4, wft7, and wft10.

G-channels and i-channels are shown on the graph according to the key. There are no u-channels in this example. G-channels have been built from restrictions to arbitraries, and from arbitraries to generic terms that contain them. I-channels are built between matching terms: from wft14 to wft1, from wft2 to wft6,
and from \texttt{wft12} to \texttt{wft9}. The valve selectors are unimportant for this example, as forward inference ignores them. Only the i-channels in the graph have filters or switches that are non-empty, as they are the channels built because of the match process. The channel from \texttt{wft14} to \texttt{wft1} has the switch \{Wheat/\texttt{arb1}\}, the channel from \texttt{wft2} to \texttt{wft6} has the switch \{arb4/arb1\}, and the channel from \texttt{wft12} to \texttt{wft9} has the switch \{Antelope/arb6\}. None of the channels in this graph have filters. The channels shown with heavier weight lines in the graph indicate the flow of messages when \texttt{wft12} is added with forward inference.

To more completely show the operation of the system, the messages sent during inference are described below. Messages will be shown in the following format:

\[
<\texttt{wftOrig} - X - \sigma(neg)? \rightarrow \texttt{wftDest}>
\]

where \texttt{wftOrig} is the originator of the message; \texttt{wftDest} is the destination; \texttt{X} is one of \texttt{i}, \texttt{u}, or \texttt{g} standing for the type of message, \texttt{i-infer}, \texttt{u-infer}, or \texttt{g-infer}; \sigma\texttt{ is the substitution; and (neg) indicates the communicated instance is a negative instance.}

1. \texttt{<wft14!−i−{Wheat/arb1}→wft1!>}
2. \texttt{<wft1!−g−{Wheat/arb1}→arb1>}
3. \texttt{<arb1−g−{Wheat/arb1}→wft4!>}
4. \texttt{<arb1−g−{Wheat/arb1}→wft2!>}
5. \texttt{<wft2!−i−{Wheat/arb4}→wft6!>}
6. \texttt{<wft6!−g−{Wheat/arb4}→arb4>}
7. \texttt{<arb4−g−{Wheat/arb4}→wft7!>}

After step 3 it is derived that birds eat wheat. After step 4 it is derived that wheat is a plant. After step 7 it is derived that cows eat wheat.

6.4.2 Backward Inference

Backward inference attempts to derive some query (goal, desired result) given the knowledge contained in the IG. As we have discussed previously, the inference graph’s channels point in the direction inference might occur. It seems obvious, then, that the query might be derived by sending \texttt{backward-infer} messages backward, and therefore allowing inference messages to flow forward. This is the strategy IGs take.

When a query is issued by a user, it is added to the KB. From the query term, \texttt{backward-infer} messages flow backward along all incoming channels. \texttt{backward-infer} messages add new valve selectors to the valves
in the channels they flow through, allowing waiting messages relevant to the query to flow forward. When \textit{backward-infer} messages reach a node, they flow backward through its incoming channels, and so on.

Since channels may form a loop, a \textit{backward-infer} message only propagates backward if the node at the origin of a channel has not yet been reached.

When a derivation completes because of backward inference — either of the query, or of some term along the way to deriving the query — \textit{cancel-infer} messages propagate backward from that term, removing valve selectors that are now irrelevant. In this way, the IG does not waste time re-deriving terms.

It may not be possible to derive a term given the current knowledge base. Section 6.4.3.1 discusses how inference may be continued given new knowledge.

Consider the following KB, inspired by the counter-insurgence domain:

\begin{verbatim}
;; A person is arrested if and only if they are held by a another person
;; who is a corrections officer.
(iff
 (Arrested (every x Person))
 (heldBy x (some y (x) Person CorrectionsOfficer (notSame y))))

;; A person is detained if and only if they are held by another person.
(iff
 (Detained (every x Person))
 (heldBy x (some y (x) Person (notSame x))))

;; A person is either detained, on supervised release, or free.
(xor
 (Detained (every x Person))
 (onSupervisedRelease x)
 (Free x))

;; A person who is not free has travel constraints.
(hasTravelConstraints (every x Person (not (Free x))))

;; Azam is an arrested person.
\end{verbatim}
From this example KB, we’d like to reason that Azam has travel constraints. Here is an informal proof: since Azam has been arrested, he is held by some person who is a corrections officer, and therefore held by a person. Since he is held by a person who isn’t himself, he is detained, and therefore is not free. Since Azam is a person who is not free, he has travel constraints.

As in previous examples, there are several new relations used here. (Arrested arrested) represents an arrested person; (heldBy holder held) represents something (or someone) held by a holder; (Detained detained) represents someone who is detained; (onSupervisedRelease onSupervisedRelease) represents someone on supervised release; (Free Free) represents someone who is free; and (hasTravelConstraints hasTravelConstraints) represents someone with travel constraints. As before, the italicized arguments are used as edge labels in the IG.

Figure 6.2 shows the IG for this example, split into four sections for easier reading. Channels have been drawn as discussed throughout this dissertation, and according to the key below the graph. The complete set of terms in the graph is listed below.

wft1!: (Isa (every x Person) Person)
wft2: (Arrested (every x Person))
wft3!: (iff (Arrested (every x Person))
 (heldBy x (some y (x) Person CorrectionsOfficer (notSame y))))
wft4!: (Isa (some y (x) Person CorrectionsOfficer) CorrectionsOfficer)
wft5!: (Isa (some y (x) Person CorrectionsOfficer) Person)
wft6: (heldBy (every x Person)
 (some y (x) Person CorrectionsOfficer (notSame x)))
wft7: (Detained (every x Person))
wft8!: (Isa (some y (x) Person) Person)
wft9: (heldBy (every x Person) (some y (x) Person (notSame x))
 (notSame y)))
wft10!: (iff (Detained (every x Person))
 (heldBy x (some y (x) Person (notSame x))))
wft11: (onSupervisedRelease (every x Person))
wft12: (Free (every x Person))
Figure 6.2: The IG for the example, split into four segments for easier reading. The top IG segment contains propositions meant to mean that a person is arrested if and only if they are held by a another person who is a corrections officer (wft3) Azam is a person (wft18), and Azam is arrested (wft19). The second segment contains the rule that a person is detained if and only if they are held by another person (wft10). The third segment contains the rule that a person is either detained, on supervised release, or free (wft13), and the final segment contains the generic proposition that a person who is not free has travel constraints (wft17), along with the question of whether Azam has travel constraints (wft20). As in previous examples, channels are drawn according to the key at the bottom of the figure, and inference is explained in the text.

\[
\text{wft13!} : (\text{xor} \; \text{Detained} \; (\text{every} \; x \; \text{Person})) \\
\qquad \qquad (\text{onSupervisedRelease} \; x)
\]
(Free x))

\[wft14! : (\text{Isa} (\text{every} x \text{ Person (not Free)) Person}) \]

\[wft15 : (\text{Free (every} x \text{ Person (not Free)))}) \]

\[wft16! : (\text{not (Free (every} x \text{ Person (not Free))))}) \]

\[wft17! : (\text{hasTravelConstraints (every} x \text{ Person (not Free)))}) \]

\[wft18! : (\text{Isa Azam Person}) \]

\[wft19! : (\text{Arrested Azam}) \]

\[wft20 : (\text{hasTravelConstraints Azam}) \]

\[\text{arb1: (every} x \text{ Person}) \]

\[\text{arb2: (every} x \text{ Person (not Free))} \]

\[\text{ind1: (some} y (x) \text{ Person CorrectionsOfficer}) \]

\[\text{ind2: (some} y (x) \text{ Person}) \]

Listed below are the messages sent (and required) in the derivation of \text{wft20} — that Azam has travel restrictions — along with some explanation. Messages are shown in the same format as the previous section. We’ll assume backward inference has added valve selectors to the required channels as described. The flow of cancel-infer messages will not be discussed in detail, as it’s quite trivial: every time a deduction rule fires, that rule sends cancel-infer messages backward along its incoming channels that have valve selectors that can now be removed. This continues recursively until no further valve selectors can be removed.

Step 1: Deriving Azam is held by a corrections officer.

1. \[<\text{wft18!} -i-\{\text{Azam/arb1}\} \rightarrow \text{wft1!}> \]
2. \[<\text{wft1!} -i-\{\text{Azam/arb1}\} \rightarrow \text{arb1}> \]
3. \[<\text{arb1} -g-\{\text{Azam/arb1}\} \rightarrow \text{wft2}> \]
4. \[<\text{wft19!} -i-\{\text{Azam/arb1}\} \rightarrow \text{wft2}> \]
5. \[<\text{wft2} -i-\{\text{Azam/arb1}\} \rightarrow \text{wft3!}> \]
6. \[<\text{wft3!} -u-\{\text{Azam/arb1}\} \rightarrow \text{wft6}> \]

In the above, steps 1 and 2 propagate the assertion that Azam is a Person to \text{wft1} then \text{arb1}. Since \text{arb1} has only a single restriction, the message from step 2 is enough to satisfy it, and it sends the message in step 3 to \text{wft2} — an unasserted generic term in antecedent position of the iff rule \text{wft3!}. \text{wft2} collects the same substitution from \text{arb1} and \text{wft19!} (steps 3 and 4) and is therefore satisfied (Azam is arrested), sending a message to the iff rule \text{wft3!}. \text{wft3!} requires an instance of one of its antecedents to be true.
for its consequents to be true, so it sends a message to \textit{wft6}, indicating that an instance of \textit{wft6} is derived with the given substitution. This instance indicates Azam is held by a corrections officer.

Step 2: Deriving Azam is detained.

1. \(<\text{wft6} \rightarrow \{\text{Azam/arb1, ind1/ind2}\} \rightarrow \text{wft9}> \)
2. \(<\text{arb1} \rightarrow \{\text{Azam/arb1}\} \rightarrow \text{ind2}> \)
3. \(<\text{ind2} \rightarrow \{\text{Azam/arb1, ind3/ind2}\} \rightarrow \text{wft9}> \)
4. \(<\text{wft9} \rightarrow \{\text{Azam/arb1}\} \rightarrow \text{wft10}!> \)
5. \(<\text{wft10}! \rightarrow \{\text{Azam/arb1}\} \rightarrow \text{wft7}> \)

Since persons who are corrections officers are persons, \textit{wft6} relays its substitution to \textit{wft9}. \textit{wft9} collects compatible instances from \textit{wft6} and \textit{ind2}. Note that \textit{ind2} creates \textit{ind3}: \(\text{some x } (\text{Isa x Person}) \) \(\text{notSame x Azam} \), in step 3. These compatible substitutions satisfy \textit{wft9} — that Azam is held by a person — allowing for \textit{iff}-elimination in steps 4 and 5, deriving that Azam is detained.

Step 3: Deriving Azam is not free.

1. \(<\text{wft7} \rightarrow \{\text{Azam/arb1}\} \rightarrow \text{wft13}!> \)
2. \(<\text{wft13}! \rightarrow \{\text{Azam/arb1}\}(\text{neg}) \rightarrow \text{wft12}> \)

Since an instance of \textit{wft7} was found, its substitution is sent to \textit{wft13}! for \textit{xor}-elimination — producing the negation of \textit{wft12} with the substitution \(\{\text{Azam/arb1}\} \) in step 2. So, Azam is not free.

Step 4: Deriving Azam has travel restrictions.

1. \(<\text{wft18}! \rightarrow \{\text{Azam/arb2}\} \rightarrow \text{wft14}!> \)
2. \(<\text{wft14}! \rightarrow \{\text{Azam/arb2}\} \rightarrow \text{arb2}> \)
3. \(<\text{wft12} \rightarrow \{\text{Azam/arb2}\}(\text{neg}) \rightarrow \text{wft15}> \)
4. \(<\text{wft15} \rightarrow \{\text{Azam/arb2}\}(\text{neg}) \rightarrow \text{wft16}!> \)
5. \(<\text{wft16}! \rightarrow \{\text{Azam/arb2}\} \rightarrow \text{arb2}> \)
6. \(<\text{arb2} \rightarrow \{\text{Azam/arb2}\} \rightarrow \text{wft17}!> \)
7. \(<\text{wft17}! \rightarrow \{\} \rightarrow \text{wft20}> \)

Since Azam is a person, Azam satisfies one of the restrictions of \textit{arb2}, as determined in steps 1 and 2. Azam is not free, as found previously, so steps 3-5 recognize that Azam satisfies the second restriction.
of arb2. Since both the restrictions are satisfied, and the substitutions are compatible, wft17! is sent a message, which finally determines that wft20: Azam has travel constraints (steps 6-7). The CSNePS trace of this example is provided below.

(assert '('iff (Arrested (every x Person))
 (heldBy x (some y (x) Person
 (Isa y CorrectionsOfficer)
 (notSame x y))))

wft3!: (iff (Arrested (every x Person))
 (heldBy x (some y (x) Person
 (Isa y CorrectionsOfficer)
 (notSame x y))))

(assert '('iff (Detained (every x Person))
 (heldBy x (some y (x) Person
 (notSame x y))))

wft10!: (iff (Detained (every x Person))
 (heldBy x (some y (x) Person
 (notSame x y))))

(assert '(xor (Detained (every x Person))
 (onSupervisedRelease x)
 (Free x))

wft13!: (xor (Detained (every x Person))
 (onSupervisedRelease x)
 (Free x))

(assert '(hasTravelConstraints (every x Person (not (Free x))))

wft17!: (hasTravelConstraints (every x (Isa x Person) (not (Free x))))

(assert '(Arrested Azam))

wft19!: (Arrested Azam)

(assert '(Isa Azam Person))

wft18!: (Isa Azam Person)

(askifnot '(Free Azam))

97
Since: wft3!: (iff (Arrested (every x Person))
 (heldBy x (some y (x) Person
 (Isa y CorrectionsOfficer)
 (notSame x y))))
and: wft19!: (Arrested Azam)
and: wft18!: (Isa Azam Person)
I derived: wft24!: (heldBy Azam (some y () (Isa y Person)
 (Isa y CorrectionsOfficer)
 (notSame y Azam))) by iff-elimination

Since: wft10!: (iff (Detained (every x (Isa x Person)))
 (heldBy x (some y (x) (Isa y Person) (notSame y x))))
and: wft24!: (heldBy Azam (some y () (Isa y Person)
 (Isa y CorrectionsOfficer)
 (notSame y Azam)))
I derived: wft25!: (Detained Azam) by iff-elimination

Since: wft13!: (xor (Detained (every x (Isa x Person))) (onSupervisedRelease x) (Free x))
and: wft25!: (Detained Azam)
and: wft18!: (Isa Azam Person)
I derived: wft21!: (not (Free Azam)) by xor-elimination

6.4.3 Bi-directional Inference and Focused Reasoning

Bi-directional inference involves the combination of forward and backward inference procedures. Since the concepts are so closely related, it is best to combine the discussion of bi-directional inference with the discussion of focused reasoning.

Three types of focused reasoning are possible within a reasoning system: (1) focused forward reasoning, where all possible derivations are performed only from some specific new piece of knowledge, and continued upon the addition of relevant rules to the KB; (2) forward-in-backward focused reasoning, in which backward inference occurs to try to answer a query, and as new facts or rules relevant to the query are added to the

3 This section is adapted from Schlegel and Shapiro (2014b)
focused reasoning, which combines the previous two focused reasoning mechanisms.

Focused forward reasoning can be thought of as a kind of full-forward reasoning carried out only for a single asserted term. Full-forward reasoning is used most notably in production systems, and especially RETE networks. In a RETE net, all new information is filtered through a graph generated from a set of production rules. Nodes in the graph perform comparisons against accepted values, and combine pieces of compatible information together. When a piece of information reaches some leaf node in the graph, the rule that that leaf node represents is said to have matched. Full-forward inference produces the logical closure of a KB, but this is horribly wasteful in both time and space, so we favor doing this only when it’s explicitly asked for. In addition, RETE nets are limited — no new rules can be added once the system is started, which is not the case with IGs.

For reasoning systems capable of backward and bi-directional reasoning, the issue of focused reasoning is seldom tackled. SNePS 2’s ACG has a concept of “activating” a path of nodes when backward inference does not result in an answer. Later assertions meant to use this path must be asserted with forward inference (that is that term is asserted, and forward inference is carried out for that term only), and that forward inference process will use activated paths exclusively whenever they are available\cite{Shapiro et al. 1982}. The ACG is unable to later deactivate the path of nodes, so the conflation of the specialized forward inference using activated paths with the usual forward inference that ignores activated paths results in the need to occasionally throw the graph away as it could interfere with future inference tasks. In addition, activated paths are not extended backward when rules relevant to the reasoning task are added to the KB.

Inference Graphs are capable of performing forward, forward-in-backward, and backward-in-forward focused reasoning. They also allow the addition of new rules once the system is running, extending the focused region of the graph. In addition, they do not limit the functionality of the graph in other ways — other inference tasks can be performed as usual. In effect, our system has none of the limitations of RETE nets, or ACGs, while being more a more powerful, focused, reasoning tool.

6.4.3.1 Forward-In-Backward Focused Reasoning

The most common use of focused reasoning is when wondering about something that cannot yet be answered by the system using backward inference. For example, consider a knowledge base containing only (if P R) and (if P Q). Then, the user asks about R. Backward inference is set up (i.e., valves in the appropriate channels through (if P R) are opened) but no answer is forthcoming. Later, P is asserted (without forward
inference). Since the appropriate valves are already open, \(R \) is derived immediately, without needing to pose the question again. Note that \(Q \) is not derived, since valves involving \((\text{if } P \land Q)\) were not opened during backward inference.

