Area-Efficient Drawings of Outerplanar Graphs*

Ashim Garg and Adrian Rusu
Department of Computer Science and Engineering
University at Buffalo
Buffalo, NY 14260
\{agarg,adirusu\}@csse.buffalo.edu

Abstract. It is well-known that a planar graph with \(n \) nodes admits a planar straight-line grid drawing with \(O(n^2) \) area [3, 8], and in the worst case it requires \(\Omega(n^2) \) area. It is also known that a binary tree with \(n \) nodes admits a planar straight-line grid drawing with \(O(n) \) area [6]. Thus, there is wide gap between the \(\Theta(n^2) \) area-requirement of general planar graphs and the \(\Theta(n) \) area-requirement of binary trees. It is therefore important to investigate special categories of planar graphs to determine if they can be drawn in \(o(n^2) \) area.

Outerplanar graphs form an important category of planar graphs. We investigate the area-requirement of planar straight-line grid drawings of outerplanar graphs. Currently the best known bound on the area-requirement of such a drawing of an outerplanar graph with \(n \) vertices is \(O(n^2) \), which is that same as for general planar graphs. Hence, a fundamental question arises that can be draw an outerplanar graph in this fashion in \(o(n^2) \) area?

In this paper, we provide a partial answer to this question by proving that an outerplanar graph with \(n \) vertices and degree \(d \) can be drawn in this fashion in area \(O(dn^{1.48}) \) in \(O(n \log n) \) time. This implies that an outerplanar graph with \(n \) vertices and degree \(d \), where \(d = o(n^{0.52}) \), can be drawn in this fashion in \(o(n^2) \) area.

From a broader perspective, our contribution is in showing a sufficiently large natural category of planar graphs that can be drawn in \(o(n^2) \) area.

1 Introduction

A drawing \(\Gamma \) of a graph \(G \) maps each vertex of \(G \) to a distinct point in the plane, and each edge \((u,v) \) of \(G \) to a simple Jordan curve with endpoints \(u \) and \(v \). \(\Gamma \) is a straight-line drawing, if each edge is drawn as a single line-segment. \(\Gamma \) is a polyline drawing, if each edge is drawn as a connected sequence of one or more line-segments, where the meeting point of consecutive line-segments is called a bend. \(\Gamma \) is a grid drawing if all the nodes have integer coordinates. \(\Gamma \) is a planar drawing, if edges do not intersect each other in the drawing. In this paper, we concentrate on grid drawings. So, we will assume that the plane is covered by a

* Research supported by NSF CAREER Award IIS-9985136 and NSF CISE Research Infrastructure Award No. 0101244, and Mark Diamond Research Grant No. 13-Summer-2003 from GSA of The State University of New York.
rectangular grid. Let \(\Gamma \) be a grid drawing. Let \(R \) be the smallest rectangle with sides parallel to the \(X \)-and \(Y \)-axes, respectively, that covers \(\Gamma \) completely. The width (height) of \(\Gamma \) is equal to \(1 + \) width of \(R \) (1 + height of \(R \)). The area of \(\Gamma \) is equal to \((1 + \text{width of } R) \cdot (1 + \text{height of } R) \), which is equal to the number of grid points contained within \(R \). The degree of a graph is equal to the maximum number of edges incident on a vertex.

It is well-known that a planar graph with \(n \) vertices admits a planar straight-line grid drawing with \(O(n^2) \) area \([3, 8]\), and in the worst case it requires \(\Omega(n^2) \) area. It is also known that a binary tree with \(n \) nodes admits a planar straight-line grid drawing with \(O(n) \) area \([6]\). Thus, there is wide gap between the \(\Theta(n^2) \) area-requirement of general planar graphs and the \(\Theta(n) \) area-requirement of binary trees. It is therefore important to investigate special categories of planar graphs to determine if they can be drawn in \(o(n^2) \) area.

Outerplanar graphs form an important category of planar graphs. We investigate the area-requirement of planar straight-line grid drawings of outerplanar graphs. Currently the best known bound on the area-requirement of such a drawing of an outerplanar graph with \(n \) vertices is \(O(n^2) \), which is that same as for general planar graphs. Hence, a fundamental question arises: can we draw an outerplanar graph in this fashion in \(o(n^2) \) area?

