
B. RAMAMURTHY

Hadoop File System

1/19/2010

1

Reference

The Hadoop Distributed File System: Architecture
and Design by Apache Foundation Inc.

1/19/2010

2

http://hadoop.apache.org/core/docs/current/hdfs_design.html

Basic Features: HDFS

Highly fault-tolerant

High throughput

Suitable for applications with large data sets

Streaming access to file system data

Can be built out of commodity hardware

1/19/2010

3

Fault tolerance

Failure is the norm rather than exception

A HDFS instance may consist of thousands of server
machines, each storing part of the file system’s data.

Since we have huge number of components and that
each component has non-trivial probability of failure
means that there is always some component that is
non-functional.

Detection of faults and quick, automatic recovery
from them is a core architectural goal of HDFS.

1/19/2010

4

Data Characteristics

Streaming data access
Applications need streaming access to data
Batch processing rather than interactive user access.
Large data sets and files: gigabytes to terabytes size
High aggregate data bandwidth
Scale to hundreds of nodes in a cluster
Tens of millions of files in a single instance
Write-once-read-many: a file once created, written and
closed need not be changed – this assumption simplifies
coherency
A map-reduce application or web-crawler application fits
perfectly with this model.

1/19/2010

5

Cat

Bat

Dog

Other
Words
(size:
TByte)

map

map

map

map

split

split

split

split

combine

combine

combine

reduce

reduce

reduce

part0

part1

part2

MapReduce

1/19/2010

6

Architecture

1/19/2010

7

Namenode and Datanodes

Master/slave architecture
HDFS cluster consists of a single Namenode, a master server that
manages the file system namespace and regulates access to files by
clients.
There are a number of DataNodes usually one per node in a
cluster.
The DataNodes manage storage attached to the nodes that they run
on.
HDFS exposes a file system namespace and allows user data to be
stored in files.
A file is split into one or more blocks and set of blocks are stored in
DataNodes.
DataNodes: serves read, write requests, performs block creation,
deletion, and replication upon instruction from Namenode.

1/19/2010

8

HDFS Architecture

1/19/2010

9

Namenode

Breplication

Rack1 Rack2

Client

Blocks

Datanodes Datanodes

Client

Write

Read

Metadata ops
Metadata(Name, replicas..)
(/home/foo/data,6. ..

Block ops

File system Namespace

1/19/2010

10

Hierarchical file system with directories and files

Create, remove, move, rename etc.

Namenode maintains the file system

Any meta information changes to the file system
recorded by the Namenode.

An application can specify the number of replicas of
the file needed: replication factor of the file. This
information is stored in the Namenode.

Data Replication

1/19/2010

11

HDFS is designed to store very large files across
machines in a large cluster.
Each file is a sequence of blocks.
All blocks in the file except the last are of the same
size.
Blocks are replicated for fault tolerance.
Block size and replicas are configurable per file.
The Namenode receives a Heartbeat and a
BlockReport from each DataNode in the cluster.
BlockReport contains all the blocks on a Datanode.

Replica Placement

1/19/2010

12

The placement of the replicas is critical to HDFS reliability and performance.
Optimizing replica placement distinguishes HDFS from other distributed file
systems.
Rack-aware replica placement:

Goal: improve reliability, availability and network bandwidth utilization
Research topic

Many racks, communication between racks are through switches.
Network bandwidth between machines on the same rack is greater than those in
different racks.
Namenode determines the rack id for each DataNode.
Replicas are typically placed on unique racks

Simple but non-optimal
Writes are expensive
Replication factor is 3
Another research topic?

Replicas are placed: one on a node in a local rack, one on a different node in the
local rack and one on a node in a different rack.
1/3 of the replica on a node, 2/3 on a rack and 1/3 distributed evenly across
remaining racks.

Replica Selection

1/19/2010

13

Replica selection for READ operation: HDFS tries to
minimize the bandwidth consumption and latency.

If there is a replica on the Reader node then that is
preferred.

HDFS cluster may span multiple data centers:
replica in the local data center is preferred over the
remote one.