In a somewhat more complex example from the counter-insurgence domain, consider the following initial knowledge base:

;;; Azam is a person
(Isa Azam Person)

;;; If a person is arrested, they are detained.
(if (Arrested (every x Person))
 (Detained x))

;;; A person is either detained or free.
(xor (Detained (every x Person))
 (Free x))

It is then asked by a user, “who are the detained persons?”: \((\text{Detained } ?x \ (\text{Isa } ?x \ \text{Person}))\). The top graph in Figure 6.3 shows the IG for this KB. The complete listing of terms in this graph are given below.

wft1: (Arrested (every x Person))
wft2: (Detained (every x Person))
wft3!: (if (Arrested (every x Person)) (Detained x))
wft4: (Free (every x Person))
wft5!: (xor (Detained (every x Person)) (Free x))
wft6!: (Arrested Azam)
wft8!: (Isa (every x Person) Person)
wft9!: (Isa Azam Person)
wft12!: (Isa (?x Person) Person)
wft20: (Detained (?x Person))

\(^4\)Prolog with tabling can suspend some paths of inference that cannot complete, and resume them if useful facts are added using a special function [Swift and Warren, 2012]. Focused reasoning is better, allowing automatic continuation of inference at the time when related terms are added to the KB in the normal way, and always persisting beyond the run time of a single inference procedure.
Figure 6.3: The IGs for the forward-in-backward focused reasoning example. Dashed lines represent channels, as described by the key below the graph. Restrictions have dotted arcs labeled “restrict”. Channels drawn with a heavier weight are involved in the illustrated inference process. In the top graph, it has been asked “who are the detained persons?” (wft20), and backward inference has commenced along the heavier-weight channels. In the bottom graph, the fact that Azam has been arrested, wft6!, is added to the KB, and flows through the already open channels, causing the rule wft3! to fire, and deriving the result that Azam is detained. More details of this figure are presented in the text.

qvar1: (?x Person)

In the graph, the query is shown as wft20, using a qvar — the quantified term for answering “wh-” style questions introduced in Section 3.5.1. The system recursively opens channels backward stemming from the query, but is unable to produce an answer, since none exists in the graph. The channels drawn with heavier weight are those that have been opened during backward inference. Notice that two routes
are tried — A person might be detained if they are not free, or a person might be detained if they have been arrested. At some later time, it is added to the KB that Azam was arrested: \(\text{(Arrested Azam)} \). The system knows that backward inference was in progress\(^5\) so upon the addition of the channel from \(\text{wft6!} \) to \(\text{wft1} \), backward inference is continued back to \(\text{wft6!} \), opening that channel. Since \(\text{wft6!} \) is asserted, this information immediately flows forward through the graph along open channels, and Azam is produced as an answer to the previously added query automatically. This is shown in the bottom half of Figure 6.3, where the heavier weight channels indicate the flow of messages from \(\text{wft6!} \) forward through the open channels. It’s important to note that while this KB entails that Azam is not free, it does not derive this fact in this case since the channels from \(\text{wft2} \) to \(\text{wft5!} \) and \(\text{wft5!} \) to \(\text{wft4} \) were not opened by the backward inference process. So, derivations that are irrelevant to reaching the desired conclusion are not performed — we say inference is focused toward the query.

As expected, CSNePS performs this inference using IGs accordingly, as in the below inference trace.

```
(assert '(Isa Azam Person))

wft9!: (Isa Azam Person)

(assert '(if (Arrested (every x (Isa x Person))) (Detained x)))

wft3!: (if (Arrested (every x (Isa x Person))) (Detained x))

(assert '(xor (Detained (every x (Isa x Person))) (Free x)))

wft5!: (xor (Free (every x (Isa x Person))) (Detained x))

(askwh '(Detained (?x (Isa ?x Person))))

nil

(assert '(Arrested Azam))

wft6!: (Arrested Azam)
```

Since \(\text{wft3!} \): (if (Arrested (every x (Isa x Person))) (Detained x)) and \(\text{wft9!} \): (Isa Azam Person) and \(\text{wft6!} \): (Arrested Azam)

I derived: \(\text{wft11!}: \) (Detained Azam) **by implication-elimination**

\(^5\) How does it know? In many cases, it is possible to tell by which channels are open. But, there are cases where this doesn’t work (such as initiating backward inference on a term with no incoming channels), so it makes more sense to maintain a set of in-progress processes or a flag as detailed later.
6.4.3.2 Forward Focused Reasoning

A second type of focused reasoning can occur when a user wishes to perform forward inference on a term, but the knowledge base is not yet fully constructed. For example, consider an empty knowledge base where the user asserts Q with forward inference. Nothing new is derived, as the KB is otherwise empty. Later, $(\text{if } Q \Rightarrow R)$ is asserted. Since Q was asserted with forward inference, as soon as additional outgoing channels are connected to it, its assertional status flows forward through the graph, and R is derived. This derivation happens, again, without needing to reassert Q. One can think about this as a limited form of full-forward inference. Instead of adopting full-forward inference for all terms that are added to the KB, only Q has this property. Automatic inference in the graph is focused on what can be derived from Q, while unrelated terms (e.g., $(\text{if } S \Rightarrow T)$ and S) may be added but without resulting in any automatic inference.

It’s worth recognizing that all our inference mechanisms only follow existing channels, and do not create new terms that are possibly irrelevant to the knowledge base. For example, from the original KB with only Q asserted, there are an infinite number of true disjunctions that could be introduced, but are unhelpful for ongoing inference processes.

Consider our counter-insurgence example again with a slightly different set of terms initially asserted:

;;; A person is either detained or free.

$$(\text{xor } (\text{Detained } (\text{every } x \text{ Person}))$$

$$(\text{Free } x))$$

It is then asserted with forward inference that Azam is a person, and has been arrested: (Isa Azam Person), and (Arrested Azam). The top of Figure 6.4 shows the resulting knowledge base. It is determined that Azam satisfies the restriction of arb1 (that is, Azam is a Person, through the channel from wft9! to wft8!), but no new knowledge is derived. Later, as in the bottom of Figure 6.4, the rule that if a person is arrested then they have been detained is added:

$$(\text{if } (\text{Arrested } (\text{every } x \text{ Person}))$$

$$(\text{Detained } x))$$

Since wft6! was added with forward inference, when the new outgoing channel to wft1 is added, forward inference continues. This allows the derivations that Azam is detained: (Detained Azam), and Azam is not free: (not (Free Azam)).

The complete listing of terms used in Figure 6.4 are provided below.
Figure 6.4: Inference Graphs for the forward focused reasoning example. As in previous examples, channels are shown with dotted lines as in the key below the graph, and channels with heavier weight are those used in the inference steps being illustrated. In the top graph, Azam is a person, and has been arrested, \texttt{wft6!} and \texttt{wft9!}, are asserted with forward inference. A message from \texttt{wft9!} flows forward to \texttt{wft8!}, then to \texttt{arb1, wft2 and wft4} where then nothing else can be done. In the bottom graph, the rule that if a person is arrested, they have been detained (\texttt{wft3!}) is added, allowing inference to continue: messages from \texttt{wft6!} and \texttt{arb1} satisfy the antecedent (\texttt{wft1}) causing the implication rule \texttt{wft3!} to fire, instantiating \texttt{wft2} – that Azam is detained – which sends a message to \texttt{wft5!} causing it to fire, and finally deriving that Azam is not free.

\texttt{wft1: (Arrested (every x Person))}
\texttt{wft2: (Detained (every x Person))}
\texttt{wft3!: (if (Arrested (every x Person)) (Detained x))}
\texttt{wft4: (Free (every x Person))}
As expected, CSNePS performs this inference task similarly, as shown below.

\[(\text{assert } '(\text{xor } (\text{Detained } (\text{every } x \text{ Person})) (\text{Free } x)))\]
\[\text{wft5!}: (\text{xor } (\text{Free } (\text{every } x \text{ (Isa } x \text{ Person)))) (\text{Detained } x))\]
\[\text{assert! } '(\text{Isa Azam Person})\]
\[\text{wft9!}: (\text{Isa Azam Person})\]
\[\text{assert! } '(\text{Arrested Azam})\]
\[\text{wft6!}: (\text{Arrested Azam})\]
\[\text{assert } '(\text{if } (\text{Arrested } (\text{every } x \text{ (Isa } x \text{ Person)))) (\text{Detained } x)))\]
\[\text{wft3!}: (\text{if } (\text{Arrested } (\text{every } x \text{ (Isa } x \text{ Person)))) (\text{Detained } x))\]

Since: \text{wft3!}: (if (Arrested (every x (Isa x Person))) (Detained x))
and: \text{wft9!}: (Isa Azam Person)
and: \text{wft6!}: (Arrested Azam)
I derived: \text{wft10!}: (Detained Azam) by if-elimination

Since: \text{wft5!}: (xor (Free (every x (Isa x Person))) (Detained x))
and: \text{wft10!}: (Detained Azam)
and: \text{wft9!}: (Isa Azam Person)
I derived: \text{wft11!}: (not (Free Azam)) by xor-elimination

6.4.3.3 Backward-In-Forward Focused Reasoning

A combination of the above two focused reasoning techniques is also possible. Consider a user who again asserts \(Q \) with forward inference into an empty knowledge base. Later, \((\text{if } P' \text{ if } Q R) \) is asserted. As with forward focused reasoning, \(Q \) recognizes that it has new outgoing channels, and sends its assertional status to \((\text{if } Q R) \). But, \((\text{if } Q R) \) is not yet asserted, so backward inference attempts to derive \((\text{if } Q R) \), but
fails. Later again, P is asserted (without forward inference). Inference then occurs as in forward-in-backward focused reasoning, \((\text{if } Q \implies R)\) is derived, then \(R\) is.

From the counter-insurgence domain again, consider the KB:

```lisp
;; Ahmad is a person.
(\text{Isa Ahmad Person})

;; If a person is a person of interest (POI),
;; they are either under surveillance, or being sought out.
(\text{if } (\text{POI } (\text{every } x \text{ Person}))
  (\text{xor } (\text{UnderSurveillance } x)
    (\text{BeingSoughtOut } x)))

;; If a person is a POI, they are of interest to INSCOM
(\text{if } (\text{POI } (\text{every } x \text{ Person}))
  (\text{ofInterestTo } x \text{ INSCOM}))
```

Now, it is asserted with forward inference that Ahmad is not under surveillance: \(\text{(not } (\text{UnderSurveillance Ahmad}))\), shown in the top of Figure 6.5. If the \text{xor} \((\text{wft5})\) were asserted, it could be derived that \(\text{(BeingSoughtOut Ahmad)}\) through forward inference, but it is not. So, the system initiates backward inference to attempt to derive the \text{xor}, by checking whether Ahmad is a POI. Since the system has no answer for that, inference halts. Sometime later, shown in the bottom half of Figure 6.5 \((\text{POI Ahmad)}\) is added to the KB. The \text{xor} receives a message saying it is able to be used for the substitution of Ahmad for \text{arb1} (but not in general), and the initial forward inference task resumes, deriving \(\text{(BeingSoughtOut Ahmad)}\). Here again it’s worth noting that even though the IG entails that Ahmad is of interest to INSCOM, that was not derived since it was of no use to the backward inference task attempting to derive \text{wft5}, and it does not follow directly from the fact that Ahmad is not under surveillance, which was the assertion made with forward inference.

To assist in understanding the figure, each term used is listed below.

- \text{wft1: } (\text{POI } (\text{every } x \text{ Person}))
- \text{wft2: } (\text{UnderSurveillance } (\text{every } x \text{ Person}))
- \text{wft3!: } (\text{if } (\text{POI } (\text{every } x \text{ Person}))
(xor (UnderSurveillance x) (BeingSoughtOut x)))

wft4: (BeingSoughtOut (every x Person))

wft5: (xor (UnderSurveillance x) (BeingSoughtOut x))

wft8!: (Isa (every x Person) Person)

wft9!: (Isa Ahmad Person)

wft13: (UnderSurveillance Ahmad)

wft14!: (not (UnderSurveillance Ahmad))

wft15!: (POI Ahmad)

wft16!: (if (POI (every x (Isa x Person))) (ofInterestTo x INSCOM))

wft17: (ofInterestTo (every x Person) INSCOM)

arb1: (every x Person)

As expected, CSNePS performs this inference task as described.

(assert '(Isa Ahmad Person))

wft9!: (Isa Ahmad Person)

(assert '(if (POI (every x (Isa x Person))))

 (xor (UnderSurveillance x) (BeingSoughtOut x))))

wft3!: (if (POI (every x (Isa x Person))))

 (xor (UnderSurveillance x) (BeingSoughtOut x)))

(assert '(if (POI (every x (Isa x Person))) (ofInterestTo x INSCOM)))

wft16!: (if (POI (every x (Isa x Person))) (ofInterestTo x INSCOM))

(assert! '(not (UnderSurveillance Ahmad))

wft14!: (not (UnderSurveillance Ahmad))

(assert '(POI Ahmad))

wft15!: (POI Ahmad)

Since: wft3!: (if (POI (every x (Isa x Person))))

 (xor (UnderSurveillance x) (BeingSoughtOut x)))

and: wft15!: (POI Ahmad)

and: wft9!: (Isa Ahmad Person)

I derived: wft18!: (xor (BeingSoughtOut Ahmad)
(UnderSurveillance Ahmad)) by if-elimination

Since: wft18!: (xor (BeingSoughtOut Ahmad) (UnderSurveillance Ahmad))
and: wft14!: (not (UnderSurveillance Ahmad))
I derived: wft19!: (BeingSoughtOut Ahmad) by xor-elimination

6.4.3.4 A Unifying Algorithm

In order to perform focused reasoning using IGs, two requirements must be fulfilled. Nodes must track whether they are part of a focused reasoning task (which one, and in which direction(s)), and whenever a channel is added to the graph it must be determined if forward or backward inference must continue along that channel.

Focused reasoning makes use of two sets, initially empty, which are part of every node: \(fBR \) for focused inference tasks requiring future backward reasoning at that node, and \(fFwR \) for focused inference tasks requiring future forward reasoning at that node. As backward-infer messages propagate backward through the graph adding valve selectors channels, they add the goal of the backward reasoning task to the \(fBR \) set in each node. When forward inference is initiated, nodes reached have their \(fFwR \) set augmented with the origin of the forward inference task. backward-infer messages are allowed to travel backward along already channels that already have appropriate valve selectors if these sets need to be updated. Tracking which nodes are involved in each type of focused inference task allows one focused inference task to later be canceled without affecting the others.\(^6\) To cancel these tasks, cancel-infer messages are used, which will only remove a valve selector if it’s not needed for any more focused inference tasks, but can travel backward though the graph removing an entry from the nodes sets of future inference tasks.

When a new channel is added to the graph, the contents of its origin’s \(fFwR \) or destination’s \(fBR \) set determine whether or not to continue a focused reasoning task. If a new channel is created, and its origin’s \(fFwR \) set is non-empty, forward inference is continued along that new channel (and recursively forward), and the contents of the \(fFwR \) set is propagated forward. If a new channel has a destination with a non-empty \(fBR \) set, then backward inference starts at the new channel (and continues recursively), and the contents of the \(fBR \) set is propagated backward. These routines combine to allow for forward-in-backward focused

\(^6\)If one wanted to simply cancel all or no focused reasoning tasks, these sets could be replaced with flags. Some book keeping is still required since it is impossible to tell whether forward or backward inference has been initiated from a node otherwise disconnected from the graph without some marker.
reasoning, and forward focused reasoning.

The final aspect of the algorithm occurs when a rule is not asserted, but receives an \texttt{i-infer} message via forward inference, indicating an attempt to use that rule. In this case, that node attempts to have itself derived in general or for a specific substitution by beginning a backward reasoning task, adding itself to its fBR set, and propagating that set backward. Once the rule has been derived, it recursively sends messages canceling the backward reasoning task backward through the graph, since it’s purpose has been fulfilled. This allows for backward-in-forward focused reasoning.

Where a human probably has some limit to the number of these types of tasks they can perform, we impose no such limits. An interesting future task may be to use this alongside an agent who has a finite number of tasks they can work on, and is “forgetful.”

6.5 Message Processing Algorithm

In order to make it more clear what happens when a message arrives at a node, Algorithm 6.1 is presented. This algorithm decides when introduction and elimination rules are to be attempted. It also handles several parts of the focused reasoning algorithm — determining when to invoke backward-in-forward inference, for example.
Algorithm 6.1 The algorithm for processing an inference message. This algorithm determines when introduction or elimination rules should be attempted. The functions attemptElimination and attemptIntroduceOrInstantiate dispatch on the type of node and attempt to satisfy the implemented inference rules (in which case, more messages are sent). applySubst applies a substitution to a term (node). minimalUnion produces a union of support sets, where every included origin set is minimal. submitToChannel sends a message on a particular channel.

```plaintext
function PROCESSMESSAGE(msg, node)
    if fwd?msg then
        \( fwR_{node} \leftarrow fwR_{node} \cup fwR_{origin_{msg}} \)
    end if
    if type\_msg = i-infer then
        \footnotesize \( \text{ATTEMPTELIMINATE}(msg, node) \)
    \hspace{1cm} \triangleright \text{Attempt elimination.}
    else if type\_msg = u-infer then
    \hspace{1cm} \triangleright u-infer instantiates a term as true/false.
        term \leftarrow \text{nil}
        if true?msg then
            term \leftarrow \text{APPLYSUBST}(node, subst\_msg)
            \( \text{ATTEMPTELIMINATE}(msg, node) \)
        else
            term \leftarrow \text{APPLYSUBST}(\neg node, subst\_msg)
        end if
    end if
    support\_term \leftarrow \text{MINIMALUNION}(support\_term, support\_msg)
    new\_msg \leftarrow msg
    origin\_new\_msg \leftarrow term
    support\_new\_msg \leftarrow support\_term
    type\_new\_msg \leftarrow i-infer
    for all ch \in ich\_node do
        \( \text{SUBMITTOCHANNEL}(ch, new\_msg) \)
    end for
    if term \in fBR\_node then
        \( \text{CANCELINFEROF}(node) \)
    end if
end if
end if
if type\_msg = i-infer or type\_msg = g-infer then
    if analytic \in \text{properties}\_node then
        \( \text{for all ch \in gch\_node do} \)
        \( \text{SUBMITTOCHANNEL}(ch, msg) \)
    end for
else
    result \leftarrow \text{ATTEMPTINTRODUCEORINSTANTIATE}(msg, node)
    if fwd?msg and EMPTY?(result) then
        \( \text{BACKWARDINFER}(node) \)
    end if
end if
end function
```

110
Figure 6.5: The IGs for the backward-in-forward focused reasoning example. As in previous examples, channels are shown in dotted lines according to the key, and channels shown with heavier weight have something to do with the illustrated inference process. In the top IG, it is asserted with forward inference that Azam is not under surveillance, wft14! . Forward inference proceeds through wft13 and wft2 to the unasserted xor rule, wft5. Backward inference tries to derive that rule, but is unable to at the present time. In the bottom IG, Ahmad is a POI (wft15!) is added to the KB, which allows the rule wft5 to be used (since the rule wft3! now fires, as wft15! satisfies its antecedent), and the fact that Ahmad is sought to be derived. Further discussion of the figure is in the text.
Chapter 7

Concurrency and Scheduling

Heuristics

The structure of IGs lends itself naturally to concurrent inference. Every example seen throughout this dissertation has had situations where multiple paths (made up of channels) could be examined simultaneously. Any number of nodes in the graph may process messages simultaneously without fear of interfering with any others. Only when a single node receives multiple messages must those messages be processed synchronously. This synchronous processing is necessary because the message caches are shared state. We need not concern ourselves with the actual order in which the messages are processed, since the operation is commutative, meaning there is no need to maintain a queue of changes to the message cache.