In this paper, we provide a partial answer to this question by proving that an outerplanar graph with \(n \) vertices and degree \(d \) can be drawn in this fashion in area \(O(dn^{1+\delta}) = O(dn^{1.48}) \) in \(O(n) \) time. This implies that an outerplanar graph with \(n \) vertices and degree \(O(n^\delta) \), where \(0 \leq \delta < 0.52 \) is a constant, can be drawn in this fashion in \(o(n^2) \) area.

From a broader perspective, our contribution is in showing a sufficiently large natural category of planar graphs that can be drawn in \(o(n^2) \) area.

In Section 4, we present our drawing algorithm. This algorithm is based on a tree-drawing algorithm of \([2]\). The connection between the two algorithms comes from the fact that the dual of a maximal outerplanar graph is a tree.

2 Previous Results

There has been little work done on planar straight-line grid drawings of outerplanar graphs. Let \(G \) be an outerplanar graph with \(n \) vertices. Currently the best known bound on the area-requirement of such a drawing of an outerplanar graph with \(n \) vertices is \(O(n^2) \), which is that same as for general planar graphs. However, in 3D, we can construct a crossings-free straight-line grid drawing of \(G \) with \(O(n) \) volume \([4, 5]\).

\([1]\) shows that \(G \) admits a planar polyline drawing as well as a visibility representation with \(O(n \log n) \) area. \([7]\) shows that \(G \) admits a planar polyline drawing with \(O(n) \) area, if \(G \) has degree 4. The technique of \([7]\) can be easily extended to construct a planar polyline drawing of \(G \) with \(O(d^2n) \) area, if \(G \) has degree \(d \) \([1]\).
3 Preliminaries

We assume a 2-dimensional Cartesian space. We assume that this space is covered by an infinite rectangular grid, consisting of horizontal and vertical channels.

We denote by $|G|$, the number of vertices (nodes) in a graph (tree) G. A rooted tree is one with a pre-specified root. An ordered tree is a rooted tree with a pre-specified left-to-right order of the children for each node. Let T be an ordered binary tree with n nodes. Let p and δ be two constants such that $p = 0.48$ and $0 < \delta \leq 0.0004$. A spine S of T is a path $v_0, v_1, v_2, \ldots, v_m$, where $v_0, v_1, v_2, \ldots, v_m$ are nodes of T, that is defined recursively as follows (as defined in the proof of Lemma A.1 in [2]):

- v_0 is the same as the root of T, and v_m is a leaf of T;
- let α_i and β_i be the the left and right subtrees with the maximum number of nodes among the subtrees that are rooted at any of the nodes in the path v_0, v_1, \ldots, v_i; let L_i and R_i be the subtrees rooted at the left and right children of v_i, respectively. Then,
 - if $|\alpha_i|^p + |R_i|^p \leq (1-\delta)n^p$ and $|L_i|^p + |\beta_i|^p > (1-\delta)n^p$, set v_{i+1} to be the left child of v_i,
 - if $|\alpha_i|^p + |R_i|^p > (1-\delta)n^p$ and $|L_i|^p + |\beta_i|^p \leq (1-\delta)n^p$, set v_{i+1} to be the right child of v_i,
 - if $|\alpha_i|^p + |R_i|^p \leq (1-\delta)n^p$ and $|L_i|^p + |\beta_i|^p \leq (1-\delta)n^p$, we terminate the construction as follows:
 - if $|L_i| \leq |R_i|$, set the spine to be the concatenation of path v_0, v_1, \ldots, v_i and the leftmost path from v_i to a leaf v_m,
 - otherwise (i.e. $|L_i| > |R_i|$), set the spine to be the concatenation of the path v_0, v_1, \ldots, v_i and the rightmost path from v_i to a leaf v_m.
- in [2] it is shown that the case $|\alpha_i|^p + |R_i|^p > (1-\delta)n^p$ and $|L_i|^p + |\beta_i|^p > (1-\delta)n^p$ is not possible.

v_0, v_1, \ldots, v_m are called spine nodes. A subtree T' of T is a subtree of S, if it is rooted at the non-spine child c of a spine node v_i; T' is a left (right) subtree of S, if c is the left (right) child of v_i.

We will use Lemma A.1 of [2], which is given below:

Lemma 1 (Lemma A.1 of [2]). Let $p = 0.48$. For any left subtree α and right subtree β of a spine, $|\alpha|^p + |\beta|^p \leq (1-\delta)n^p$, for any constant δ, $0 < \delta \leq 0.0004$.

