
B. RAMAMURTHY

MapReduce and Hadoop
Distributed File System

1/19/2010

1

Contact:
Dr. Bina Ramamurthy
CSE Department
University at Buffalo (SUNY)
bina@buffalo.edu
http://www.cse.buffalo.edu/faculty/bina
Partially Supported by
NSF DUE Grant: 0737243, 0920335

B. Ramamurthy

The Context: Big-data

Man on the moon with 32KB (1969); my laptop had 2GB RAM (2009)

Google collects 270PB data in a month (2007), 20000PB a day (2008)

2010 census data is expected to be a huge gold mine of information

Data mining huge amounts of data collected in a wide range of domains
from astronomy to healthcare has become essential for planning and
performance.

We are in a knowledge economy.

Data is an important asset to any organization

Discovery of knowledge; Enabling discovery; annotation of data

We are looking at newer

programming models, and

Supporting algorithms and data structures.

NSF refers to it as “data-intensive computing” and industry calls it “big-
data” and “cloud computing”

1/19/2010

2

B. Ramamurthy

Purpose of this talk

To provide a simple introduction to:
“The big-data computing” : An important
advancement that has a potential to impact
significantly the CS and undergraduate curriculum.
A programming model called MapReduce for
processing “big-data”
A supporting file system called Hadoop Distributed
File System (HDFS)

To encourage students to explore ways to infuse
relevant concepts of this emerging area into their
projects.
To explore ways of contributing the HDFS project.

1/19/2010

3

B. Ramamurthy

The Outline

The concept

Introduction to MapReduce

From CS Foundation to MapReduce

MapReduce programming model

Hadoop Distributed File System

Demo

Our experience with the framework

Summary

References

1/19/2010

4

B. Ramamurthy

The Concept

B. Ramamurthy 1/19/2010

5

Big Data issues

1/19/2010B. Ramamurthy

6

Issues: Big data storage
write once read many
Distributed data server
(not file server or dbms)

Read Client:
wordcount,

index,
pagerank

Write Client:
Web crawler

Issue: Efficient parallel
Processing of big data
More than multithreading
Algorithmic level

Big Data solutions?

1/19/2010B. Ramamurthy

7

Issues: Big data storage
write once read many
Distributed data server
(not file server or dbms)
Google’s solution: GFS
Yahoo’s answer: HDFS

Read Client:
wordcount,

index,
pagerank

Write Client:
Web crawler

Issue: Efficient parallel
Processing of big data
More than multithreading
Algorithmic level
Google’s solution: mapreduce

MapReduce

B. Ramamurthy 1/19/2010

8

What is MapReduce?

MapReduce is a programming model Google has used
successfully is processing its “big-data” sets (~ 20000 peta
bytes per day)

Users specify the computation in terms of a map and a
reduce function,
Underlying runtime system automatically parallelizes the
computation across large-scale clusters of machines, and
Underlying system also handles machine failures,
efficient communications, and performance issues.

-- Reference: Dean, J. and Ghemawat, S. 2008. MapReduce:
simplified data processing on large clusters. Communication of
ACM 51, 1 (Jan. 2008), 107-113.

1/19/2010

9

B. Ramamurthy

http://labs.google.com/papers/mapreduce-osdi04.pdf
http://labs.google.com/papers/mapreduce-osdi04.pdf

From CS Foundations to MapReduce

Consider a large data collection:
{web, weed, green, sun, moon, land, part, web,

green,…}
Problem: Count the occurrences of the different words

in the collection.