In Section 7.1 the basic approach toward concurrency taken by IGs is presented. Section 7.2 discusses the scheduling heuristics that have been devised to ensure that concurrent processing is done as efficiently as possible. The issue of multiple inference processes is discussed in Section 7.3. Evaluation of concurrency characteristics are presented in Section 7.4.

7.1 Concurrency

In Chapter 2 approaches to concurrency in theorem proving systems which used different granularities of concurrency were presented. That work found that the best performing granularity was the sub-goal level. In IGs, this translates to concurrency at the node level.

In order to perform inference concurrently, the inference graph is divided into inference segments (hence-
forth, *segments*). A segment represents the inference operation — from receipt of a message to sending new ones — which occurs in a node. Valves delimit segments, as seen in Figure 7.1. When a message passes through a valve a new *task* is created — the application of the segment’s inference function to the message. When tasks are created they enter a global prioritized queue, where the priority of the task is the priority of the message. When the task is executed, inference is performed as described in previous chapters, and any newly generated messages are sent toward its outgoing valves for the process to repeat.

![Inference Segment](image)

Figure 7.1: A single inference segment is shown in the gray bounding box.

7.2 Scheduling Heuristics

The goal of any inference system is to infer the knowledge requested by the user. If we arrange an inference graph so that a user’s request (in backward inference) is on the right, and channels flow from left to right wherever possible (the graph may contain cycles), we can see this goal as trying to get messages from the left side of the graph to the right side of the graph. We, of course, want to do this as quickly as possible.

Every inference operation begins processing inference messages some number of levels to the left of the query node. Since there are a limited number of tasks that can be running at once due to hardware limitations, we must prioritize their execution, remove tasks that we know are no longer necessary, and prevent the creation of unnecessary tasks. Therefore,

1. tasks for relaying newly derived information using segments to the right are executed before those to the left,

2. once a node is known to be true or false, all tasks still attempting to derive it are canceled, as long as their results are not needed elsewhere, and in all channels pointing to it that may still derive it, appropriate valve selectors are removed, and
3. Once a rule fires, all tasks for potential antecedents of that rule still attempting to satisfy it are canceled, as long as their results are not needed elsewhere, and in all channels from antecedents that may still satisfy it, appropriate valve selectors are removed.

Together, these three heuristics ensure that messages reach the query as quickly as possible, and time is not wasted deriving unnecessary formulas (though, as mentioned earlier, it may prevent the automatic derivation of contradictions). The priorities of the messages (and hence, tasks) allow us to reach these goals. All cancel-infer messages have the highest priority. Then come i-infer and u-infer messages. backward-infer messages have the lowest priority. As i-infer and u-infer messages flow to the right, they get higher priority, but their priorities remain lower than that of cancel-infer messages. In forward inference, i-infer and u-infer messages to the right in the graph always have higher priority than those to the left, since the messages all begin flowing from a common point. In backward inference, the priorities of backward-infer, i-infer, and u-infer messages work together to derive a query formula as quickly as possible. Since backward-infer messages are of the lowest priority, those i-infer and u-infer messages waiting at valves that are nearest to the query formula begin flowing forward before valve sectors further away are added. This, combined with the increasing priority of i-infer and u-infer messages ensure efficient derivation. In short, the closest possible path to the query formula is always attempted first in backward inference.

The design of the system therefore ensures that the tasks executing at any time are the ones closest to deriving the goal, and tasks that will not result in useful information towards deriving the goal are cleaned up. Additionally, since nodes “push” messages forward through the graph instead of “pulling” from other nodes, it is not possible to have tasks running waiting for the results of other rule nodes’ tasks. Thus, deadlocks are impossible, and bottlenecks can only occur when multiple threads are making additions to shared state simultaneously.

7.2.1 Example

Inspired by L. Frank Baum’s *The Wonderful Wizard of Oz* [Baum 1900], we consider a scene in which Dorothy and her friends are being chased by Kalidas — monsters with the head of a tiger and the body of a bear. In the world of Oz, whenever a dog becomes scared, the owner of the dog carries it, and that’s the only time the dog is carried. If a dog is carried, it does not walk, and if it walks, it is not carried. Toto, a dog, becomes scared when Dorothy, Toto’s owner, is being chased. Since Dorothy has only two hands, she is capable of either carrying the Scarecrow (who is large, and requires both hands), or between 1 and 2 of the
following items: Toto, her full basket, and the Tin Woodman’s oil can. In our example, the Tin Woodman is carrying his own oil can. Only one of Dorothy, the Scarecrow, or the Tin Woodman can carry the oil can at once. The relevant parts of this scene are represented below in their logical forms.

;;; Dorothy is a person, Toto is a dog, and Dorothy owns Toto.
(Isa Dorothy Person)
(Isa Toto Dog)
(Owns Dorothy Toto)

;;; Dorothy can either carry the scarecrow,
;;; or carry one or two objects from the list:
;;; her full basket, Toto, oil can.
(xor (Carries Dorothy Scarecrow)
 (andor (1 2) (Carries Dorothy FullBasket)
 (Carries Dorothy Toto)
 (Carries Dorothy OilCan))))

;;; Either Dorothy, the Tin Woodman, or the Scarecrow carry the Oil Can.
(xor (Carries Dorothy OilCan)
 (Carries TinWoodman OilCan)
 (Carries Scarecrow OilCan))

;;; Either someone carries a dog, or the dog walks.
(assert '(xor (Walks (every y (Isa y Dog)))
 (close x (Carries (some x (y) (Isa x Person))
 y))))

;;; A dog is carried by its owner, if and only if the dog is scared.

\footnote{Representing the owner of a dog in “a dog is carried by its owner” is difficult given the implemented logic. It is not appropriate to make use of an indefinite term to represent the owner, since we would like to derive that Dorothy is the one who carries Toto (after all, Dorothy is the owner of Toto). Using an arbitrary term also seems odd — what would it mean for a dog to be carried by more than one person, if it had more than one owner? What would be best would be a quantified term which represents the definite description of a person — that is, there would be one and only one satisfier of such a quantified term. Implementing such a quantified term is an item of future work (see Section 9.2.2.2).}
(iff (Scare (every x Dog)) (Carries (every y Person (Owns x)) x))

;;; Toto gets scared if Dorothy is being chased.
(if (Chase Dorothy) (Scare Toto))

;;; The Tin Woodman is carrying his Oil Can.
(Carries TinWoodman OilCan)

;;; Dorothy is being chased.
(Chase Dorothy)

We can then wonder, “Is Dorothy carrying the Scarecrow?” According to the rules of inference, it is derivable that this is not the case. CSNePS is able to derive this as follows:

(assert '(Isa Dorothy Person))

wft20!: (Isa Dorothy Person)

(assert '(Isa Toto Dog))

wft16!: (Isa Toto Dog)

(assert '(Owns Dorothy Toto))

wft15!: (Owns Dorothy Toto)

(assert '(xor (Carries Dorothy Scarecrow)
 (andor (1 2) (Carries Dorothy FullBasket)
 (Carries Dorothy Toto)
 (Carries Dorothy OilCan)))))

wft6!: (xor (Carries Dorothy Scarecrow)
 (andor (1 2) (Carries Dorothy FullBasket)
 (Carries Dorothy Toto)
 (Carries Dorothy OilCan)))))

(assert '(xor (Carries Dorothy OilCan)
 (Carries TinWoodman OilCan))

\footnote{The CSNePS command \texttt{askifnot} is used here to produce a cleaner proof.}

(Carries Scarecrow OilCan))

wft10!: (xor (Carries Dorothy OilCan)
 (Carries TinWoodman OilCan)
 (Carries Scarecrow OilCan))

(asssert '(xor (Walks (every y (Isa y Dog)))
 (close x (Carries (some x (y) (Isa x Person))
 y))))

wft14!: (xor (Walks (every y (Isa y Dog)))
 (close x (Carries (some x (y) (Isa x Person))
 y))

(asssert '(iff (Scare (every x Dog)) (Carries (every y Person (Owns x)) x))

wft12!: (iff (Scare (every x (Isa x Dog)))
 (Carries (every y (Isa y Person) (Owns y x)) x))

(asssert '(if (Chase Dorothy) (Scare Toto))

wft26!: (if (Chase Dorothy) (Scare Toto))

(asssert '(Carries TinWoodman OilCan))

wft9!: (Carries TinWoodman OilCan)

(asssert '(Chase Dorothy))

wft25!: (Chase Dorothy)

(askifnot '(Carries Dorothy Scarecrow))

Since wft10!: (xor (Carries Scarecrow OilCan)
 (Carries Dorothy OilCan)
 (Carries TinWoodman OilCan))

and wft9!: (Carries TinWoodman OilCan)

I derived: wft27!: (not (Carries Dorothy OilCan)) by xor-elimination.

Since wft26!: (if (Chase Dorothy) (Scare Toto))

and wft25!: (Chase Dorothy)

I derived: wft11!: (Scare Toto) by implication-elimination.
Since \(wft12! \): \((\iff (\Scare (\every x (\Isa x \Dog)))
(\Carries (\every y (\Isa y \Person) (\Owns y x)) x))\)
and \(wft11! \): \((\Scare \text{Toto})\)
and \(wft16! \): \((\Isa \text{Toto} \Dog)\)
I derived: \(wft36! \): \((\Carries (\every y (\Isa y \Person) (\Owns y \text{Toto})) \text{Toto})\)
by \(\iff \)-elimination

Since \(wft36! \): \((\Carries (\every y (\Isa y \Person) (\Owns y \text{Toto})) \text{Toto})\)
and \(wft20! \): \((\Isa \text{Dorothy} \Person)\)
and \(wft15! \): \((\Owns \text{Dorothy} \text{Toto})\)
I derived: \(wft28! \): \((\Carries \text{Dorothy} \text{Toto})\) by \(\text{generic-instantiation} \)

Since \(wft28! \): \((\Carries \text{Dorothy} \text{Toto})\)
and \(wft27! \): \((\not (\Carries \text{Dorothy} \text{OilCan}))\)
I derived: \(wft5! \): \((\andor (1 \ 2) (\Carries \text{Dorothy} \text{FullBasket})
(\Carries \text{Dorothy} \text{Toto})
(\Carries \text{Dorothy} \text{OilCan}))\)
by \(\andor \)-introduction

Since \(wft6! \): \((\xor (\Carries \text{Dorothy} \text{Scarecrow})
(\andor (1 \ 2) (\Carries \text{Dorothy} \text{FullBasket})
(\Carries \text{Dorothy} \text{Toto})
(\Carries \text{Dorothy} \text{OilCan})))\)
and \(wft5! \): \((\andor (1 \ 2) (\Carries \text{Dorothy} \text{FullBasket})
(\Carries \text{Dorothy} \text{Toto})
(\Carries \text{Dorothy} \text{OilCan}))\)
I derived: \(wft29! \): \((\not (\Carries \text{Dorothy} \text{Scarecrow}))\)
by \(\xor \)-elimination

It will now be examined in more detail how this derivation occurs, including how the scheduling heuristics come in to play. Figure 7.2 presents the inference graph for this example. In order to make it easier to follow the figure, the logical expression associated with each \(wft, \arb, \text{and ind} \) node is presented below.
wft1: (Carries Dorothy Scarecrow)

wft2: (Carries Dorothy OilCan)

wft3: (Carries Dorothy FullBasket)

wft4: (Carries Dorothy Toto)

wft5: (andor (1 2) (Carries Dorothy FullBasket)
 (Carries Dorothy Toto)
 (Carries Dorothy OilCan))

wft6!: (xor (Carries Dorothy Scarecrow)
 (andor (1 2) (Carries Dorothy FullBasket)
 (Carries Dorothy Toto)
 (Carries Dorothy OilCan)))

wft8: (Carries Scarecrow OilCan)

wft9!: (Carries TinWoodman OilCan)

wft10!: (xor (Carries Scarecrow OilCan)
 (Carries Dorothy OilCan)
 (Carries TinWoodman OilCan))

wft11: (Scare Toto)

wft12!: (iff (Scare (every x (Isa x Dog)))
 (Carries (every y (Isa y Person) (Owns y x)) x))

wft13: (Walks (every y Dog))

wft14!: (xor (Walks (every y (Isa y Dog)))
 (close x (Carries (some x (y) (Isa x Person))
 y)))

wft15!: (Owns Dorothy Toto)

wft16!: (Isa Toto Dog)

wft17!: (Isa (every x (Isa x Dog)) Dog)

wft18!: (Owns (every x (Isa x Person) (Owns x (every y (Isa y Dog)))) y)

wft19: (Carries (some x () Person) (every y Dog))

wft20!: (Isa Dorothy Person)

wft21!: (Isa (some x () Person) Person)

wft22!: (Isa (every x (Isa x Person) (Owns x (every y (Isa y Dog)))) Person)
wft23: (Scare (every x (Isa x Dog)))
wft24: (Carries (every x (Isa x Person) (Owns x (every y (Isa y Dog)))) x)
wft25!: (Chase Dorothy)
wft26!: (if (Chase Dorothy) (Scare Toto))
wft33: (close x (Carries (some x (y) (Isa x Person)) (every y (Isa y Dog))))
arb1: (every x (Isa x Dog))
arb2: (every x (Isa x Person) (Owns x (every y (Isa y Dog))))
ind1: (some x () Person)

As usual, graph edges are labeled using appropriate slot names for the relation being represented. This example uses a few new relations. The Carries relation will be represented as (Carries carrier carried), where the slots are given in italics in their appropriate argument position. Likewise, the Scare relation will be represented as (Scare experiencer); the Chase relation as (Chase theme); and the Owns relation as (Owns owner owns).

For the purposes of this example, we will make two assumptions: first that there are two processors being used (a and b), and second that any two tasks which begin on the two CPUs simultaneously, end at the same time as well. Figure 7.3 shows the first set of processing steps used in the derivation. Processing steps in this figure are labeled one through five, with “a” and “b” appended to the label where necessary to denote the CPU in use for ease of reference to the diagram. The step labels are placed at the nodes, since a task stretches from valve-to-valve, encompassing a single node. We’ll discuss the inference process as if the nodes themselves are added to the task queue for easier reading, when what we really mean is that tasks created for the inference process of a node, applied to a message, are added to the task queue. Since for this example the differences are mostly trivial, we’ll often discuss valves (or channels) being opened or closed, instead of there being an appropriate valve selector in order to make the text more readable.

The steps illustrated in Fig. 7.3 consist mostly of backward inference. The backward inference begins at the query, wft1, and continues until some channel is opened which contains an i-infer or u-infer message. In this example, this happens first at wft10, in step 5b of the figure. Listed below are the details of the processing which occurs during each step shown in the figure, along with the contents of the task queue. Tasks in the task queue are displayed in the following format:

\(<wftSrc \rightarrow wftDest>\)
Figure 7.2: The IG intended to mean that: Dorothy is a person, Toto is a dog, and Dorothy owns Toto; Dorothy can either carry the scarecrow, or carry one or two objects from the list: her full basket, Toto, oil can; either Dorothy, the Tin Woodman, or the Scarecrow carry the Oil Can; either someone carries a dog, or the dog walks; a dog is carried by its owner, if and only if the dog is scared; Toto gets scared if Dorothy is being chased; the Tin Woodman is carrying his Oil Can; and Dorothy is being chased. The explanation of each wft, arb, and ind node is given in the text. Edges are labeled according to the relations detailed in the text. I-channels, u-channels, and g-channels are drawn according to the key at the bottom of the graph. For example, an i-channel is drawn from wft1 to wft6!, a u-channel is drawn from wft6! to wft1, and a g-channel is drawn from ind1 to wft19. These channels are drawn according to the rules and definitions given in Chapter 5.
where wft_{Src} is the source of the message which caused the creation of the task, wft_{Dest} is the node the task is operating within, and X is one of $i,u,b,$ or c standing for the type of message the task processes, i-infer, u-infer, backward-infer, or cancel-infer.

1. $wft1$ sends backward-infer message to $wft6!$;
 opens the u-channel from $wft6!$ to $wft1$.

 task queue $<wft1 - b \rightarrow wft6!>$

2. $wft6!$ sends backward-infer message to $wft5$;
 opens the i-channel from $wft5$ to $wft6!$.

 task queue $<wft6! - b \rightarrow wft5>$

3. $wft5$ sends backward-infer messages to $wft2$, $wft3$, and $wft4$;
 opens the i-channels from $wft2$, $wft3$, and $wft4$ to $wft5$.

 task queue $<wft5 - b \rightarrow wft2>, <wft5 - b \rightarrow wft3>, <wft5 - b \rightarrow wft4>$

4a. $wft2$ sends backward-infer message to $wft10!$;
 opens the u-channel from $wft10!$ to $wft2$.

4b. $wft3$ has no channels to open.

 task queue $<wft5 - b \rightarrow wft2>, <wft2 - b \rightarrow wft10!>$

5a. $wft4$ sends backward-infer message to $wft24$;
 opens the i-channel from $wft24$ to $wft4$.

5b. $wft10!$ sends backward-infer messages to $wft8$ and $wft9!$;
 opens the i-channels from $wft8$ and $wft9!$ to $wft10!$.

 Since $wft9!$ is asserted, there is an i-infer message already waiting in the channel from $wft9!$ to $wft10!$ with higher priority than any backward inference tasks. That i-infer message is moved across the valve, and a new task is created for it – causing $wft10!$ to be added to the front of the queue again. Since there was an i-infer message waiting at the opened valve from $wft9!$ to $wft10!$, the backward-infer task just queued to occur in $wft9!$ is canceled, as it is unnecessary.

 task queue $<wft9! - i \rightarrow wft10!>, <wft4 - b \rightarrow wft24>, <wft10! - b \rightarrow wft8>}$
Figure 7.3: The first five steps of inference when attempting to derive whether Dorothy is carrying the Scarecrow. Channels with a heavier weight have had their channels opened through backward inference. Two processors are assumed to be used – a and b – and for this reason some steps in the graph have “a” or “b” appended to them. In these five steps, backward-infer messages flow backward through the graph until the first channel is reached with messages which will flow forward: the fact that wft9 is asserted will flow to wft10 since the i-channel connecting them has just been opened through backward inference. See the text for a detailed description of message flow in this figure.
Remember that no **backward-infer** messages are sent to nodes which are already part of the derivation. For example, \texttt{wft10} does not send a **backward-infer** message back to \texttt{wft2} since \texttt{wft2} is already part of the current derivation. This prevents eventual unnecessary derivations.