Safemode Startup

1/19/2010

14

On startup Namenode enters Safemode.
Replication of data blocks do not occur in Safemode.
Each DataNode checks in with Heartbeat and
BlockReport.
Namenode verifies that each block has acceptable
number of replicas
After a configurable percentage of safely replicated
blocks check in with the Namenode, Namenode exits
Safemode.
It then makes the list of blocks that need to be replicated.
Namenode then proceeds to replicate these blocks to
other Datanodes.

Filesystem Metadata

1/19/2010

15

The HDFS namespace is stored by Namenode.

Namenode uses a transaction log called the EditLog
to record every change that occurs to the filesystem
meta data.

For example, creating a new file.

Change replication factor of a file

EditLog is stored in the Namenode’s local filesystem

Entire filesystem namespace including mapping of
blocks to files and file system properties is stored in a
file FsImage. Stored in Namenode’s local filesystem.

Namenode

1/19/2010

16

Keeps image of entire file system namespace and file
Blockmap in memory.
4GB of local RAM is sufficient to support the above data
structures that represent the huge number of files and
directories.
When the Namenode starts up it gets the FsImage and
Editlog from its local file system, update FsImage with
EditLog information and then stores a copy of the
FsImage on the filesytstem as a checkpoint.
Periodic checkpointing is done. So that the system can
recover back to the last checkpointed state in case of a
crash.

Datanode

1/19/2010

17

A Datanode stores data in files in its local file system.

Datanode has no knowledge about HDFS filesystem

It stores each block of HDFS data in a separate file.

Datanode does not create all files in the same directory.

It uses heuristics to determine optimal number of files
per directory and creates directories appropriately:

Research issue?

When the filesystem starts up it generates a list of all
HDFS blocks and send this report to Namenode:
Blockreport.

Protocol

1/19/2010

18

The Communication Protocol

1/19/2010

19

All HDFS communication protocols are layered on top of
the TCP/IP protocol
A client establishes a connection to a configurable TCP
port on the Namenode machine. It talks ClientProtocol
with the Namenode.
The Datanodes talk to the Namenode using Datanode
protocol.
RPC abstraction wraps both ClientProtocol and
Datanode protocol.
Namenode is simply a server and never initiates a
request; it only responds to RPC requests issued by
DataNodes or clients.

Robustness

1/19/2010

20

Objectives

Primary objective of HDFS is to store data reliably in
the presence of failures.

Three common failures are: Namenode failure,
Datanode failure and network partition.

1/19/2010

21

DataNode failure and heartbeat

A network partition can cause a subset of Datanodes
to lose connectivity with the Namenode.

Namenode detects this condition by the absence of a
Heartbeat message.

Namenode marks Datanodes without Hearbeat and
does not send any IO requests to them.

Any data registered to the failed Datanode is not
available to the HDFS.

Also the death of a Datanode may cause replication
factor of some of the blocks to fall below their
specified value.

1/19/2010

22

Re-replication

The necessity for re-replication may arise due to:
A Datanode may become unavailable,

A replica may become corrupted,

A hard disk on a Datanode may fail, or

The replication factor on the block may be increased.

1/19/2010

23

Cluster Rebalancing

HDFS architecture is compatible with data
rebalancing schemes.

A scheme might move data from one Datanode to
another if the free space on a Datanode falls below a
certain threshold.

In the event of a sudden high demand for a
particular file, a scheme might dynamically create
additional replicas and rebalance other data in the
cluster.

These types of data rebalancing are not yet
implemented: research issue.

1/19/2010

24

Data Integrity

Consider a situation: a block of data fetched from
Datanode arrives corrupted.

This corruption may occur because of faults in a
storage device, network faults, or buggy software.

A HDFS client creates the checksum of every block of
its file and stores it in hidden files in the HDFS
namespace.

When a clients retrieves the contents of file, it
verifies that the corresponding checksums match.

If does not match, the client can retrieve the block
from a replica.

1/19/2010

25

Metadata Disk Failure

FsImage and EditLog are central data structures of HDFS.