An outerplanar graph is a planar graph for which there exists an embedding with all vertices on the exterior face. Throughout this paper, by the term outerplanar graph we will mean a maximal outerplanar graph, i.e., an outerplanar graph to which no edge can be added without destroying its outerplanarity. It is easy to see that each internal face of a maximal outerplanar graph is a triangle. Two vertices of a graph are neighbors, if they are connected by an edge. The dual tree T_G of an outerplanar graph G is defined as follows:

- there is a one-to-one correspondence between the nodes of T_G and the internal faces of G, and
there is an edge $e = (u, v)$ in T_G if and only if the faces of G corresponding to u and v share an edge e' on their boundaries. e and e' are duals of each other.

For example, Figure 1(b), shows the dual tree of the outerplanar graph of Figure 1(a).

Let $P = v_0 v_1 \ldots v_q$ be a path of T_G. Let H be the subgraph of G corresponding to P. A beam drawing of H is shown in Figure 2, where the vertices of H are placed on two horizontal channels, and the faces of H are drawn as triangles.

A line-segment with end-points a and b is a flat line-segment if a and b are grid points, and either belong to the same horizontal channel, or belong to adjacent horizontal channels.

Let B be a flat line-segment with end-points a and b, such that b is at least one unit to the right of a. Let G be an outerplanar graph with two distinguished adjacent vertices u and v, such that the edge (u, v) is on the external face of G; u and v are called the poles of G. Let D be a planar straight-line drawing of G. D is a feasible drawing of G with base B if:

- the two poles of G are mapped to a and b each,
- each non-pole vertex of G is placed at least one unit above the lower of a and b, and is placed at least one unit to the right of a and at least one unit to the left of b.

![Diagram](image)
4 Outerplanar Graph Drawing Algorithm

The drawing algorithm, which we call *Algorithm OpDraw*, is recursive in nature. In each recursive step, it takes as input an outerplanar graph G with pre-specified poles, and a long-enough flat line-segment B, and constructs a feasible drawing D of G with base B by constructing a drawing M of the subgraph Z corresponding to a spine of T_G, splitting G into several smaller outerplanar graphs after removing Z and some other vertices from it, constructing feasible drawings of each smaller outerplanar graph, and then combining their drawings with M to obtain D.

We now give the details of the actions performed by *Algorithm OpDraw* in each recursive step (see Figure 3) (a):

- Let u and v be the poles of G. Let T_G be the dual tree of G. Let r be the node of T_G that corresponds to the internal face F of G that contains both u and v. Convert T_G into an ordered tree as follows:
 - make T_G a rooted tree by making r its root,
 - and for each node w, let w' be the parent of w in T_G (which now is a rooted tree). Let c (d) be the children of w such that the face corresponding to c immediately follows (precedes) the face corresponding to w' in the counter-clockwise order of internal faces incident on the face corresponding to w. Make c the leftmost child of w, and d the rightmost child of w. Assign the children of w the same left-to-right order as the counter-clockwise order in which the faces that correspond to them are incident on the face corresponding to w.

Note that T_G is a binary tree because each internal face of G is a triangle.
- Draw F as a triangle such that u and v coincide with the end-points of B, and the third vertex w of F is placed one unit above the lower of u and v.
Fig. 3. The drawing of the outerplanar graph of Figure 1(a) constructed by Algorithm OpDraw: (a) When v is one unit above u, (b) when u and v are in the same horizontal channel, and (c) when u is one unit above v.
(We will determine later on the horizontal distances of \(w \) from \(u \) and \(v \), when we analyze the area-requirement of the drawing.) In the rest of this section, we will assume that \(v \) is placed one unit above \(u \). (The cases, where \(u \) and \(v \) are in the same horizontal channel, and where \(u \) is placed one unit above \(v \) are similar, and are shown in Figures 3(b) and 3(c), respectively).

- Let \(P = v_0 v_1 \ldots v_q \) be the spine of \(G \), where \(v_0 = r \). Assume that the edge \((v_0, v_1) \) is the dual of edge \((u, w)\) (the case where \((v_0, v_1) \) is the dual of edge \((u, w)\) is symmetrical). Let \((v_0, v')\) be the dual of edge \((u, w)\). Let \(H \) be the subgraph of \(G \) corresponding to the subtree of \(T_G \) rooted at \(v' \). Recursively construct a feasible drawing \(D_H \) of \(H \) with \(uv \) as the base.