Figure 7.4 shows the next series of inference steps. In these steps the truth of \texttt{wft9} is used to infer the negation of \texttt{wft2}, that Dorothy is not carrying the oil can, and relays this information to \texttt{wft5}. Backward inference continues from \texttt{wft4} along three paths, one through \texttt{arb2} to \texttt{wft22!} and \texttt{wft18!}, another through \texttt{wft12!} and \texttt{wft23} to \texttt{wft11}, and a third through \texttt{arb1} and \texttt{wft17!} to \texttt{wft16!}. This is, again, the point where an i-infer message is ready to flow forward, this time from \texttt{wft16!} to \texttt{wft17!}. Below we have once again described these processing steps in detail.

6a \texttt{wft10!} receives i-infer message from \texttt{wft9!};
- Derives that both \texttt{wft2} and \texttt{wft8} are negated, by the rules of xor;
- Sends u-infer messages to both \texttt{wft2} and \texttt{wft8} telling them they are negated (of which, only the message to \texttt{wft2} will pass a valve selector);
- Cancels any inference in progress or queued to derive \texttt{wft8}, since it is the only antecedent still attempting to satisfy \texttt{wft10!}.

6b \texttt{wft24} sends backward-infer messages to \texttt{wft12!}, \texttt{arb1}, and \texttt{arb2};
- Opens the g-channels from \texttt{arb1} and \texttt{arb2} to \texttt{wft24}, and the u-channel from \texttt{wft12!} to \texttt{wft24}.

task queue \texttt{<wft10! -c → wft8>, <wft10! -u → wft2>, <wft12! -b → wft24>, <arb1 -b → wft24>, <arb2 -b → wft24>}

7a \texttt{wft8} has no channels to close.

7b \texttt{wft2} receives u-infer message from \texttt{wft10!};
- Asserts that it itself is negated;
- Sends an i-infer message along the i-channel to \texttt{wft5}, telling \texttt{wft5} that \texttt{wft2} has been derived to be negated.

task queue \texttt{<wft2 -i → wft5>, <wft12! -b → wft24>, <arb1 -b → wft24>, <arb2 -b → wft24>}

8a \texttt{wft5} receives i-infer message from (the negated) \texttt{wft2}. Since \texttt{wft5} requires more information to determine if between 1 and 2 of its arguments are true, no more can be done.

8b \texttt{wft12!} sends backward-infer message to \texttt{wft23}; opens the i-channel from \texttt{wft23} to \texttt{wft12!}.
task queue \(<arb1 -b \rightarrow wft24>, \langle arb2 -b \rightarrow wft24 \rangle, \langle wft23 -b \rightarrow wft12! \rangle\)

9a arb1 sends \textit{backward-infer} message to wft17!;
open the g-channel from wft17! to arb1.

9b arb2 sends \textit{backward-infer} messages to wft22! and wft18!;
open the g-channels from wft22! and wft18! to arb2.

task queue \(<wft23 -b \rightarrow wft12! \rangle, \langle wft17! -b \rightarrow arb1 \rangle, \langle wft22! -b \rightarrow arb2 \rangle, \langle wft18! -b \rightarrow arb2 \rangle\)

10a wft23 sends \textit{backward-infer} messages to wft11 and arb1;
open the i-channel from wft11 to wft23, and g-channel from arb1 to wft23.

10b wft17! sends \textit{backward-infer} message to wft16!;
open the i-channel from wft16! to wft17!.
Since wft16! is an asserted fact, there is an \textit{i-infer} message already waiting in the channel from wft16! to wft17! with higher priority than any backward inference tasks. That \textit{i-infer} message is moved across the valve, and a new task is created for it – causing wft17! to be added to the front of the queue again.

11a wft17! receives \textit{i-infer} message from wft16!;
relays the \textit{i-infer} messages to arb1 since it is an analytic term.

11b wft22! sends \textit{backward-infer} messages to wft20! and wft21!;
open the i-channels from wft20! and wft21! to wft22!. Since there is an \textit{i-infer} messages waiting in both of these i-channels, they are added at the top of the queue.

Figure 7.5 illustrates steps eleven through fifteen of the inference task attempting to derive that Dorothy is not carrying the Scarecrow. In this set of steps, wft16! sends an \textit{i-infer} message to it’s unifying term wft17!, which is a restriction of arb1, so wft17! relays the message to arb1. This message is enough to satisfy arb1, so it sends messages saying as much to wft18, wft23, and wft24. Backward inference also continues in these steps from wft23 to arb1, and from arb2 to wft22!, wft20!, wft21!, and wft18!, then from wft18! to wft15! and arb1. This set of steps ends just as arb2 is about to receive a \textit{g-infer} message from wft18! about the substitution it’s received from wft15!.
Figure 7.4: Steps six through ten of the attempted derivation of whether Dorothy is carrying the Scarecrow. In steps 6b, 8b, 9a, 9b, 10a, and 10b backward inference is performed until the i-infer message indicating wft_{16}! is true might flow forward across it’s i-channel to wft_{17}!. Additionally, wft_{10} receives an i-infer message about the truth of wft_{9} (step 6a), which derives that wft_{2} is false through xor-elimination. wft_{2} then reports this (step 7b) to wft_{5}, which records this information (step 8a), but cannot yet do anything else.
task queue \(\langle \text{wft20!} \rightarrow \text{wft22!} \rangle \), \(\langle \text{wft21!} \rightarrow \text{wft22!} \rangle \), \(\langle \text{wft17!} \rightarrow \text{arb1} \rangle \),
\(\langle \text{wft18!} \rightarrow \text{arb2} \rangle \), \(\langle \text{wft11!} \rightarrow \text{wft23} \rangle \), \(\langle \text{arb1} \rightarrow \text{wft23} \rangle \)

12a \text{wft22!} receives \text{i-infer} message from \text{wft20!};
relays the \text{i-infer} messages to \text{arb2} since it is an analytic term.

12b \text{wft22!} receives \text{i-infer} message from \text{wft21!};
relays the \text{i-infer} messages to \text{arb2} since it is an analytic term.

\text{task queue} \(\langle \text{wft22!} \rightarrow \text{arb2} \rangle \) (note: \{Dorothy/arb2\}), \(\langle \text{wft22!} \rightarrow \text{arb2} \rangle \) (note: \{ind1/arb2\}),
\(\langle \text{wft17!} \rightarrow \text{arb1} \rangle \), \(\langle \text{wft18!} \rightarrow \text{arb2} \rangle \), \(\langle \text{wft11!} \rightarrow \text{wft23} \rangle \), \(\langle \text{arb1} \rightarrow \text{wft23} \rangle \)

13a \text{arb2} receives \text{i-infer} message from \text{wft22!} with the substitution \{Dorothy/arb2\};
all restrictions of \text{arb2} are not yet satisfied so nothing more happens here yet.

13b \text{arb2} receives \text{i-infer} message from \text{wft22!} with the substitution \{ind1/arb2\};
all restrictions of \text{arb2} are not yet satisfied so nothing more happens here yet.

\text{task queue} \(\langle \text{wft17!} \rightarrow \text{arb1} \rangle \), \(\langle \text{wft18!} \rightarrow \text{arb2} \rangle \), \(\langle \text{wft11!} \rightarrow \text{wft23} \rangle \), \(\langle \text{arb1} \rightarrow \text{wft23} \rangle \)

14a \text{arb1} receives \text{i-infer} message from \text{wft17!};
This message satisfies the restrictions of \text{arb1}, and is relayed to \text{wft23} and \text{wft24}.

14b \text{wft18!} sends \text{backward-infer} messages to \text{wft15!} and \text{arb1};
opens the \text{i-channel} from \text{wft15!} to \text{wft18!}, and the \text{g-channel} from \text{arb1} to \text{wft18!}. Since there is an \text{i-infer} messages waiting in both of these \text{i-channels}, they are added to the queue.

\text{task queue} \(\langle \text{wft15!} \rightarrow \text{arb1} \rangle \), \(\langle \text{arb1} \rightarrow \text{wft18!} \rangle \), \(\langle \text{arb1} \rightarrow \text{wft23} \rangle \), \(\langle \text{arb1} \rightarrow \text{wft24} \rangle \),
\(\langle \text{wft11!} \rightarrow \text{wft23} \rangle \), \(\langle \text{arb1} \rightarrow \text{wft23} \rangle \)

15a \text{wft18!} receives \text{i-infer} message from \text{wft15!};
relays the \text{i-infer} messages to \text{arb2} since it is an analytic term.

15b \text{wft18!} receives \text{i-infer} message from \text{arb1};
relays the \text{i-infer} messages to \text{arb2} since it is an analytic term.

\text{task queue} \(\langle \text{wft18!} \rightarrow \text{arb2} \rangle \) (note: \{Toto/arb1, Dorothy/arb2\}), \(\langle \text{wft18!} \rightarrow \text{arb2} \rangle \) (note: \{Toto/arb1\}),
\(\langle \text{arb1} \rightarrow \text{wft23} \rangle \), \(\langle \text{arb1} \rightarrow \text{wft24} \rangle \), \(\langle \text{wft11!} \rightarrow \text{wft23} \rangle \), \(\langle \text{arb1} \rightarrow \text{wft23} \rangle \)
Figure 7.5: Steps eleven through fifteen of the attempted derivation of whether Dorothy is carrying the Scarecrow. Further backward inference is performed in steps 11b and 14b. The other steps all have to do with the receipt and retransmittal of i-infer messages toward the arbitrary nodes. Step 11a sends a substitution to arb1 from wft17!, while steps 12a, 12b, 15a, and 15b relay substitutions to arb2. arb2 receives some substitutions in steps 13a and 13b from wft22! but cannot yet do anything with them, as only one restriction of the two necessary are satisfied.
Figure [7.6] illustrates steps sixteen through nineteen of the inference task attempting to derive that Dorothy is not carrying the Scarecrow. In these steps backward inference continues from $wft23$ to $wft11$ (step 19a) and to $arb1$ (step 19b). Substitutions from $arb1$ are collected by $wft23$ and $wft24$ in steps 18a and 18b. In steps 16a and 16b, $arb2$ processes the two substitutions from $wft18!$ \{\{Toto/arb1, Dorothy/arb2\} and \{Toto/arb1\}\}, combines them with previously received substitutions from $wft22!$, and sends the results to $wft24$ (where they’re received in steps 17a and 17b, but nothing else can happen).

16a $arb2$ receives i-infer message from $wft18!$ with the substitution \{Toto/arb1, Dorothy/arb2\}; since now both restrictions of $arb2$ are satisfied in a compatible way (previously, \{Dorothy/arb2\} was received from $wft22!$), $arb2$ sends an i-infer message to $wft24$.

16b $arb2$ receives i-infer message from $wft18!$ with the substitution \{Toto/arb1\}; when combined with the substitution \{ind1/arb2\} previously received from $wft22!$, a new substitution is created, and an i-infer message is sent to $wft24$.

\textbf{task queue} $\langle arb2 \rightarrow -i \rightarrow wft24 \rangle$ (note: \{Toto/arb1, Dorothy/arb2\}), $\langle arb2 \rightarrow -i \rightarrow wft24 \rangle$ (note: \{Toto/arb1, ind1/arb2\}), $\langle arb1 \rightarrow -i \rightarrow wft23 \rangle$, $\langle arb1 \rightarrow -i \rightarrow wft24 \rangle$, $\langle wft11 \rightarrow -b \rightarrow wft23 \rangle$, $\langle arb1 \rightarrow -b \rightarrow wft23 \rangle$

17a $wft24$ receives i-infer message from $arb2$ with the substitution \{Toto/arb1, Dorothy/arb2\}; it is not yet satisfied since it does not have a matching instance from $arb1$ and is not asserted, so it does nothing else now.

17b $wft24$ receives i-infer message from $arb2$ with the substitution \{Toto/arb1, ind1/arb2\}; it is not yet satisfied since it does not have a matching instance from $arb1$ and is not asserted, so it does nothing else now.

\textbf{task queue} $\langle arb1 \rightarrow -i \rightarrow wft23 \rangle$, $\langle arb1 \rightarrow -i \rightarrow wft24 \rangle$, $\langle wft11 \rightarrow -b \rightarrow wft23 \rangle$, $\langle arb1 \rightarrow -b \rightarrow wft23 \rangle$

18a $wft23$ receives i-infer message from $arb1$; since $wft23$ is unasserted, nothing further can be done.

18b $wft24$ receives i-infer message from $arb1$; in step 17a and 17b, $wft24$ received \{Toto/arb1, Dorothy/arb2\} and \{Toto/arb1, ind1/arb2\}, so it now has a satisfying set of substitutions from each restriction, but since it is unasserted it does nothing more.
task queue \(<\text{wft11} \rightarrow \text{wft23}>, \langle \text{arb1} \rightarrow \text{wft23} \rangle\>

19a \text{wft11} sends \text{backward-infer} message to \text{wft26}!

 opens the u-channel from \text{wft26}! to \text{wft11}.

19b \text{arb1} has no further incoming channels to open.

\textbf{task queue} \(<\text{wft26}! \rightarrow \text{wft11} \rangle\>

Figure 7.7 shows steps twenty through twenty-four of the derivation of whether or not Dorothy is carrying the Scarecrow. Step 20 continues backward inference from \text{wft26}! to \text{wft25}!. Step 21 receives an \text{i-infer} message from \text{wft25}! — that Dorothy is being chased — and by the rules if implication derives its consequent — that Toto is scared. Step 22 relays this new asserted knowledge to \text{wft23}, where, combined with the previously received substitution from \text{arb1}, it can now be considered satisfied and a message is sent to \text{wft12}!, where that rule is satisfied and the substitution \{Toto/arb1\} is sent to \text{wft24}. As before, steps twenty through twenty-four are detailed below.

20 \text{wft26}! sends \text{backward-infer} message to \text{wft25}!;

 opens the i-channel from \text{wft25}! to \text{wft26}!. Since there is a message waiting at the valve in the channel from \text{wft25}! to \text{wft26}!, its processing is added to the top of the queue.

\textbf{task queue} \(<\text{wft25}! \rightarrow \text{wft26}! \rangle\>

21 \text{wft26}! receives \text{i-infer} message from \text{wft25}!;

 according to the rules of implication, \text{wft26}! is satisfied, and sends a \text{u-infer} message to \text{wft11}.

\textbf{task queue} \(<\text{wft26}! \rightarrow \text{wft11} \rangle\>

22 \text{wft11} receives \text{u-infer} message from \text{wft26}!;

 \text{wft11} now asserts itself (it has now been derived that Toto is scared), and sends an \text{i-infer} message to \text{wft23}.

\textbf{task queue} \(<\text{wft11}! \rightarrow \text{wft23} \rangle\>

23 \text{wft23} receives \text{i-infer} message from \text{wft11};

 given this, and the substitution already received from \text{arb1} that \{Toto/arb1\}, \text{wft23} is instantiated, and sends an \text{i-infer} message to \text{wft12}!.

\textbf{task queue} \(<\text{wft23} \rightarrow \text{wft12}! \rangle\>
Figure 7.6: Steps sixteen through nineteen of the attempted derivation of whether Dorothy is carrying the Scarecrow. Backward inference continues from \texttt{wft23} to \texttt{wft11} (step 19a) and to \texttt{arb1} (step 19b). Substitutions from \texttt{arb1} are collected by \texttt{wft23} and \texttt{wft24} in steps 18a and 18b. In steps 16a and 16b, \texttt{arb2} processes the two substitutions from \texttt{wft18!} (\{Toto/arb1, Dorothy/arb2\} and \{Toto/arb1\}), combines them with previously received substitutions from \texttt{wft22!}, and sends the results to \texttt{wft24} (where they’re received in steps 17a and 17b, but nothing else can happen).
24 wft12! receives i-infer message from wft23;

given the rules of iff, wft12! is satisfied, and sends a u-infer message to wft24.

task queue <wft12! −i → wft24>

Figure 7.8 shows steps twenty-five through thirty-one of the derivation of whether or not Dorothy is carrying the Scarecrow. Since Toto is scared, and the rule wft12! that if a dog is scared, then its owner carries it, it is derived in step 25 that Toto’s owner carries Toto. This new assertion is shown in Figure 7.8 as wft30!. Associated with this are several new terms, detailed below.

wft30!: (Carries (every x Person (owns Toto)) Toto)
wft31!: (Owns (every x Person (owns Toto)) Toto)
wft32!: (Isa (every x Person (owns Toto)) Person)

After wft30! is derived, wft24 sends an i-infer message to wft4. Because wft4 is part of a backward inference task, and wft30! can derive wft4, backward inference occurs from wft4 backward to wft30!. As such, an i-infer message (identical to that from wft24 flows to wft4. Since these two identical messages do not mention Dorothy, they are discarded when it is attempted to pass them onward to wft4. The rest of the steps deal with continuing backward inference from wft30, into arb3 and its restrictions, and gathering instances at those restrictions (similarly to what happened with arb2 in steps 11-16).

