
CSE 586 - Distributed Systems

xml parsing with dom4j
Hanifi Gunes

PhD Candidate
 Computer Science & Engineering
hanifigu{at}buffalo{dot}edu

University at Buffalo
Spring 2011

In this tutorial we will talk about XML parsing with dom4j, an easy to use, open source library
working with XML, XPath and XSLT on the Java platform. So let’s get started.

➀ Download and install eclipse for Java developers: http://www.eclipse.org

 Download the dom4j jar package: http://dom4j.sourceforge.net

 Download the jaxen jar package: http://jaxen.codehaus.org

➁ Run eclipse and locate your workspace directory if you are running it for the first time. Now,
create a new Java Project, MyXMLReader, from File ➝ New ➝ Java Project. Notice that the
project is created under the workspace directory {workspace_dir}/MyXMLReader.

➂ Right click on your project and select Build Path ➝ Add
External Archives. Locate and add the dom4j jar archive from step
1 and repeat the same procedure to add the jaxen package to
your build path. At that point, you should see these packages
listed under Referenced Libraries as it is on the left snapshot.

➃ Now that, the project setup is done we can work with Yahoo! Weather. Visit http://
developer.yahoo.com/weather/ to get familiar with the XML response schema. First thing to
observe is that you can query Yahoo Weather for a particular zip code using the following
pattern http://weather.yahooapis.com/forecastrss?p=ZIPCODE. Try substituting your own zip
code into the address pattern and then navigate to that address from your browser in order to
inspect the XML response.

➄ Assuming that we are interested in retrieving the city and region name of a particular zip
code. We need to navigate to yweather:location node and then to access the city and region
attributes. To do that we will use XPATHs (http://www.w3schools.com/xpath/). You can access
the city and region attributes using the following XPATHs respectively: /rss/channel/
yweather:location/@city and /rss/channel/yweather:location/@region

Make sure that you are comfortable with XPATHs above before gearing up.

http://jaxen.codehaus.org/
http://www.eclipse.org
http://www.eclipse.org
http://dom4j.sourceforge.net/
http://dom4j.sourceforge.net/
http://jaxen.codehaus.org/
http://jaxen.codehaus.org/
http://developer.yahoo.com/weather/
http://developer.yahoo.com/weather/
http://developer.yahoo.com/weather/
http://developer.yahoo.com/weather/
http://weather.yahooapis.com/forecastrss?p=ZIPCODE
http://weather.yahooapis.com/forecastrss?p=ZIPCODE
http://www.w3schools.com/xpath/
http://www.w3schools.com/xpath/

➅ Now that, right click on your project and create a new java file, MyParser, from the New ➝
Class menu. Check public static void main(...) option from the dialog. This should automatically
generate the main method. Now copy and paste the following code segment into your main
method and examine it.

String addr = "http://weather.yahooapis.com/forecastrss?p=14221";
URL myURL = new URL(addr);
SAXReader xmlReader = new SAXReader();
Document feed = xmlReader.read(myURL);
String city = feed.valueOf("/rss/channel/yweather:location/@city");
System.out.println(city);

➆ This code first creates an instance of java.net.URL class to access Yahoo! Weather and then
feeds it into xmlReader.read method so as to retrieve the XML response from Yahoo and return
a Document instance. Then the feed.valueOf method above yields the value of a particular
attribute that is described with an XPATH parameter - in which case city.

➇ Save your java file and click on Run. You need to see Buffalo printed out on the console. Now
revisit the Yahoo! Weather Developer Network and exercise on the other attributes of interest.
Keep in mind that Document.valueOf method returns String type. So you might need to do
some type-conversion as for integer and date typed attributes.