- Let \(c_0 = w, c_1, \ldots, c_m = (c_0, c_1, c_2, \ldots, c_s \) be the clockwise order of the neighbors of \(v \) different from \(u \), where, for each \(i \) \((1 \leq i \leq m) \), the face \(c_{i-1} c_{i} c'_{i} \) corresponds to the spine node \(v_i \), and for each \(i \) \((1 \leq i \leq s) \), the face \(c_{i-1} c_{i} c'_{i} \) corresponds to a non-spine node \(v_i' \) of \(T_G \). (In Figure 3(a), \(m = 3 \), and \(s = 2 \).) Place the vertices \(c_1, \ldots, c_m = (c_0, c_1, c_2, \ldots, c_s \) in the same horizontal channel one unit above \(w \). (We will determine later on the horizontal distances between these vertices.)

- Let \((v_i, x_i)\) be the dual of edge \((c_{i-1}, c_i)\). Let \(K_i \) be the subgraph of \(G \) corresponding to the subtree of \(T_G \) rooted at \(x_i \). For each \(i \), where \(1 \leq i \leq m - 1 \), recursively construct a feasible drawing of \(K_i \) with \(c_{i-1} c_i \) as the base.

- Let \((v_i', x_i')\) be the dual of edge \((c_{i-1}', c_i')\). Let \(K_i' \) be the subgraph of \(G \) corresponding to the subtree of \(T_G \) rooted at \(x_i \). For each \(i \), where \(1 \leq i \leq s \), recursively construct a feasible drawing \(D_i' \) of \(K_i' \) with \(c_{i-1}' c_i' \) as the base.

- Let \(\alpha_0, \alpha_1, \ldots, \alpha_t \) be the vertices of \(K_m \), such that \(\alpha_0, \alpha_1, \ldots, \alpha_h \) \((0 \leq h \leq t) \) is the clockwise order of the neighbors of \(c_{m-1} \) in \(K_m \), and \(\alpha_h, \alpha_{h+1}, \ldots, \alpha_t \) is the clockwise order of the neighbors of \(c_m \) in \(K_m \). For example, in Figure 3(a), \(h = 4 \), and \(t = 5 \). Let \(j \) be the index such that the dual of edge \((\alpha_{j-1}, \alpha_j) \) belongs to \(P \) (if no such \(j \) exists, then we can do the following: if \(K_m \) consists of only one internal face, namely, \(c_{m-1} c_m \), then set \(j = 0 \). Otherwise, the leaf \(v_0 \) of \(P \) will correspond to either the face \(c_0 \alpha_1 c_{m-1} \) or the face \(c_{t-1} c_t c_m \); in the first case, set \(j = 1 \), and in the second case, set \(j = t \).) For example, in Figure 3(a), \(j = 3 \). Place \(\alpha_0, \alpha_1, \ldots, \alpha_{j-1} \) in the same horizontal channel, and \(\alpha_j, \alpha_{j+1}, \ldots, \alpha_t \) along a line making \(45^\circ \) angle with the horizontal channels, such that

 - \(\alpha_t \) is in the same vertical channel as \(c_m \), and at least one unit above the horizontal channel \(X \) occupied by \(c_s' \) (we will give the exact value of the vertical distance between \(\alpha_t \) and \(X \) a little while later),
 - for each \(k \), where \(j - 1 \leq k \leq t - 1 \), \(\alpha_k \) is one unit above and one unit to the left of \(\alpha_{k+1} \), and
 - \(\alpha_0 \) is in the same vertical channel as \(c_{m-1} \).

(We will determine later on the horizontal distances between \(\alpha_0, \alpha_1, \ldots, \alpha_{j-1} \).)

- For each \(i \), where \(0 \leq i \leq t \), removing \(\alpha_{i-1} \) and \(\alpha_i \), splits \(K_m \) into two subgraphs, one containing \(c_{m-1} \) and \(c_m \), and another subgraph \(L_i \). Let \(L_i \) be the subgraph of \(K_m \) consisting of the vertices of \(L_i' \), \(\alpha_{i-1} \), and \(\alpha_i \), and the edges between them. Recursively construct a feasible drawing of each \(L_i \), where \(0 \leq i \leq j - 1 \), with \(\alpha_{i-1} \alpha_i \) as the base.
Let $S = \beta_0, \beta_1, \ldots, \beta_\mu$ be the clockwise order of the neighbors of $\alpha_{j-1}, \alpha_j, \ldots, \alpha_t$ in the subgraphs $L_j, L_{j+1}, \ldots, L_t$, where each β_k is different from $\alpha_{j-1}, \alpha_j, \ldots, \alpha_t$. In S, we first place the neighbors of α_{j-1}, then of α_j, and so on, finally placing the neighbors of α_t. For each k, where $j-1 \leq k \leq t$, we place the neighbors of α_k into S in the same order as their clockwise order around α_k.