25 wft24 receives u-infer message from wft12!;

from this it is derived that wft30!, Toto is carried by Toto’s owner. This result is sent to wft4 through the i-channel from wft24 to wft4, but it does not pass the filter in that channel, so is discarded. Since wft30! has now been created, has a channel to wft4, and wft4 is part of a backward inference task, focused inference continues backward inference to wft30!. wft30! has an instance which it sends to wft4 (the same one wft24 has, so it is also discarded).

task queue <wft4 −b → wft30!>

26 wft30! sends backward-infer message to arb3;

opens the g-channel from arb3 to wft30!.

task queue <arb3 −b → wft30!>
Figure 7.7: Steps twenty through twenty-four of the derivation of whether or not Dorothy is carrying the Scarecrow. Step 20 continues backward inference from wft26! to wft25!. Step 21 receives an i-infer message from wft25! — that Dorothy is being chased — and by the rules if implication derives its consequent — that Toto is scared. Step 22 relays this new asserted knowledge to wft23, where, combined with the previously received substitution from arb1, it can now be considered satisfied and a message is sent to wft12!, where that rule is satisfied and the substitution {Toto/arb1} is sent to wft24.
27 \textit{arb3} sends \texttt{backward-infer} messages to \texttt{wft31!} and \texttt{wft32!};
\begin{itemize}
 \item opens the \texttt{g}-channels from \texttt{wft31!} and \texttt{wft32!} to \texttt{arb3}.
\end{itemize}

\textbf{task queue} \texttt{	extless wft31! \rightarrow b \rightarrow arb3, wft32! \rightarrow b \rightarrow arb3>} \\

28a \texttt{wft31!} sends \texttt{backward-infer} message to \texttt{wft15!};
\begin{itemize}
 \item opens the \texttt{i}-channel from \texttt{wft15!} to \texttt{wft31!}. There is an \texttt{i-infer} message waiting, which flows forward to \texttt{wft31!}.
\end{itemize}

28b \texttt{wft32!} sends \texttt{backward-infer} messages to \texttt{wft20!} and \texttt{wft21!};
\begin{itemize}
 \item opens the \texttt{i}-channels from \texttt{wft20!} and \texttt{wft21!} to \texttt{wft32!}. There are \texttt{i-infer} messages waiting in both channels, which flows forward to \texttt{wft31!}.
\end{itemize}

\textbf{task queue} \texttt{	extless wft20! \rightarrow i \rightarrow wft32!, wft21! \rightarrow i \rightarrow wft32!, wft15! \rightarrow i \rightarrow wft31!>} \\

29a \texttt{wft32!} receives \texttt{i-infer} message from \texttt{wft20!};
\begin{itemize}
 \item Since \texttt{wft32!} is an analytic generic term, it relays the received substitution: \{\texttt{Dorothy/arb3}\} to \texttt{arb3}.
\end{itemize}

29b \texttt{wft32!} receives \texttt{i-infer} message from \texttt{wft21!};
\begin{itemize}
 \item Since \texttt{wft32!} is an analytic generic term, it relays the received substitution: \{\texttt{ind1/arb3}\} to \texttt{arb3}.
\end{itemize}

\textbf{task queue} \texttt{	extless wft32! \rightarrow i \rightarrow arb3>} (note: \{\texttt{Dorothy/arb3}\}), \texttt{	extless wft32! \rightarrow i \rightarrow arb3>} (note: \{\texttt{ind1/arb3}\}), \texttt{	extless wft15! \rightarrow i \rightarrow wft31!>} \\

30a \texttt{arb3} receives \texttt{i-infer} message from \texttt{wft32!} with substitution \{\texttt{Dorothy/arb3}\};
\begin{itemize}
 \item since this message only satisfies one restriction, the message is saved until later.
\end{itemize}

30b \texttt{arb3} receives \texttt{i-infer} message from \texttt{wft32!} with substitution \{\texttt{ind1/arb3}\};
\begin{itemize}
 \item since this message only satisfies one restriction, the message is saved until later.
\end{itemize}

\textbf{task queue} \texttt{	extless wft15! \rightarrow i \rightarrow wft31!>}

31 \texttt{wft31!} receives \texttt{i-infer} message from \texttt{wft15!};
\begin{itemize}
 \item Since \texttt{wft31!} is an analytic generic term, it relays the message to \texttt{arb3}.
\end{itemize}

\textbf{task queue} \texttt{	extless wft31! \rightarrow i \rightarrow arb3>}

\begin{itemize}
 \item Figure 7.9 shows the conclusion, steps thirty-two through thirty-seven, of the derivation of whether or not Dorothy is carrying the Scarecrow. In step 32, \texttt{arb3} receives substitutions from \texttt{wft31} and determines
\end{itemize}
Figure 7.8: Steps twenty-five through thirty-one of the derivation of whether or not Dorothy is carrying the Scarecrow. These steps have largely to do with satisfying the new arbitrary term \texttt{arb3}, added when the rule \texttt{wft12!} fired, creating \texttt{wft30!}. Backward inference occurred from \texttt{wft4} to \texttt{wft30!} because of focused reasoning. See the text for a detailed description of these steps.
that it is satisfied, sending messages onward to \texttt{wft30}, then to \texttt{wft4} (step 33), and to \texttt{wft5} (step 34). Since it's now derived that Dorothy carries Toto, the andor represented by \texttt{wft5} may be introduced (step 35), and the xor at \texttt{wft6} may fire (step 436, deriving that Dorothy does not carry the Scarecrow (step 37).

\textbf{32} \texttt{arb3} receives \texttt{i-infer} message from \texttt{wft31};

this message indicates that Dorothy is the owner of Toto, and the other restriction already learned that Dorothy is a person, so \texttt{arb3} is satisfied and sends a message to \texttt{wft30}.

\texttt{task queue <arb3 -i \rightarrow wft30>}

\textbf{33} \texttt{wft30}! receives \texttt{i-infer} message from \texttt{arb3};

this message is from the only arbitrary contained within \texttt{wft30}! so \texttt{wft30}! is fully satisfied, and since it's believed, it is derived that Dorothy carries Toto. This result is sent to \texttt{wft4}.

\texttt{task queue <wft30! -i \rightarrow wft4>}

\textbf{34} \texttt{wft4} receives \texttt{i-infer} message from \texttt{wft30}!

\texttt{wft4} — that Toto is carried by Dorothy — can now be believed, and a message is sent to \texttt{wft5}.

\texttt{task queue <wft4! -i \rightarrow wft5>}

\textbf{35} \texttt{wft5} receives \texttt{i-infer} message from \texttt{wft4}!

given the rule for andor introduction, \texttt{wft5} can now be derived. An \texttt{i-infer} message is sent from \texttt{wft5}! to \texttt{wft6}.

\texttt{task queue <wft5 !-i \rightarrow wft6>}

\textbf{36} \texttt{wft6}! receives \texttt{i-infer} message from \texttt{wft5}!

given the rule for xor elimination, the negation of \texttt{wft1} can now be derived, and as such a \texttt{u-infer} message is sent from \texttt{wft6}! to \texttt{wft1}.

\texttt{task queue <wft6! -u \rightarrow wft1>}

\textbf{37} \texttt{wft1} receives \texttt{u-infer} message from \texttt{wft6}!!

the negation of \texttt{wft1}, that Dorothy does not carry the Scarecrow is derived.
Figure 7.9: Steps thirty-two through thirty-seven, of the derivation of whether or not Dorothy is carrying the Scarecrow. These steps show the propagation of messages from \texttt{arb3} eventually to \texttt{wft1} deriving that Dorothy is not carrying the Scarecrow. See the text for a more detailed description.
7.3 Inference Procedures

Every time inference is invoked by the user, we say a new inference procedure has begun. It sometimes is necessary to recognize when a particular inference procedure has reached a quiescent state, independent of the entire graph’s state. This is particularly apparent in the acting system, where an action may need to execute further inference procedures, and determine when they have completed (to the extent possible).

In order to accomplish this, each inference process is associated with a counter. The counter is incremented every time a message related to that process is added to the processing queue, and decremented once the message has been fully consumed and processed (that is, after any resulting messages have already been added to the queue). The counter begins at zero, and when it once again arrives at zero, the inference procedure is complete. In this way the progress of multiple inference procedures can be tracked independently.

7.4 Evaluation of Concurrency

The massively parallel logical inference systems of the 1980s and 90s often assigned each processor a single formula or rule to be concerned with. This resulted in limits on the size of the KB (bounded by the number of processors), and many processors sitting idle during any given inference process. Our technique dynamically assigns tasks to threads only when they have work to do, meaning that processors are not sitting idle so long as there are as many tasks available as there are processors.

In evaluating the performance of the concurrency mechanisms at play in the IG, we are mostly concerned with the speedup achieved as more processors are used in inference. Overall processing time is also important, but will be primarily of concern in the next chapter. More relevant to our current discussion is the issue of speedup. If speedup is roughly linear with the number of processors, then that will show that the architecture and heuristics discussed in this dissertation scale well. We will look at the performance of our system in both backward and forward inference. The other two types of inference — bi-directional inference, and focused reasoning — are hybrids of forward and backward inference, and have performance characteristics between the two.

3This is guaranteed to happen at the appropriate time: the counter is only decremented after a message is fully processed (meaning that any resulting messages have been added to the processing queue, and therefore incremented the counter), and every message which is added to the queue is eventually processed.

4This section uses a similar evaluation methodology as that of Schlegel and Shapiro [2014a], and while it is adapted from that paper, includes wholly new results as IGs have evolved a great deal since that was published.
7.4.1 Backward Inference

To evaluate the performance of the inference graph in backward inference, we generated graphs of chaining entailments. Each entailment had \(bf\) antecedents, where \(bf\) is the branching factor, and a single consequent. Each antecedent and consequent made use of the same single arbitrary term containing a single restriction. Each consequent was the consequent of exactly one rule, and each antecedent was the consequent of another rule, up to a depth of \(d\) entailment rules. Exactly one consequent, \(cq\), was not the antecedent of another rule. Therefore there were \(bf^d\) entailment rules, and \(2 \times bf^d - 1\) antecedents/consequents. A single instance of each of the \(bf^d\) leaf nodes was asserted, along with an appropriate satisfier of the shared arbitrary term’s restriction. We tested the ability of the system to backchain on and derive a specific instance of \(cq\) when the entailments used were both and-entailment and or-entailment. Backward inference is the most resource intensive type of inference the inference graphs can perform, and most fully utilizes the scheduling heuristics in this chapter.

In the first test we used and-entailment, meaning for each implication to derive its consequent, all its antecedents had to be true. Since we backchained on an instance of \(cq\), this meant instances of every rule consequent and antecedent in the graph would have to be derived. This is the worst case scenario for entailment. The timings we observed are presented in Table 7.1. This experiment showed that speedup grows linearly as more CPUs are involved in inference.

Table 7.1: Inference times using 1, 2, 4, and 8 CPUs for 100 iterations of and-entailment in an inference graph with \(bf = 2\) and \(d = 7\).

<table>
<thead>
<tr>
<th>CPUs</th>
<th>Inference Time (ms)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>229631</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>122986</td>
<td>1.87</td>
</tr>
<tr>
<td>4</td>
<td>65979</td>
<td>3.48</td>
</tr>
<tr>
<td>8</td>
<td>35982</td>
<td>6.38</td>
</tr>
</tbody>
</table>

The next experiments tested whether the depth or branching factor of the graph has any effect on speedup as the number of processors increases. The first experiment judged the impact of graph depth.

5 Adjusting the number of arbitrary terms or restrictions used has a very small impact in this example, as calculation of instances is performed only once per arbitrary, and the arbitrary or arbitraries need to be shared by all nodes to perform meaningful inference. It is in line with normal use of \(L_A\) to have relatively few arbitrary terms.

6 All tests were performed on a Dell Poweredge 1950 server with dual quad-core Intel Xeon X5365 processors (no Hyper-Threading) and 32GB RAM. Each test was performed twice, with the second result being the one used here. The first run was only to allow the JVM to “warm up.” This machine is shared-use, and as such, some minor irregularities in the results should be expected.

7 \(y = 0.7639x + 0.3178, R^2 = 0.9987\)

8 In previous experiments (Schlegel and Shapiro, 2014a) using ground propositional logic, it was necessary to subtract a constant from each result to see linear speedup, due to a centralized method of storing what terms were asserted, and the associated difficulty of maintaining shared state. The use of origin sets decentralizes this, and therefore this adjustment is no longer necessary.
The experiment was run on graphs of five different depths, ranging from 5 to 10 (32 leaves, to 1024 leaves), while maintaining $bf = 2$ (see Figure 7.10), and found that as graph depth is increased, speedup is nearly constant.

![Speedup vs. Depth of Graph](image)

Figure 7.10: Speedup of the and-entailment test, shown in relation to the depth of the inference graph. As the depth of the graph increases speedup remains nearly constant. A branching factor of 2 was used in all tests.

To find out if branching factor affects speedup, $d = 5$ was chosen, and the branching factor was varied from 1 to 6 (1 to 7,776 leaves). When $bf = 1$, the graph is simply a chain of nodes, and the use of more processors can provide very little improvement in computation time. As shown in Figure 7.11 throwing more processors at the problem eventually just causes no improvement. Fortunately, this is a rather contrived use of the inference graph. At branching factors 2-6, the graph performs as expected, with the branching factor increase having little effect on performance. There may be a slight performance impact as the branching factor increases, because at higher branching factors more messages must be combined at each rule node. The data does not show this definitively though.

In our second test we used the same KB from the first ($d = 7$, $bf = 2$), except each and-entailment rule was swapped for or-entailment. Whereas the earlier test required an instance of every generic term in the KB to be derived, this test shows the best case of entailment — an instance of only a single leaf must be derived to allow the chaining causing the selected instance of cq to be derived.

9 Exact values used in Figure 7.10 and Figure 7.11 are presented in Appendix A
Figure 7.11: Speedup of the and-entailment test, shown in relation to the branching factor of the inference graph. A depth of 5 was used in all tests, to keep the number of nodes reasonable.

Table 7.2: Inference times, and number of rule nodes used, using 1, 2, 4, and 8 CPUs for 100 iterations of or-entailment in an inference graph ($d = 7$, $bf = 2$) in which there are many paths through the network (all of length 7) that could be used to infer the result.

<table>
<thead>
<tr>
<th>CPUs</th>
<th>Time (ms)</th>
<th>Average Number of Rules Fired</th>
<th>Speedup</th>
<th>Speedup vs. and-entailment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>104099</td>
<td>7</td>
<td>1.00</td>
<td>2.21</td>
</tr>
<tr>
<td>2</td>
<td>57949</td>
<td>11</td>
<td>1.80</td>
<td>2.12</td>
</tr>
<tr>
<td>4</td>
<td>32364</td>
<td>18</td>
<td>3.22</td>
<td>2.04</td>
</tr>
<tr>
<td>8</td>
<td>28429</td>
<td>33</td>
<td>3.66</td>
<td>1.27</td>
</tr>
</tbody>
</table>

The improvement in or-entailment processing times as we add more CPUs (see Table 7.2) is not as dramatic since the inference operation performed once a chain of valve selectors from a derived instance of a leaf to the instance of cq are added cannot be accelerated by adding more processing cores — that process is inherently sequential. The improvement we see increasing from 1 to 2, and 2 to 4 CPUs is because the backward-infer and cancel-infer messages spread throughout the network breadth-first and can be sped up through concurrency. During the periods where backward inference has already begun, and cancel-infer messages are not being sent, the extra CPUs were working on deriving formulas relevant to the current query, but in the end unnecessary — as seen in the number of rule nodes fired in Table 7.2. The time required for these derivations begins to outpace the improvement gained through concurrency when we reach 8 CPUs in this task. These extra derivations may be used in future inference tasks, though, without re-derivation, so the resources are not wasted. As only a chain of rules is required, altering branching factor or depth has...
no effect on speedup. It is interesting to note that for the cases where 1-4 CPUs are used, or-entailment is roughly twice as fast as and-entailment.

The difference in computation times between the or-entailment and and-entailment experiments are largely due to the scheduling heuristics described in Sect. 7.2. Without the scheduling heuristics, backward inference tasks continue to get executed even once messages start flowing forward from the leaves. Additionally, more rule nodes fire than are necessary, even in the single processor case. We ran the or-entailment test again without these heuristics using a FIFO queue, and found the inference took much longer than in Table 7.1 (sometimes by over 40x, see Table 7.3), and showed very poor characteristics as the number of processors was increased due to the terribly inefficient ordering of messages. We then tested a LIFO queue since it has some of the characteristics of our prioritization scheme (see Table 7.4), and found our prioritization scheme to be between 4 and 7x faster. It can therefore be stated with some certainty that the scheduling heuristics we’ve presented are significantly better than naive approaches.

Table 7.3: The same experiment as Table 7.2 replacing the improvements discussed in Sect. 7.2 with a FIFO queue. Our results in Table 7.2 are between 7 and 40 times faster.

<table>
<thead>
<tr>
<th>CPUs</th>
<th>Time (ms)</th>
<th>Average Number of Rules Fired</th>
<th>Speedup</th>
<th>Speedup vs. Prioritized Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>829920</td>
<td>127</td>
<td>1.00</td>
<td>0.13</td>
</tr>
<tr>
<td>2</td>
<td>693721</td>
<td>127</td>
<td>1.20</td>
<td>0.08</td>
</tr>
<tr>
<td>4</td>
<td>860425</td>
<td>127</td>
<td>0.96</td>
<td>0.04</td>
</tr>
<tr>
<td>8</td>
<td>1179236</td>
<td>127</td>
<td>0.70</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Table 7.4: The same experiment as Table 7.2 replacing the improvements discussed in Sect. 7.2 with a LIFO queue. Our results in Table 7.2 are between 4 and 7 times faster.

<table>
<thead>
<tr>
<th>CPUs</th>
<th>Time (ms)</th>
<th>Average Number of Rules Fired</th>
<th>Speedup</th>
<th>Speedup vs. Prioritized Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>459490</td>
<td>11</td>
<td>1.00</td>
<td>0.23</td>
</tr>
<tr>
<td>2</td>
<td>405009</td>
<td>25</td>
<td>1.13</td>
<td>0.14</td>
</tr>
<tr>
<td>4</td>
<td>145883</td>
<td>47</td>
<td>3.15</td>
<td>0.22</td>
</tr>
<tr>
<td>8</td>
<td>84584</td>
<td>86</td>
<td>5.43</td>
<td>0.19</td>
</tr>
</tbody>
</table>

7.4.2 Forward Inference

To evaluate the performance of the inference graph in forward inference, we again generated graphs of chaining entailments. Each entailment had a single antecedent, and 2 consequents. Each consequent was the consequent of exactly one rule, and each antecedent was the consequent of another rule, up to a depth of 7 entailment rules. Exactly one antecedent, ant, the “root”, was not the consequent of another rule. There were 128 consequents that were not antecedents of other rules, the leaves. Each antecedent and consequent
again shared a single arbitrary term with a single restriction. We tested the ability of the system to derive instances of the leaves when the instance of ant, and the instance of the arbitrary term’s restriction were asserted with forward inference.

Since all inference in our graphs is essentially forward inference (modulo additional message passing to manage the valves), and we’re deriving the same number of terms, one might expect the results from our forward inference test to be similar to those of backward inference using and-entailment rules. This is not the case. In this example, many more origin sets are calculated. This makes sense, since in backward inference, multiple messages with different origin sets may be generated at a rule node, and sent to its consequents. Not all of these necessarily pass the valve selectors (where in forward inference they would all be passed onward), and once one satisfying message passes a valve selector and is consumed, its priority is increased, meaning the other ones which were created may never be consumed before the task is canceled. In the backward inference using and-entailment example, an average of 401 origin sets were derived, with an average size of 1.87. In this example, an average of 1092 origin sets are calculated, with an average size of 4.33. That means this example required approximately 6.3 times the work in calculating origin sets.

The results of this test are shown in Table 7.5. Once again we find that speedup is linear with the number of processors.\(^\text{10}\) We can therefore say with confidence that IGs exhibit a speedup linear in time with the number of processors for forward inference.

Table 7.5: Inference times using 1, 2, 4, and 8 CPUs for 100 iterations of forward inference in an inference graph of depth 7 and branching factor 2 in which all leaf nodes are derived.