A corruption of these files can cause a HDFS instance to be
non-functional.

For this reason, a Namenode can be configured to maintain
multiple copies of the FsImage and EditLog.

Multiple copies of the FsImage and EditLog files are
updated synchronously.

Meta-data is not data-intensive.

The Namenode could be single point failure: automatic
failover is NOT supported! Another research topic.

1/19/2010

26

Data Organization

1/19/2010

27

Data Blocks

HDFS support write-once-read-many with reads at
streaming speeds.

A typical block size is 64MB (or even 128 MB).

A file is chopped into 64MB chunks and stored.

1/19/2010

28

Staging

A client request to create a file does not reach
Namenode immediately.

HDFS client caches the data into a temporary file.
When the data reached a HDFS block size the client
contacts the Namenode.

Namenode inserts the filename into its hierarchy and
allocates a data block for it.

The Namenode responds to the client with the
identity of the Datanode and the destination of the
replicas (Datanodes) for the block.

Then the client flushes it from its local memory.
1/19/2010

29

Staging (contd.)

The client sends a message that the file is closed.

Namenode proceeds to commit the file for creation
operation into the persistent store.

If the Namenode dies before file is closed, the file is
lost.

This client side caching is required to avoid network
congestion; also it has precedence is AFS (Andrew
file system).

1/19/2010

30

Replication Pipelining

When the client receives response from Namenode,
it flushes its block in small pieces (4K) to the first
replica, that in turn copies it to the next replica and
so on.

Thus data is pipelined from Datanode to the next.

1/19/2010

31

API (Accessibility)

1/19/2010

32

Application Programming Interface

HDFS provides Java API for application to use.

Python access is also used in many applications.

A C language wrapper for Java API is also available.

A HTTP browser can be used to browse the files of a
HDFS instance.

1/19/2010

33

http://www.cs.brandeis.edu/~cs147a/lab/hadoop-example-java

FS Shell, Admin and Browser Interface

HDFS organizes its data in files and directories.

It provides a command line interface called the FS
shell that lets the user interact with data in the
HDFS.

The syntax of the commands is similar to bash and
csh.

Example: to create a directory /foodir

/bin/hadoop dfs –mkdir /foodir

There is also DFSAdmin interface available

Browser interface is also available to view the
namespace.

1/19/2010

34

Space Reclamation

When a file is deleted by a client, HDFS renames file
to a file in be the /trash directory for a configurable
amount of time.

A client can request for an undelete in this allowed
time.

After the specified time the file is deleted and the
space is reclaimed.

When the replication factor is reduced, the
Namenode selects excess replicas that can be
deleted.

Next heartbeat(?) transfers this information to the
Datanode that clears the blocks for use. 1/19/2010

35

Summary

We discussed the features of the Hadoop File
System, a peta-scale file system to handle big-data
sets.

What discussed: Architecture, Protocol, API, etc.

Missing element: Implementation
The Hadoop file system (internals)

An implementation of an instance of the HDFS (for use by
applications such as web crawlers).

KOSMIX file system (KFS) called cloudstore is a C++
implementation of GFS-workalike.

1/19/2010

36

http://www.skrenta.com/2007/09/kosmix_releases_google_gfs_wor.html
http://kosmosfs.sourceforge.net/

	Hadoop File System
	Reference
	Basic Features: HDFS
	Fault tolerance
	Data Characteristics
	MapReduce
	Architecture
	Namenode and Datanodes
	HDFS Architecture
	File system Namespace
	Data Replication
	Replica Placement
	Replica Selection
	Safemode Startup
	Filesystem Metadata
	Namenode
	Datanode
	Protocol
	The Communication Protocol
	Robustness
	Objectives
	DataNode failure and heartbeat
	Re-replication
	Cluster Rebalancing
	Data Integrity
	Metadata Disk Failure
	Data Organization
	Data Blocks
	Staging
	Staging (contd.)
	Replication Pipelining
	API (Accessibility)
	Application Programming Interface
	FS Shell, Admin and Browser Interface
	Space Reclamation
	Summary