For example, in Figure 3(a), $\mu = 8$. Let ϵ be the index such that the dual of the edge $(\beta_{j-1}, \beta_\epsilon)$ belongs to P (if no such ϵ exists, then we can do the following: if L_j consists of only one internal face, namely, $\alpha_{j-1} \alpha_j \beta_0$, then set $\epsilon = 0$. Otherwise, the leaf v_ϵ of P will correspond to either the face $\beta_0 \beta_1 \alpha_{j-1}$ or the face $\beta_{\mu-1} \beta_\mu \alpha_j$; in the first case, set $\epsilon = 1$, and in the second case, set $\epsilon = \mu$). For example, in Figure 3(a), $\epsilon = 2$.

Place $\beta_0, \beta_1, \ldots, \beta_{\epsilon-1}$ in the same horizontal channel from left-to-right, and place $\beta_\epsilon, \beta_{\epsilon+1}, \ldots, \beta_\mu$ in another horizontal channel from right-to-left, such that:

- $\beta_0, \beta_1, \ldots, \beta_{\epsilon-1}$ are placed one unit above α_{j-1},
- $\beta_\epsilon, \beta_{\epsilon+1}, \ldots, \beta_\mu$ are placed one unit below α_t,
- β_0 and β_μ are at either to the right of, or on the same vertical channel as α_t,
- $\beta_{\epsilon-1}$ and β_ϵ are on the same vertical channel, and
- the distance between $\beta_{\epsilon-1}$ and β_ϵ is equal to 2 plus the vertical distance between α_{j-1} and α_t.

For each i, where $0 \leq i \leq \epsilon - 1$, if there is an edge $e = (\beta_{i-1}, \beta_i)$ in G, then do the following: Notice that removing e from G, split it into two subgraphs, one that contains $\alpha_{j-1}, \alpha_j, \ldots, \alpha_t$, and another subgraph M_1' that does not contain any of them. Let M_i be the subgraph of G consisting of β_{i-1}, β_i, the vertices of M_1', and the edges between them. Recursively construct a feasible drawing of M_i with $\overline{\beta_{i-1}\beta_i}$ as its base.

For each i, where $\epsilon \leq i \leq \mu$, if there is an edge $e = (\beta_{i-1}, \beta_i)$ in G, then do the following: Notice that removing e from G, splits it into two subgraphs, one that contains $\alpha_{j-1}, \alpha_j, \ldots, \alpha_t$, and another subgraph N_i' that does not contain any of them. Let N_i be the subgraph of G consisting of β_{i-1}, β_i, the vertices of N_1', and the edges between them. Recursively construct a feasible drawing D_i'' of N_i with $\overline{\beta_{i-1}\beta_i}$ as its base, and then flip D_i'' upside-down.

Let (v_{i-1}, v_ρ) be the edge of P that is the dual of the edge (β_{i-1}, β_i). For example, in Figure 1(b), $\rho = 9$. Let R be the subgraph of G that corresponds to the subpath $v_{i-1}v_\rho v_{\rho+1} \ldots v_\epsilon$. Construct a beam drawing E of R. For each edge e on the external face of R, do the following: Let $e = (\gamma_1, \gamma_2)$. Removing γ_1 and γ_2 from G splits it into two subgraphs, one containing $\beta_0, \beta_1, \ldots, \beta_\mu$, and the other subgraph Q_e not containing them. Let Q_e be the subgraph of G containing γ_1, γ_2, and the vertices of Q_e, and the edges between them. If e is on the top or bottom boundary of E, then recursively construct a feasible drawing D_e of Q_e with $\overline{\gamma_1\gamma_2}$ as its base. If e is on the bottom boundary of E, then flip Q_e upside down. (Note that if e is on the right boundary of E, then Q_e will contain just the edge e because v_ρ is a leaf of T_G.)

We are now ready to give the vertical distance between α_t and X: it is equal to $1 + \theta$, where θ is maximum height of any of D_i', D_i'', and D_e, where e is on
the bottom boundary of E. Note that this will guarantee that the vertices of each D'_e and D_e will occupy horizontal channels that are either above or the same as the horizontal channel that contains $c_i = w, c_1, \ldots, c_m (= c'_0, c'_1, c'_2, \ldots, c'_{\mu})$. This ensures that there are no crossings between the edges of any D'_e or D_e, and any edge of the form (v, c'_j).