<table>
<thead>
<tr>
<th>CPUs</th>
<th>Inference Time (ms)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1483882</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>854528</td>
<td>1.74</td>
</tr>
<tr>
<td>4</td>
<td>482435</td>
<td>3.08</td>
</tr>
<tr>
<td>8</td>
<td>238550</td>
<td>6.22</td>
</tr>
</tbody>
</table>

\(^\text{10}\) y = 0.7447x + 0.2174, \(R^2 = 0.9989\)
Chapter 8

Using Inference Graphs as Part of a Natural Language Understanding System

In order to evaluate the performance of IGs on a real world task, they have been employed as the reasoner in a natural language understanding task. In this task, IGs are used to find appropriate instances of, and execute syntax-semantics mapping rules. The implemented mapping rules are adopted from the Tractor natural language understanding system (Prentice et al., 2010; Gross et al., 2012; Shapiro and Schlegel, 2013). As a whole, the mapping rules convert a syntactic knowledge base, derived from various natural language processing processes applied to short intelligence messages from the counter-insurgence domain, to one containing mostly semantic information.

This chapter first introduces the Tractor natural language understanding system in Section 8.1 including a discussion of the role of the mapping rules. A rule engine has been developed as part of CSNePS for pattern matching tasks, including the mapping rules, discussed in Section 8.2. Some illustrative mapping rules are presented in the language of the CSNePS rule engine in Section 8.3 and evaluation of the implemented rules as compared to the Tractor implementation in SNePS 3, and an implementation in SNePS 2 is presented in Section 8.4.
8.1 Tractor

Tractor performs natural language understanding, translating text into a semantic propositional graph, by sending text through a pipeline of four different components, each consisting of several subcomponents. First, standard natural language processing techniques are performed upon the text using the General Architecture for Text Engineering (GATE) (The University of Sheffield, 2011). GATE produces sets of annotations for spans of text, which are combined, and translated into a propositional graph in the Propositionalizer. Our Context-Based Information Retrieval (CBIR) system enhances the propositional graph with ontological and geographical information. Finally the enhanced mostly syntactic graphs are translated into semantic propositional graphs by the syntax-semantics mapping rules. Of principal interest here is the syntax-semantics mapping rules.

The purpose of the syntax-semantics mapping rules is to convert information expressed as sets of syntactic assertions into information expressed as sets of semantic assertions. The rules were hand-crafted by examining syntactic constructions in subsets of our corpus, and then expressing the rules in general enough terms so that each one should apply to other examples as well.

We have already performed evaluation (Shapiro and Schlegel, 2013) of the mapping rules and found them to be sufficiently general (but not overly so), and provided good coverage of the syntactic data found in both our evaluation and test datasets, resulting in over 90% semantic knowledge in the resulting KB.

The full set of mapping rules are implemented using the SNePS 3 rule engine, designed specifically for this task. A subset of the rules have been implemented in SNePS 2 and the CSNePS Rule Language, which is defined and discussed in the following section.

8.2 CSNePS Rule Language

CSNePS implements a rule language loosely based on a subset of the syntax of CLIPS (Riley and Dantes, 2007), and using concepts from the GLAIR Cognitive Architecture (Shapiro and Bona, 2010). A rule definition takes the following general form:

\[
\text{rule} = \text{'(defrule', \text{rulename}, \text{LHS}, '=>', \text{RHS} ');}\]

where rulename is a unique name for a rule, LHS is the Left Hand Side of the rule (the “pattern matching” component), and RHS is the Right Hand Side of the rule (the firing component). The LHS and RHS are
discussed in more detail in Sections 8.2.1 and 8.2.2. The implementation of rules as part of an acting system is discussed in Section 8.2.3.

8.2.1 The Left Hand Side

The LHS of a rule is a collection of generic terms that must be matched for the rule to fire. This portion of the rule is special in that the quantified terms used take wide scope over the entire rule. Continuing the formal definition of the rule language, the LHS is defined as follows:

\[
\text{LHS} = \text{genericterm}^+;
\]

where \text{genericterm} is the definition of generic terms that we’ve used throughout this dissertation.

8.2.2 The Right Hand Side

The RHS of a rule may contain both Clojure forms and subrules. The set of Clojure forms will be executed in order, and the bindings from the LHS will be substituted in to them. Subrules are rules that are unnamed, and are only executed when the RHS of a rule fires. The subrule is provided the set of LHS bindings, which it may use in its own LHS/RHS. Subrules may themselves have subrules, with no constraint on depth.

Again continuing the formal definition of the rule language, the RHS is defined as follows:

\[
\text{RHS} = \text{RHSLine}^+;
\]

\[
\text{RHSLine} = \text{clojureform} | \text{subrule};
\]

\[
\text{subrule} = \left(\text{:subrule} \ LHS \ \text{'=>'} \ RHS \ \text{'}\right);
\]

8.2.3 Rules as Policies

A policy in an acting system allows Propositions to be connected in some way with actions. Actions are often primitive, implemented as Clojure code, but using the bindings from the matched propositions. CSNePS rules are implemented as policies, where the LHS contains the propositions to be matched, and the RHS contains the action that should occur.

The rule policy is defined as follows, using CSNePS slots and caseframes. The rule as given in the language is translated into this form by the build system.

\[
\text{(defineSlot action :type Action}
\]

\[
\begin{array}{c}
\text{:docstring "The actions of an act."} \\
\text{:min 1 :max 1} \\
\text{:posadjust none :negadjust none}
\end{array}
\]

146
Policies may not be believed or disbelieved like Propositions. Instead, they may be adopted or unadopted. A policy that is adopted is active, and one that is unadopted is not. When a rule policy is adopted, backward inference is performed on each of the LHS propositions, and each subrule is adopted. There is only a single representation for each subrule built in the IG; subrules are not instantiated when parent rules are matched. Also, subrules necessarily rely on at least one of its parent rule’s bindings, and may only receive those bindings from that parent rule. It is for this reason that the subrules of a rule may be adopted when the rule is adopted. When a rule policy is unadopted, the backward inference is canceled, and each subrule is unadopted.

8.3 Example Mapping Rules

In order to illustrate the operation of the mapping rules, consider the following two rules.

(defrule subjAction
 (nsubj (every action Token AgentAction) (every subj Token))
 =>
 (assert `(~'agent ~action ~subj))
 (unassert `(~'nsubj ~action ~subj))

\footnote{In some cases it is likely more optimal to only adopt subrules when the LHS of a rule is satisfied at least once. This has not yet been explored.}
(defrule dobjAction
 (dobj (every action Token AgentAction) (every obj Token))
=>
 (assert `(-'theme -action -obj))
 (unassert `(-'dobj -action -obj)))

The subjAction rule translates the syntactic relationship of a token which is an instance of AgentAction\(^4\) in an nsubj (nominal subject\(^5\)) relationship with another token, into a semantic relation representing that the subject is the agent (performer) of the action. The rule then unasserts the syntactic relationship.

The dobjAction rule is very similar to the subjAction rule. It translates the syntactic relationship of a token which is an instance of AgentAction in a dobj (direct object) relationship with another token, into a semantic relation representing that the object is the theme (or, thing undergoing the action). The rule then unasserts the syntactic relationship.

These two rules together build the following CSNePS knowledge base:

arb1: (every subj (Isa subj Token))
arb2: (every action (Isa action AgentAction) (Isa action Token))
wft1!: (Isa (every subj (Isa subj Token)) Token)
wft2!: (Isa (every action (Isa action AgentAction) (Isa action Token)) AgentAction)
wft3!: (Isa (every action (Isa action AgentAction) (Isa action Token)) Token)
wft4?: (nsubj (every action (Isa action AgentAction) (Isa action Token))
 (every subj (Isa subj Token)))
wft5?: (rule subjAction (nsubj (every action (Isa action AgentAction) (Isa action Token))
 (every subj (Isa subj Token)))
 act-1272108209 #{}))
wft6?: (dobj (every action (Isa action AgentAction) (Isa action Token))
 (every subj (Isa subj Token)))
wft7?: (rule dobjAction (dobj (every action (Isa action AgentAction) (Isa action Token))
 (every subj (Isa subj Token)))

\(^4\)I am using the category AgentAction since the semantic type Action is already used in the CSNePS rule engine with another meaning.
\(^5\)See the Stanford typed dependencies manual [de Marneffe and Manning [2008]] for more information on syntactic relationships from the Stanford dependency parser.
You’ll notice that both rules are able to make use of the same two arbitrary terms. The two generic terms which combine the substitutions from the arbitrary terms simply send different sets of combinations to the appropriate rule. Gathering substitutions in shared arbitrary terms allows for less repetition of inference.

To see these rules in action, consider the following knowledge base which is a subset of a knowledge base for an actual message used in testing:

(TextOf passed n19)
(TextOf Intelligence n17)
(TextOf names n23)
(Isa n17 Token)
(Isa n19 Token)
(Isa n23 Token)
(Isa n19 AgentAction)
(nsubj n19 n17)
(dobj n19 n23)

This comes from a segment of a message whose text is “Iraqi Domestic Counter-Intelligence passed the names of six prominent Sunni criminal leaders operating in Rashid to Coalition Forces.” Tokens have numeric identifiers prefixed with the letter “n”, derived from their GATE annotation IDs. The above knowledge base represents a small portion of the dependency parse of this message, the nsubj relation between the tokens with text “Intelligence” and “passed”, and the dobj relation between the tokens for the text “passed” and “names”. After the rules are run, the knowledge base contains the following asserted propositions:

(TextOf passed n19)
(TextOf Intelligence n17)
(TextOf names n23)
(Isa n17 Token)
(Isa n19 Token)
(Isa n23 Token)
(Isa n19 AgentAction) (or perhaps, any individuals at all).
(agent n19 n17)
(theme n19 n23)
The resulting knowledge base says that the agent of the “pass” action is “Intelligence” (the root of Iraqi Domestic Counter-Intelligence), and the theme of the “pass” action is “names”.

8.4 Evaluation of Mapping Rule Performance

In order to evaluate the performance of the IG in performing inference using the mapping rules in a real world task, 12 rules which were previously implemented using the SNePS 3 rule engine were implemented in both CSNePS and SNePS 2. The twelve mapping rules selected are some of those which fire the most number of times on a 114 message subset of SYNCOIN known as the Sunni Criminal Thread (or SUN for short). Each message is short (one to three sentences), and represents some intelligence information. The complete set of inference rules implemented in the three systems for this evaluation are given in Appendix B.

The SNePS 3 rule engine was built specifically for the execution of the mapping rules. In that system, the rules are implemented in Lisp, and compiled to machine code. Most of the time, this system does not really perform any inference. Rather, it uses a pattern matching strategy against the knowledge base. Occasionally, where necessary, path-based inference is used, but there is no deductive inference. This strategy does not extend to inference problems containing variables, but is sufficient for the mapping rules. Rules are executed one at a time, in a pre-defined order.

The SNePS 2 implementation of the mapping rules uses deductive reasoning and the SNePS Rational Engine (SNeRE) to believe and disbelieve propositions. This approach requires that all propositions in the knowledge base be asserted with forward inference. Rules are not tried in any particular order, the ACG simply matches each new term with antecedents of deductive rules, or conditions of SNeRE acting rules, and uses the ACG to perform inference.

The CSNePS implementation of the mapping rules uses the scheme described earlier in this chapter. Sets of rules are adopted in a pre-defined order. A set to be adopted may contain just a single rule, or many. When the IG reaches a quiescent state after adopting a set of rules, the next set is adopted. The actual order of rule firing within these sets is determined only by the priorities assigned to messages as in other types of inference.

To perform the evaluation, the 12 mapping rules were run on each of the 114 messages using each of the systems. The CSNePS run made use of 8 CPUs, the maximum the hardware available to me supports. Neither of the other two systems are capable of taking advantage of multiple processors, so they used only a single CPU.
Table 8.1: Time to complete the execution of the 12 selected mapping rules on the 114 message SUN dataset, along with the time for a single message.

<table>
<thead>
<tr>
<th>Inference Tool</th>
<th>Inference Time for 114 Messages (ms)</th>
<th>Inference Time for 1 Message (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSNePS IG</td>
<td>831721</td>
<td>7296</td>
</tr>
<tr>
<td>SNePS 2 ACG*</td>
<td>144000000</td>
<td>N/A</td>
</tr>
<tr>
<td>SNePS 3 Rule Engine</td>
<td>53900</td>
<td>473</td>
</tr>
</tbody>
</table>

The performance results are presented in Table 8.1. From these results we see that the SNePS 3 rule engine is the fastest, taking around half a second per message. CSNePS and the IG came in second, taking just over seven seconds per message. SNePS 2 and it’s ACG came in a distant third, having been halted after spending 40 hours processing. The times reported exclude the time taken to load the knowledge base for each message.

At first glance, it may appear that SNePS 3’s rule engine being an order of magnitude faster is bad news for IGs, but I claim this is not so. The implementation of these rules in SNePS 3 has taken years of work, allowing inefficiencies in SNePS 3 itself to be worked out, the rules to be optimized, and the rule engine to be designed and implemented specifically for this task. This is as opposed to the implementation in CSNePS, in which the rules were implemented over a short time period with no major optimization to the system or the rules. In addition, the inference system used by CSNePS is general, and not geared specifically for this task. It is also the case that the gap narrows as more CPUs are added to the CSNePS version, as we’ve seen in the previous chapter.

On a real use-case we have shown that, for a performance penalty that diminishes with compute power, you could use CSNePS to get the system up and running with decent performance (much better than SNePS 2, which is its most similar competitor in capabilities) without spending a ton of time optimizing, or developing a task-specific tool.

Table 8.2: Time to process the subjAction rule in CSNePS (using the IG), SNePS 2 (using the ACG), and the SNePS 3 rule engine on the 114 message SUN dataset, as compared to the time to process both the subjAction and dobjAction rules using those same systems on the same dataset. The times presented exclude the time needed to load the knowledge base into each system. The difference in time (ΔTime) and percent increase between these two tests shows the advantage of sharing components of the LHS of rules.

<table>
<thead>
<tr>
<th>Rule Processor</th>
<th>subjAction (ms)</th>
<th>subjAction + dobjAction (ms)</th>
<th>ΔTime</th>
<th>% Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSNePS IG</td>
<td>78558</td>
<td>81413</td>
<td>2855</td>
<td>3.63%</td>
</tr>
<tr>
<td>SNePS 2 ACG</td>
<td>5378698</td>
<td>8052874</td>
<td>2674176</td>
<td>49.72%</td>
</tr>
<tr>
<td>SNePS 3 Rule Engine</td>
<td>4400</td>
<td>9000</td>
<td>4600</td>
<td>104.55%</td>
</tr>
</tbody>
</table>

One of the major advantages of the graph-based approach used in CSNePS is the ability to share parts of the LHS of rules. The use of shared portions of LHS conditions can be seen by examining the execution
time of the two rules described in the previous section, *subjAction* and *dobjAction*, more carefully. First, in CSNePS, SNePS 2, and the SNePS 3 rule engine, just the rule *subjAction* was run on all 114 messages of the SUN dataset. Next, both *subjAction* and *dobjAction* were run on those same messages to compare the execution times. The CSNePS IG took 2855ms longer when the second rule was added. This represents a rather small increase of 3.6%, since much of the LHS of the added *dobjAction* has already been processed by the system. In SNePS 2, the added time was very significant, but represented only a 49.8% increase, since the ACG allows some sharing as well. In SNePS 3, the time added was 4600ms, representing a 104.5% increase, since the LHS of the rule must be re-processed for every rule, regardless of similarity to other rules already processed. In all of these tests the time to load the knowledge bases was excluded. Even though overall CSNePS is slower than SNePS 3 on this test, adding the second rule had less impact in CSNePS both in absolute time, and in percentage of time spent.
Chapter 9

Discussion

In this dissertation I have presented the theory, an implementation, and an evaluation of IGs. Inference Graphs are a newly developed graph-based hybrid inference mechanism for natural deduction and subsumption reason which make use of concurrency, implement an expressive first order logic, and use a message passing system to perform inference. Inference Graphs support several different modes of inference — forward, backward, bi-directional, and focused. Extending a graph-based knowledge representation formalism in propositional graphs, IGs act both as the representation of knowledge in an AI system, and as a reasoner utilizing that knowledge.

Inference Graphs provide a method for reasoning using the first order logic \mathcal{L}_A. \mathcal{L}_A uses arbitrary and indefinite terms to replace \mathcal{L}_S’s universal and existential quantifiers. Using these structured quantified terms, IGs are capable of subsumption inference as well as natural deduction. Additionally, IGs are one of the only inference systems implemented which utilize arbitrary terms.

Each kind of inference which IGs are capable of is made possible because of the message passing architecture used by IGs. Channels are created throughout the graph wherever inference (whether natural deduction or subsumption) is possible. Nodes for rules which use the logical connectives collect messages and determine when they may be combined to satisfy rules of inference. If inference rules are satisfied and fire, then more messages are sent onward through the graph. Messages may flow forward through these channels from specific terms and through rules of inference during forward reasoning, backward to set up backward reasoning and associated dynamic contexts, and a combination of the two for bi-directional inference. Focused reasoning uses properties of the channels whereby the channels are able to receive knowledge added after a query is asked, and propagate it through the graph without the user asking again.
Inference Graphs provide a modern method for performing logical inference concurrently within a KR system — and is the only natural deduction and subsumption reasoner to be able to make this claim. The fact that IGs are built as an extension of propositional graphs means that IGs have access to a persistent view of the underlying relationships between terms, and are able to use this to optimize inference procedures using a set of scheduling heuristics.

Given the message-passing architecture IGs employ, concurrency falls out rather easily. The primary work of the IGs is accomplished in the nodes, where messages are received, combined, evaluated for matching of inference rules, and possibly relayed onward. In addition, messages may arrive at many nodes simultaneously, and it is useful to explore multiple paths within the graph at once. Therefore, IGs execute many of these node processes at once — as many as the hardware allows.

Three scheduling heuristics have been developed which allow inference graphs to perform significantly better in concurrent reasoning applications than naive approaches. These heuristics ensure that inference “closer” to the solution in the graph is performed first, and redundant or unnecessary inference is canceled. Using these heuristics, and utilizing concurrency at the node level, IGs have shown linear speedup as the number of processors used increases.

When used as part of a real-world AI system, IGs perform much better than SNePS 2 and its ACG, which is the IG’s closest competitor in terms of capability. The advantages of sharing nodes in the graph has been shown to allow for better timing characteristics than even compiled, specially built, rule systems.

The remainder of this chapter discusses potential applications of IGs in Section 9.1, opportunities for future work in Section 9.2, and the availability of a version of CSNePS containing IGs in Section 9.3.

9.1 Potential Applications

9.1.1 As a Component of a Cognitive System

Cognitive systems make use of one or more reasoning components (along with other things) within a system which exhibits some cognitive ability. As mentioned briefly in the introduction, it seems that a human-level AI will require reasoning by a logical inference system with expressiveness at least that of FOL, and that multiple types of inference are required.

Inference Graphs are believed to be the first reasoning system that will allow agents to: continue backward reasoning when an unanswerable query has been posed, and new information is added to the KB; continue reasoning forward from a specific piece of knowledge as the KB grows; and combine these strategies. This
is the effect of focused reasoning. This can be thought of as a subconscious method of determining if new information is relevant to required inference, and if it is, continuing inference at the conscious level.

Inference graphs are the first system to implement the logic \mathcal{L}_A (and likely only the second to implement a logic using arbitrary objects). Using arbitrary and indefinite objects allows an agent to respond to queries in a generic way, and reason about classes of objects in the world without knowing of a specific instance, as a human might. The logic has been designed for natural language and commonsense reasoning. It is designed to be more natural for humans to express than other first order logics. This is important since it can be argued that a logic that is easier to express is likely closer to the language of thought. The nature of \mathcal{L}_A’s quantified terms has allowed inference graphs to support reasoning other than natural deduction, namely subsumption reasoning.

It’s clear that the brain operates in parallel, so it is important to us that a reasoning component of a cognitive system examine multiple inference paths simultaneously. One particularly important issue in performing inference concurrently is that a single result may be derivable in several ways. There is no reason to continue deriving a result if it has already been done. Inference Graphs take great care to avoid this issue, recognizing when inference tasks can be canceled, and prioritizing them so that answers are reached as quickly as possible.

9.1.2 As a General Purpose Reasoner

Logical inference systems are seeing a resurgence, and are used now perhaps even more than they were during the “Good Old-Fashioned AI” era when many of the lines of research in this area began. Production systems, and their primary algorithm, the RETE net, provide the business logic for many software systems. Truth maintenance systems provide methods for maintaining justifications for derived beliefs. Description logics are used frequently in software utilizing ontologies. These systems generally provide some “bolt-on” method for performing a specific inference task within a system. As we’ve discussed previously, each of these systems has limitations.

The limitations of these systems largely comes down to two factors: expressiveness, and capability. Description logics are less expressive than FOL, and have various restrictions on their inferencing ability. Production systems have various levels of expressiveness, but are always limited to one-way pattern matching. TMSes never technically derive anything new, only maintaining the truth value (and its justifications) for atoms it already knows about. For this reason, TMSes are often used as a secondary component of a more capable reasoner.
Many of these reasoners are also not amenable to concurrent processing. Production systems have severe bottlenecks, and truth maintenance systems have a large amount of shared state to coordinate. Some types of logic programming languages are easily used in concurrent processing systems, such as Datalog, at the price, again, of expressiveness. Inference Graphs attempt to avoid these pitfalls.

The limits of these systems are run up against regularly in the fields where these systems are primarily used, and workarounds have provided many an intellectual quite the quandary. More expressive and capable inference mechanisms such as the SNePS 2 Active Connection Graph exist, but don’t always work as quickly as the above systems, and are marketed more toward the cognitive systems community, so are perhaps used less frequently. Inference graphs are designed to be able to replace RETE nets, TMSes, ACGs, and in some cases description logics, wherever they may be used. Replacing one of these systems with IGs immediately results in a more capable reasoning system with more expressiveness.

9.1.3 As a Notification and Inference System for Streaming Data

There are massive streams of data being generated constantly. Whether it be on social media such as Twitter and Facebook, RSS feeds, by wearable devices, by surveillance systems, or any number of other means, we are inundated with data. Today’s data centers are becoming more and more filled with this generated data. As collections of data increase in size, it is becoming desirable to perform inference over the data, and to be notified as soon as data meeting certain criteria are added.

Focused inference allows IGs to answer queries incrementally as streaming data is added to the KB. Queries may be added when they are entirely unanswerable, or when not all the results desired are yet derivable. A notification system can be attached to the output of those queries, so persons may receive notifications when certain conditions are met by streaming data. This is in contrast to the common approach, such as that adopted by eBay (eBay, Inc., 2013), which runs a query periodically, rather than provide constant updates.

9.2 Possibilities for Future Work

Inference graphs are still a very new mechanism for performing inference. As such, while many issues have been solved in this dissertation, there are still many unsolved problems related to inference graphs, and many applications of the components not yet explored.
9.2.1 Further Comparison with Other Inference Systems

9.2.1.1 Production Systems

Inference graphs are meant to subsume RETE networks, but it’s not obvious that every production system program has a translation that can be used with the inference graph. A basic rule language has been designed for use within the syntax-semantics mapping rules, but it does not yet attempt to be as expressive as what many production systems support. If such a translation always exists, it would be interesting to perform a conversion automatically, and measure the performance of a traditional RETE-based production system, with the translation using IGs.

9.2.1.2 Description Logics

It is clear that there is a relationship between the logical capabilities implemented in IGs and those in description logics. Since IGs implement a full FOL, IGs should be more expressive then even the most expressive description logic. Description Logics also support subsumption reasoning, as IGs do. A detailed analysis has not yet been performed that compare the capabilities (and performance/complexity characteristics) of IGs and description logics.

9.2.2 Inference Capabilities

9.2.2.1 Further Integrating IGs with Other Inference Types

CSNePS supports path-based, slot-based, and sort-based inference in addition to the deductive inference performed in the IG. Inference Graphs are used only for deductive inference, and the connections between IGs and these other inference types are not well defined. A general solution should be devised to allow IGs to interact with other types of inference when necessary.

9.2.2.2 Implementation of the Definite Quantified Term

In addition to the arbitrary (“every”) and indefinite (“some”) quantified terms, there could be a definite (“the”) quantified term which refers to a single satisfying term. This quantified term could be found to be co-referential with one and only one satisfying term through inference. If the quantified term were satisfied by more than one term it would be inconsistent, and belief revision of some sort would be required.
9.2.2.3 Reductio ad Absurdum

Inference Graphs in their current form are best for direct proofs. Indirect proofs using rules such as \textit{reductio ad absurdum} are not yet possible. Two ideas for implementing the reductio rule are as follows:

1. At every node reached during backward inference, add a new reductio task with very low priority to the task queue, so if the backward inference doesn’t result in any new derivation, reductio is tried. If backward inference succeeds, the reductio tasks are cancelled.

2. Add a new type of message which communicates the idea “I don’t have anything further”, flowing forward through the graph as backward inference takes place. When one of these messages is received, reductio can be tried.

Unfortunately, both of these are counter to the core philosophy of IGs. One major objective of IGs is to perform inference without taking essentially random paths, and to be able to prioritize inference by its likelihood to succeed. Executing forward inference from every term visited during backward inference is exactly what IGs try to avoid.

One version of the reductio rule is given below.

\[\Gamma \cup \{ \neg A \} \vdash F \]
\[\Gamma \cup \{ \neg A \} \vdash \neg F \]
\[\therefore, \Gamma \vdash A \]

This makes it clear that the real task in deciding when to perform reductio inference is to determine when some \(F \) can be found. There is certainly room for further work in this area. Success would mean allowing the core ideas of IGs to stand, and allowing reductio inference.

9.2.2.4 Abductive Reasoning

Abductive reasoning allows for the belief of a hypothesis given some observation. That is, given a consequent, an antecedent may be believed. The standard example of the usefulness of deductive reasoning is: from the observation that the lawn is wet, and the rule that if it rained last night, then the lawn will be wet, then it seems reasonable to \textit{abduce} that it rained last night.

Abductive reasoning would seem to be a natural addition to the inference capabilities of IGs. At its core, abduction is simply another rule of inference. Of course, there is a significant amount of machinery involved in ensuring that the KB remains consistent when mixing abductive and deductive inference. For example, a new origin tag would probably be introduced, and a belief revision system would need to make use of this
tag to automatically believe deduced beliefs over abduced ones. There is already a significant amount of research in this area, which could possibly be incorporated.

9.2.2.5 Reasoning with Numerical Constraints

In systems which support them, numerical constraints (e.g., $>$, \leq, $=$) are placed on arguments and these are used to constrain inference. For example, imagine a query such as $(\text{ArticlesByYear (every x Year (> x 2013)))}$, which is meant to retrieve all articles with a year greater than 2013. It is possible that such a thing might be implemented fully within the object language (Goldfain 2008), but computers are already good at math, and there may be an argument for not re-inventing the wheel. Inference Graphs may be able to implement constraints as a new type of valve selector. Constraints on rules could be combined with those on queries, so only terms meeting the appropriate constraints pass through the graph.

9.2.3 Acting System and Attention

The beginnings of implementing the acting system from the GLAIR cognitive architecture have barely begun in CSNePS using IGs. The MGLAIR extension to GLAIR makes use of multithreading to handle multiple modalities, but does not include a reasonable model of concurrency. Instead, it is grafted atop the SNePS 2 ACG, and likely only works properly because the lisp used only supports multithreading using a single processor. Implementing this in a way that makes significant use of the IGs prioritized model of concurrency would be interesting. Manipulation of the priorities by a subsystem handling attention would be a natural extension of this.

9.2.4 Efficiency Improvements

9.2.4.1 Concurrent Term Matching

While concurrency has been explored in the IG, the match process does not take advantage of concurrency. Most concerning in this step is unification, as it is most time consuming. The problem of using concurrency with term trees is difficult as the naive solution of just splitting off threads at each branch of the unification tree results in many threads that end up doing nearly no work, such as a simple string comparison. It’s important therefore to predict where difficult unification issues will occur (specifically surrounding quantified terms), and determine when concurrency is a viable option based on that.
9.2.4.2 andor/thresh

Andor and thresh rules are only able to take advantage of Choi’s S-Indexes when each argument uses the same set of variables. This unfortunately means that some inference using the andor/thresh connectives uses the default message combination algorithm, which has poor performance characteristics. A new structure, perhaps combining P-Trees and S-Indexes may resolve this issue.

9.2.4.3 Valve Selectors

When a term attempts to pass a valve, if it fails, it is tried against every valve selector, even if some valve selectors subsume others. In addition, since the valve selectors aren’t ordered in any specific way, the term may try several more specific valve selectors before reaching a general one which allows it to pass. Given this, it seems that valve selectors should be structured in some way. This structure should allow for an ordering of the valve selectors so that messages which are going to pass the valve are likely to do so early in the process of testing valve selectors, and so that messages are not tested against less general, then strictly more general valve selectors. At least part of this ordering may involve a subsumption lattice.

9.2.5 Applying the IG Concurrency Model to Functional Programming Languages

Pure functional programs are often parallelizable, but the burden is on the programmer to decide where to use the parallelism. In addition, functional programs often use logical operations as control structures. It would be interesting to modify inference graphs to operate on logical operations in programs, and allow the scheduling heuristics to handle the issues of where and when to execute operations in parallel.

9.3 Availability

The CSNePS KRR system, including an implementation of IGs, is available on GitHub, at https://github.com/SNePS/CSNePS.
Appendices
Appendix A

Detailed Concurrency Benchmark

Results

Tables A.1 and A.2 contain the raw data used in the creation of Figure 7.10. Tables A.3 and A.4 contain the raw data used in the creation of Figure 7.11.

Table A.1: Time in ms for 100 runs using and-entailment, with $bf = 2$, varying the depth, d, and number of CPUs.

<table>
<thead>
<tr>
<th></th>
<th>$d = 5$</th>
<th>$d = 6$</th>
<th>$d = 7$</th>
<th>$d = 8$</th>
<th>$d = 9$</th>
<th>$d = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CPU</td>
<td>37170.564</td>
<td>95920.464</td>
<td>229630.521</td>
<td>637066.020</td>
<td>2142145.819</td>
<td>5674723.732</td>
</tr>
<tr>
<td>2 CPUs</td>
<td>19746.130</td>
<td>47728.349</td>
<td>122985.583</td>
<td>346230.558</td>
<td>1130476.815</td>
<td>3010782.335</td>
</tr>
<tr>
<td>4 CPUs</td>
<td>11000.026</td>
<td>25974.652</td>
<td>65978.575</td>
<td>182989.750</td>
<td>580842.064</td>
<td>1614761.405</td>
</tr>
<tr>
<td>8 CPUs</td>
<td>5809.662</td>
<td>14625.923</td>
<td>35981.687</td>
<td>99001.153</td>
<td>330557.983</td>
<td>894761.405</td>
</tr>
</tbody>
</table>

Table A.2: Speedup for 100 runs using and-entailment, with $bf = 2$, varying the depth, d, and number of CPUs.

<table>
<thead>
<tr>
<th></th>
<th>$d = 5$</th>
<th>$d = 6$</th>
<th>$d = 7$</th>
<th>$d = 8$</th>
<th>$d = 9$</th>
<th>$d = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CPU</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2 CPUs</td>
<td>1.88</td>
<td>2.01</td>
<td>1.87</td>
<td>1.84</td>
<td>1.89</td>
<td>1.88</td>
</tr>
<tr>
<td>4 CPUs</td>
<td>3.38</td>
<td>3.69</td>
<td>3.48</td>
<td>3.48</td>
<td>3.69</td>
<td>3.51</td>
</tr>
<tr>
<td>8 CPUs</td>
<td>6.40</td>
<td>6.56</td>
<td>6.38</td>
<td>6.43</td>
<td>6.48</td>
<td>6.34</td>
</tr>
</tbody>
</table>

162
Table A.3: Time in ms for 100 runs using and-entailment, with \(d = 5 \), varying the branching factor, \(bf \), and number of CPUs.

<table>
<thead>
<tr>
<th>(bf)</th>
<th>1 CPU</th>
<th>2 CPUs</th>
<th>4 CPUs</th>
<th>8 CPUs</th>
<th>16 CPUs</th>
<th>32 CPUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(bf = 1)</td>
<td>2994.524</td>
<td>2031.898</td>
<td>1799.605</td>
<td>1796.746</td>
<td>1794.524</td>
<td>1790.632</td>
</tr>
<tr>
<td>(bf = 2)</td>
<td>37170.564</td>
<td>19746.130</td>
<td>11000.026</td>
<td>5809.662</td>
<td>37170.564</td>
<td>19746.130</td>
</tr>
<tr>
<td>(bf = 3)</td>
<td>257360.081</td>
<td>140219.462</td>
<td>80460.438</td>
<td>42007.194</td>
<td>257360.081</td>
<td>140219.462</td>
</tr>
<tr>
<td>(bf = 4)</td>
<td>2753734.996</td>
<td>1596824.369</td>
<td>859372.445</td>
<td>455925.620</td>
<td>2753734.996</td>
<td>1596824.369</td>
</tr>
<tr>
<td>(bf = 5)</td>
<td>17734958.810</td>
<td>9991135.407</td>
<td>5702900.242</td>
<td>2902900.001</td>
<td>17734958.810</td>
<td>9991135.407</td>
</tr>
<tr>
<td>(bf = 6)</td>
<td>112404592.100</td>
<td>58616012.630</td>
<td>36205780.920</td>
<td>18467655.926</td>
<td>112404592.100</td>
<td>58616012.630</td>
</tr>
</tbody>
</table>

Table A.4: Speedup for 100 runs using and-entailment, with \(d = 5 \), varying the branching factor, \(bf \), and number of CPUs.

<table>
<thead>
<tr>
<th>(bf)</th>
<th>1 CPU</th>
<th>2 CPUs</th>
<th>4 CPUs</th>
<th>8 CPUs</th>
<th>16 CPUs</th>
<th>32 CPUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(bf = 1)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>(bf = 2)</td>
<td>1.47</td>
<td>1.88</td>
<td>1.84</td>
<td>1.72</td>
<td>1.78</td>
<td>1.92</td>
</tr>
<tr>
<td>(bf = 3)</td>
<td>1.66</td>
<td>3.38</td>
<td>3.20</td>
<td>3.20</td>
<td>3.11</td>
<td>3.10</td>
</tr>
<tr>
<td>(bf = 4)</td>
<td>1.67</td>
<td>6.40</td>
<td>6.13</td>
<td>6.03</td>
<td>6.11</td>
<td>6.09</td>
</tr>
<tr>
<td>(bf = 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(bf = 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix B

Implemented Mapping Rules

The mapping rules implemented and tested for Chapter 8 are listed in this appendix. In Section B.1 the SNePS 3 implementation of the rules is given. Section B.2 gives the CSNePS implementation, and Section B.3 gives the SNePS 2 implementation.