Let $h(n)$ and $w(n)$ be the height and width, respectively, of a feasible drawing D of G with base B, constructed by the Algorithm $OPDraw$. Here, n is the number of vertices in G. Let d be the degree of G. Note that, by the definition of feasible drawings, $w(n)$ will be equal to one plus the horizontal separation between the end-points of B.

It is easy to prove using induction that $w(n) = n$ is sufficient. As for the horizontal distances between u and v, between c_{i-1} and c_i (for $1 \leq i \leq m - 1$, between c'_{i-1} and c'_i (for $1 \leq i \leq s$), between $c_{\epsilon - 1}$ and c_{ϵ} (for $1 \leq i \leq \epsilon - 1$), between $\beta_{\epsilon - 1}$ and β_{ϵ} (for $1 \leq i \leq \epsilon - 1$), and between $\beta_{\epsilon - 1}$ and β_{ϵ} (for $\epsilon + 1 \leq i \leq \mu$), it is sufficient to set them to be equal to $|H| - 1$, $|K_{\epsilon}| - 1$, $|K'_\epsilon| - 1$, $|L_{\epsilon}| - 1$, $|M_{\epsilon}| - 1$, and $|N_{\epsilon}| - 1$, respectively. It is also sufficient to set the distance between the end-points of each edge e on the top or bottom boundary of E, to be equal to $|Q_e| - 1$.

As for $h(n)$, first notice that, because G has degree d, $t - (j - 1)$ is less than $2d$, and hence, the distance between $\beta_{\epsilon - 1}$ and β_{ϵ} is less than $2d + 2$.

Let h' be a function, such that $h'(f) = h(n)$, where f is the number of internal faces in G, i.e., the number of nodes in the dual tree T_G of G.

From the construction of D, we have that:

$$
h'(f) \leq \max\left\{ \max_{1 \leq i \leq s} \{h'(|T_{K_i}|)\}, \max_{1 \leq i \leq \mu - 1} \{h'(|T_{K_{\epsilon}}|)\}, \max_{1 \leq i \leq \mu} \{h'(|T_{K'_\epsilon}|)\}, \max_{1 \leq i \leq \mu - 1} \{h'(|T_{L_{\epsilon}}|)\}, \max_{1 \leq i \leq \mu - 1} \{h'(|T_{M_{\epsilon}}|)\}, \max_{1 \leq i \leq \mu - 1} \{h'(|T_{N_{\epsilon}}|)\}\right\} + O(d),
$$

Since P is a spine of T_G, and

- the dual trees of H, K_i, L_i, M_i, and Q_e (in the case when edge e is on top boundary of E), are either right subtrees of P, or belong to the right subtrees of P, and
- the dual trees of K'_ϵ, N_i, and Q_e (in the case when edge e is on bottom boundary of E), are either left subtrees of P, or belong to the left subtrees of P,

from Lemma 1, it follows that:

$$
h'(f) \leq \max_{f_1 + f_2 \leq 1 - \delta} \{h'(f_1) + h'(f_2) + O(d)\}.
$$

Using induction, we can show that $h'(f) = O(df^{0.48})$ (see also [2]). Since $f = O(n)$, $h(n) = h'(f) = O(df^{0.48}) = O(dn^{0.48})$.

Theorem 1. Let G be an outerplanar graph with degree d and n vertices. We can construct a planar straight-line grid drawing of G with area $O(dn^{1.48})$ in $O(n)$ time.

Proof. Arbitrarily select any edge $e = (u, v)$ on the external face of G, and designate u and v as the poles of G. Let B be any horizontal line-segment with length $n - 1$, such that the end-points of B are grid points. Let δ be any user-defined constant in the range $(0, 0.0004]$. Construct a feasible drawing of G with base B using Algorithm OpDraw. From the discussion given above, it follows immediately that the area of the drawing is $O(dn^{1+0.48}) = O(dn^{1.48})$. It is easy to see the algorithm runs in $O(n)$ time.

Corollary 1. Let G be an outerplanar graph with n vertices and degree d, where $d = o(n^{0.52})$. We can construct a planar straight-line grid drawing of G with $o(n^2)$ area in $O(n)$ time.

References