B.1 SNePS 3

(defun generalizeNounsAndVerbs ()
 "Add general syntactic categories of noun and verb."
 (withInstances (?tok) of (SyntacticCategoryOf NN ?tok)
 (assert `(SyntacticCategoryOf noun ,?tok))
 (usedRule 'generalizeNounsAndVerbs))
 (withInstances (?tok) of (SyntacticCategoryOf NNP ?tok)
 (assert `(SyntacticCategoryOf noun ,?tok))
 (usedRule 'generalizeNounsAndVerbs))
 (withInstances (?tok) of (SyntacticCategoryOf NNPS ?tok)
 (assert `(SyntacticCategoryOf noun ,?tok))
 (usedRule 'generalizeNounsAndVerbs))
 (withInstances (?tok) of (SyntacticCategoryOf NNS ?tok)
 (assert `(SyntacticCategoryOf noun ,?tok))
 (usedRule 'generalizeNounsAndVerbs)))
(withInstances (?tok) of (SyntacticCategoryOf NP ?tok)
 (assert `(SyntacticCategoryOf noun ,?tok))
 (usedRule 'generalizeNounsAndVerbs))

(withInstances (?tok) of (SyntacticCategoryOf NPS ?tok)
 (assert `(SyntacticCategoryOf noun ,?tok))
 (usedRule 'generalizeNounsAndVerbs))

(withInstances (?tok) of (SyntacticCategoryOf VBD ?tok)
 (assert `(SyntacticCategoryOf verb ,?tok))
 (usedRule 'generalizeNounsAndVerbs))

(withInstances (?tok) of (SyntacticCategoryOf VBG ?tok)
 (assert `(SyntacticCategoryOf verb ,?tok))
 (usedRule 'generalizeNounsAndVerbs))

(withInstances (?tok) of (SyntacticCategoryOf VBN ?tok)
 (assert `(SyntacticCategoryOf verb ,?tok))
 (usedRule 'generalizeNounsAndVerbs))

(withInstances (?tok) of (SyntacticCategoryOf VBP ?tok)
 (assert `(SyntacticCategoryOf verb ,?tok))
 (usedRule 'generalizeNounsAndVerbs))

(withInstances (?tok) of (SyntacticCategoryOf VB ?tok)
 (assert `(SyntacticCategoryOf verb ,?tok))
 (usedRule 'generalizeNounsAndVerbs))

(withInstances (?tok) of (SyntacticCategoryOf VBZ ?tok)
 (assert `(SyntacticCategoryOf verb ,?tok))
 (usedRule 'generalizeNounsAndVerbs)))

(defrule properNounToName
 "If the syntactic category of a token is NNP,
 then text of the token is the proper name of the entity denoted by the token."
 (SyntacticCategoryOf NNP ?token)
 (TextOf ?text ?token)
(assert `(hasName ,?token ,?text))
(unassert `(SyntacticCategoryOf NNP ,?token))
(unassert `(TextOf ,?text ,?token))
(:subrule
 (RootOf ?root ?token)
 =>
 (unassert `(RootOf ,?root ,?token)))
(usedRule 'properNounToName))

(defun organizationHasName ()
 "If a token is an organization, then its text is its name."
 ;; Example (syn579): "Iraqi Ministry of Interior"
 ;; and "Iraqi Eighth Brigade"
 (withInstances (?org) of (Isa ?org Organization)
 (withInstances (?name) of (TextOf ?name ?org)
 (assert `(hasName ,?org ,?name))
 (unassert `(TextOf ,?name ,?org))
 (usedRule 'organizationHasName))))

(defrule nnName
 "If a person that has a name has an nn modifier
 that is also a token with a name,
 then the second name is also a name of the person."
 ;; Example (syn059): "Mu'adh Nuri Khalid Jihad"
 ;; Example of when non-Person is an exception (syn336):
 ;; "Sunni Market"

 (hasName ?tok1 ?lastname)
 (nn ?tok1 ?tok2)
 (hasName ?tok2 ?name)
=>
(set:when (askif `(Isa ,?tok1 Person))
 (assert `(hasName ,?tok1 ,?name))
 (unassert `(hasName ,?tok2 ,?name))
 (unassert `(nn ,?tok1 ,?tok2))
 (usedRule 'nnName))

(defrule nounPhraseToInstance
 "If a common noun is the head of a NP,
 and the root of the noun is root,
 then the common noun token is an instance of the root type."
 (SyntacticCategoryOf NN ?nn)
 (:when (isNPhead ?nn))
 (RootOf ?root ?nn)
 (:unless (numberTermp ?root))
 =>
 (assert `(Isa ,?nn ,?root))
 (unassert `(SyntacticCategoryOf NN ,?nn))
 (unassert `(RootOf ,?root ,?nn))
 (usedRule 'nounPhraseToInstance))

(defun eventToInstance ()
 "A verb that is an instance of Event is an instance of its root."
 ;; Example (syn064): "forces detained a ... trafficer"
 (withInstances (?event) of (SyntacticCategoryOf verb ?event)
 (withInstances (?eventtype) of (RootOf ?eventtype ?event)
 (set:when (askif `(Type ,?eventtype Event))
 (assert `(Isa ,?event ,?eventtype))
 (unassert `(RootOf ,?eventtype ,?event))
 (withInstances (?txt) of (TextOf ?txt ?event)
 (unassert `(TextOf ,?txt ,?event)))))

167
(defun pluralNounToGroup ()
 "A token of a plural noun becomes a group of instances of that class."
 ;; Shouldn't have to check that the token is the head of a NP,
 ;; since plural nouns should not be dependents of NPs.
 (withInstances (?grp) of (SyntacticCategoryOf NNS ?grp)
 (withInstances (?class) of (RootOf ?class ?grp)
 (unless (numberTermp ?class)
 (assert `(GroupOf ,?grp ,?class))
 (assert `(Isa ,?grp Group))
 (unassert `(SyntacticCategoryOf NNS ,?grp))
 (unassert `(RootOf ,?class ,?grp))
 (usedRule 'pluralNounToGroup)))
 (withInstances (?txt) of (TextOf ?txt ?grp)
 (unassert `(TextOf ,?txt ,?grp))))
)

(defrule subjAction
 "If an action has an explicit subject, subj,
 then subj is the agent of the action."
 (nsubj ?action ?subj)
 (Isa ?action Action)
 =>
 (assert `(agent ,?action ,?subj))
 (unassert `(nsubj ,?action ,?subj))
 (usedRule 'subjAction))

(defun dobjAction ()
 "If an action has a direct object, obj,
 then obj is the theme of the action."
)
(withInstances (?action ?obj) of (dobj ?action ?obj)
 (set:when (askif `(Isa ,?action Action))
 (assert `(theme ,?action ,?obj))
 (unassert `(dobj ,?action ,?obj))
 (usedRule 'dobjAction))))

(defun prepToRelation ()
 "If a token is modified by a prepositional phrase,
 then consider the preposition to be a relation between the token
 and the object(s) of the preposition."
 ;; This is for prepositions not otherwise handled,
 ;; because it it so simplistic.
 (withInstances (?preptok ?token) of (prep ?token ?preptok)
 (withInstances (?noun2) of (pobj ?preptok ?noun2)
 (withInstances (?prepwd) of (RootOf ?prepwd ?preptok)
 (sameFrame (sneps:name ?prepwd) 'above)
 (set:unless (set:or.set
 ;; Dates and Times have already been
 ;; moved to the event
 (askif `(Isa ,?noun2 Time))
 (askif `(Isa ,?noun2 Date)))
 (assert `(,?prepwd ,?token ,?noun2)))
 (unassert `(pobj ,?preptok ,?noun2))
 (usedRule 'prepToRelation))))))

(defun nnToModifier ()
 "Any token with an nn syntactic dependent of m
 is given a Modifier attribute of the TextOf m."
 ;; This is a simplistic rule,
 ;; and should eventually be preempted by more intelligent versions."
 (withInstances (?tok ?m) of (nn ?tok ?m)
(withInstances (?txt) of (TextOf ?txt ?m))
 (assert `(Modifier ,?tok ,?txt))
 (unassert `(nn ,?tok ,?m))
 (unassert `(TextOf ,?txt ,?m))
 (usedRule 'nnToModifier))
;; If ?tok was a Person
;; and ?m was an NNP, it was changed into a Name
;; Example of when non-Person is an exception (syn336):
;; "Sunni Market"
(withInstances (?txt) of (hasName ?m ?txt))
 (set:when (askif `(Isa ,?m Person))
 (assert `(Modifier ,?tok ,?txt))
 (unassert `(nn ,?tok ,?m))
 (unassert `(hasName ,?m ,?txt))
 (usedRule 'nnToModifier)))
;; If ?m was plural, it was already changed into a Group
(withInstances (?txt) of (GroupOf ?m ?txt))
 (assert `(Modifier ,?tok ,?txt))
 (unassert `(nn ,?tok ,?m))
 (unassert `(GroupOf ,?m ,?txt))
 (usedRule 'nnToModifier))

(defun amodToModifier ()
"Any token with an amod syntactic dependent of m
 is given a Modifier attribute of the TextOf m."
;; This is a simplistic rule,
;; and should eventually be preempted by more intelligent versions."
(withInstances (?tok ?m) of (amod ?tok ?m)
 (withInstances (?txt) of (TextOf ?txt ?m))
 (assert `(Modifier ,?tok ,?txt))
 (unassert `(amod ,?tok ,?m))

B.2 CSNePS

;;;; generalizeNounsAndVerbs
(assert '(SyntacticCategoryOf noun (every x (SyntacticCategoryOf NN x))))
(assert '(SyntacticCategoryOf noun (every x (SyntacticCategoryOf NNP x))))
(assert '(SyntacticCategoryOf noun (every x (SyntacticCategoryOf NNPS x))))
(assert '(SyntacticCategoryOf noun (every x (SyntacticCategoryOf NNS x))))
(assert '(SyntacticCategoryOf noun (every x (SyntacticCategoryOf NP x))))
(assert '(SyntacticCategoryOf noun (every x (SyntacticCategoryOf NPS x))))

(assert '(SyntacticCategoryOf verb (every x (SyntacticCategoryOf VBD x))))
(assert '(SyntacticCategoryOf verb (every x (SyntacticCategoryOf VBG x))))
(assert '(SyntacticCategoryOf verb (every x (SyntacticCategoryOf VBN x))))
(assert '(SyntacticCategoryOf verb (every x (SyntacticCategoryOf VBP x))))
(assert '(SyntacticCategoryOf verb (every x (SyntacticCategoryOf VB x))))
(assert '(SyntacticCategoryOf verb (every x (SyntacticCategoryOf VBZ x))))

(defrule properNounToName1
 (SyntacticCategoryOf NNP (every x Token))
 (TextOf (every y Word) x)
=>
 (assert `(~'hasName -x -y))
 (unassert `(~'SyntacticCategoryOf -'NNP -x))
 (unassert `(~'TextOf -y -x))
)

(defrule properNounToName2
 (SyntacticCategoryOf NNP (every x Token))
)
(defrule organizationHasName
 (Isa (every t Token) Organization)
 (TextOf (every o Word) t)
 =>
 (assert `(~'hasName -t -o))
 (unassert `(~'TextOf -o -t)))

(defrule nnName
 (nn (every tok1 Token) (every tok2 Token))
 (hasName tok1 (every lname Word))
 (hasName tok2 (every name Word (notSame lname name)))
 =>
 (:subrule
 (Isa tok1 Person)
 =>
 (assert `(~'hasName -tok1 -name)))
 (unassert `(~'hasName -tok2 -name))
 (unassert `(~'nn -tok1 -tok2)))

(defrule nounPhraseToInstance
 (SyntacticCategoryOf NN (every nn Token))
 (RootOf (every root Word) nn)
 =>
 (when (and (not (numberTerm? root))
 (NPhead? nn))
 (assert `(~'Isa -nn -root))
 (unassert `(~'SyntacticCategoryOf -'NN -nn))
(unassert `(~'RootOf ~root ~nn))

(defrule eventToInstance
 (SyntacticCategoryOf verb (every event Token))
 (RootOf (every eventtype Word (Isa eventtype Event)) event)
 =>
 (assert `(~'Isa ~event ~eventtype))
 (unassert `(~'RootOf eventtype event))
 (:subrule
 (TextOf (every text Word) event)
 =>
 (unassert `(~'TextOf ~text ~event)))

(defrule pluralNounToGroup
 (SyntacticCategoryOf NNS (every grp Token))
 =>
 (:subrule
 (RootOf (every class Word) grp)
 =>
 (when-not (numberTerm? class)
 (assert `(~'GroupOf ~grp ~class))
 (assert `(~'Isa ~grp ~'Group))
 (unassert `(~'SyntacticCategoryOf ~'NNS ~grp))
 (unassert `(~'RootOf ~class ~grp)))))
 (:subrule
 (TextOf (every text Word) grp)
 =>
 (unassert `(~'TextOf ~text ~grp)))

(defrule subjAction
 (nsubj (every action Token (Isa action AgentAction)) (every subj Token))
(assert `(~'agent -action ~subj))
(unassert `(~'nsubj -action ~subj))

(defrule dobjAction
 (dobj (every action Token (Isa action AgentAction)) (every obj Token))
=>
 (assert `(~'theme -action ~obj))
 (unassert `(~'dobj -action ~obj)))

(defrule prepToRelation
 (prep (every token Token) (every preptok Token))
 (pobj preptok (every noun2 Token (notSame noun2 token preptok)))
 (RootOf (every prepwd Word) preptok)
=>
 (when (:name prepwd) (sameFrame (symbol (:name prepwd)) 'above))
 (assert `(~prepwd -token ~noun2))
 (unassert `(~'pobj -preptok ~noun2)))

(defrule nnToModifier
 (nn (every tok Token) (every m Token))
=>
 (:subrule
 (TextOf (every txt Word) m)
 =>
 (assert `(~'Modifier -tok ~txt))
 (unassert `(~'nn -tok ~m))
 (unassert `(~'TextOf -txt ~m)))
 (:subrule
 (hasName m (every txt Word))
 =>)
(assert `(~'Modifier -tok -txt))
(unassert `(~'nn -tok -m))
(unassert `(~'hasName -m -txt))

(:subrule
 (GroupOf m (every txt Category)) =>
 (assert `(~'Modifier -tok -txt))
 (unassert `(~'nn -tok -m))
 (unassert `(~'GroupOf -m -txt))))

(defrule amodToModifier
 (amod (every tok Token) (every m Token))
 (TextOf (every txt Word) m) =>
 (assert `(~'Modifier -tok -txt))
 (unassert `(~'amod -tok -m))
 (unassert `(~'TextOf -txt -m)))

B.3 SNePS 2

;; generalizeNounsAndVerbs
 all(token)(SyntacticCategoryOf("NN",token) => SyntacticCategoryOf(noun,token)).
 all(token)(SyntacticCategoryOf("NNP",token) => SyntacticCategoryOf(noun,token)).
 all(token)(SyntacticCategoryOf("NNPS",token) => SyntacticCategoryOf(noun,token)).
 all(token)(SyntacticCategoryOf("NNS",token) => SyntacticCategoryOf(noun,token)).
 all(token)(SyntacticCategoryOf("NP",token) => SyntacticCategoryOf(noun,token)).
 all(token)(SyntacticCategoryOf("NPS",token) => SyntacticCategoryOf(noun,token)).

 all(token)(SyntacticCategoryOf("VBD",token) => SyntacticCategoryOf(verb,token)).
 all(token)(SyntacticCategoryOf("VBG",token) => SyntacticCategoryOf(verb,token)).
all(token)(SyntacticCategoryOf("VBN", token) => SyntacticCategoryOf(verb, token)).
all(token)(SyntacticCategoryOf("VBP", token) => SyntacticCategoryOf(verb, token)).
all(token)(SyntacticCategoryOf("VB", token) => SyntacticCategoryOf(verb, token)).
all(token)(SyntacticCategoryOf("VBZ", token) => SyntacticCategoryOf(verb, token)).

;; properNounToName1
all(token)(SyntacticCategoryOf("NNP", token)
 => (all(text)(TextOf(text, token)
 => hasName_temp(token, text))))).
all(token, text)(wheneverdo(hasName_temp(token, text),
 do-all({believe(hasName(token, text)),
 disbelieve(SyntacticCategoryOf("NNP", token)),
 disbelieve(TextOf(text, token))))).

;; properNounToName2
all(token)(SyntacticCategoryOf("NNP", token)
 => (all(root)(RootOf(root, token)
 => root_rem(root, token))))).
all(token, root)(wheneverdo(root_rem(root, token),
 do-all({disbelieve(RootOf(root, token))))).

;; organizationHasName
all(token, org)({Isa(token, Organization), TextOf(org, token)}
 &=> hasName_temp(token, org)).

;; nnName
all(tok1, tok2, lname, name)({Dependency(nn, tok1, tok2),
 hasName(tok1, lname),
 hasName(tok2, name})
 &=> {{Isa(tok1, Person)
 => {hasName(tok1, name),
 => (all(root)(RootOf(root, token)
 => root_rem(root, token))))}).
hasName_rem(tok2,name),
 dep_rem(nn,tok1,tok2)).
all(tok,name)(wheneverdo(hasName_rem(tok,name),
 do-all({disbelieve(hasName(tok,name))}))).
all(tok,name)(wheneverdo(dep_rem(dep,t1,t2),
 do-all({disbelieve(Dependency(dep,t1,t2))}))).

;; nounPhraseToInstance
all(root,term)(RootOf(root,term) => numterm(root)).
all(nn)(SyntacticCategoryOf(NN,nn) => isnphead(nn)).
all(nn,root)({SyntacticCategoryOf(NN,nn), RootOf(root,nn), ~NumTerm(root), NPHead(nn)}
 &=> {Isa(nn,root), syn_rem(NN,nn), root_rem(root,nn)}).

;; eventToInstance
all(event,eventtype)({SyntacticCategoryOf(verb, event),
 RootOf(eventtype, event),
 Isa(eventtype, Event)}
 &=> {Isa(event, eventtype),
 root_rem(eventtype, event),
 all(text)(TextOf(text, event) => text_rem(text, event))}).
all(token,text)(wheneverdo(text_rem(text,token),
 do-all({disbelieve(TextOf(text,token))}))).

;; pluralNounToGroup
all(grp)(SyntacticCategoryOf("NNS",grp)
 => {all(text)(TextOf(text,grp) => text_rem(text,grp)),
 all(class)({RootOf(class,grp), ~NumTerm(class)}
 &=> {GroupOf(grp,class),
 Isa(grp,Group),
 syn_rem(NNS,grp),
 root_rem(class,grp)})}).
all(token, cat)(wheneverdo(syn_rem(cat, token),
 do-all({disbelieve(SyntacticCategoryOf(cat, token))))).

;; subjAction
all(action, sub)({Dependency(nsubj, action, subj), Isa(action, Action)}
 &=> {Rel(agent, action, subj), dep_rem(nsubj, action, subj)}).

;; objAction
all(action, obj)({Dependency(dobj, action, obj), Isa(action, Action)}
 &=> {Rel(theme, action, obj), dep_rem(dobj, action, obj)}).

;; prepToRelation
all(token, preptoken, noun2, prepwd)({Dependency(prep, token, preptok),
 Dependency(pobj, preptok, noun2),
 RootOf(prepwd, preptok)}
 &=> {Rel(prepwd, token, noun2),
 dep_rem(pobj, preptok, noun2)}).

;; nnToModifier
all(tok, m)(Dependency(nn, tok, m)
 => {all(txt)(TextOf(txt, m)
 => {Attr(Modifier, tok, txt), dep_rem(nn, tok, m), text_rem(txt, m)}),
 all(txt)(hasName(m, txt)
 => {Attr(Modifier, tok, txt), dep_rem(nn, tok, m), hasName_rem(m, txt)}),
 all(txt)(GroupOf(m, txt)
 => {Attr(Modifier, tok, txt), dep_rem(nn, tok, m), group_rem(m, txt)})}.

all(entity, group)(wheneverdo(group_rem(entity, group),
 do-all({disbelieve(GroupOf(entity, group))})).

;; amodToModifier
all(tok, m, txt)({Dependency(amod, tok, m), TextOf(txt, m})
&=> \{\text{Attr}(\text{Modifier}, \text{tok}, \text{txt}), \text{dep_rem}(\text{amod}, \text{tok}, \text{m}), \text{text_rem}(\text{txt}, \text{m})\}\).
Bibliography

Lyman Frank Baum. The Wonderful Wizard of Oz. G. M. Hill, 1900.