Lets design a solution for this problem;
We will start from scratch
We will add and relax constraints
We will do incremental design, improving the solution for
performance and scalability

1/19/2010

10

B. Ramamurthy

Word Counter and Result Table

Data
collection

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

1/19/2010

11

ResultTable

Main

DataCollection

WordCounter

parse()
count()

{web, weed, green, sun, moon, land, part,
web, green,…}

B. Ramamurthy

Multiple Instances of Word Counter

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

1/19/2010

12

Thread

DataCollection ResultTable

WordCounter

parse()
count()

Main

1..*1..*

Data
collection

Observe:
Multi-thread
Lock on shared data

B. Ramamurthy

Improve Word Counter for Performance

1/19/2010

13

Data
collection

WordList

Thread

Main

1..*
1..*

DataCollection

Parser
1..* Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

N
o

No need for lock

Separate counters

B. Ramamurthy

Peta-scale Data

1/19/2010

14

Data
collection

WordList

Thread

Main

1..*
1..*

DataCollection

Parser
1..* Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

B. Ramamurthy

Addressing the Scale Issue

1/19/2010

15

Single machine cannot serve all the data: you need a distributed
special (file) system
Large number of commodity hardware disks: say, 1000 disks 1TB
each

Issue: With Mean time between failures (MTBF) or failure rate of
1/1000, then at least 1 of the above 1000 disks would be down at a
given time.
Thus failure is norm and not an exception.
File system has to be fault-tolerant: replication, checksum
Data transfer bandwidth is critical (location of data)

Critical aspects: fault tolerance + replication + load balancing,
monitoring
Exploit parallelism afforded by splitting parsing and counting
Provision and locate computing at data locations

B. Ramamurthy

Peta-scale Data

1/19/2010

16

Data
collection

WordList

Thread

Main

1..*
1..*

DataCollection

Parser
1..* Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

B. Ramamurthy

Peta Scale Data is Commonly Distributed

1/19/2010

17

Data
collection

WordList

Thread

Main

1..*
1..*

DataCollection

Parser
1..* Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Data
collection

Data
collection

Data
collection

Data
collection Issue: managing the

large scale data

B. Ramamurthy

Write Once Read Many (WORM) data

1/19/2010

18

Data
collection

WordList

Thread

Main

1..*
1..*

DataCollection

Parser
1..* Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Data
collection

Data
collection

Data
collection

Data
collection

B. Ramamurthy

WORM Data is Amenable to Parallelism

1/19/2010

19

Data
collection

WordList

Thread

Main

1..*
1..*

DataCollection

Parser
1..* Counter

1..*

ResultTable

Data
collection

Data
collection

Data
collection

Data
collection

1. Data with WORM
characteristics : yields
to parallel processing;

2. Data without
dependencies: yields
to out of order
processing

B. Ramamurthy

Divide and Conquer: Provision Computing at Data Location

1/19/2010

20

WordList

Thread

Main

1..*
1..*

DataCollection

Parser
1..* Counter

1..*

ResultTable

Data
collection

WordList

Thread

Main

1..*
1..*

DataCollection

Parser
1..* Counter

1..*

ResultTable

Data
collection

Data
collection

WordList

Thread

Main

1..*
1..*

DataCollection

Parser
1..* Counter

1..*

ResultTable

WordList

Thread

Main

1..*
1..*

DataCollection

Parser
1..* Counter

1..*

ResultTable

Data
collection

For our example,
#1: Schedule parallel parse tasks
#2: Schedule parallel count tasks

This is a particular solution;
Lets generalize it:

Our parse is a mapping operation:
MAP: input <key, value> pairs

Our count is a reduce operation:
REDUCE: <key, value> pairs reduced

Map/Reduce originated from Lisp
But have different meaning here

Runtime adds distribution + fault
tolerance + replication + monitoring +
load balancing to your base application!

One node

B. Ramamurthy

Mapper and Reducer

1/19/2010

21

Remember: MapReduce is simplified processing for larger data sets:
MapReduce Version of WordCount Source code

B. Ramamurthy

http://hadoop.apache.org/core/docs/current/mapred_tutorial.html

Map Operation

MAP: Input data <key, value> pair

Data
Collection: split1

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

Split the data to
Supply multiple
processors

Data
Collection: split 2

Data
Collection: split n

Map
…

…

Map

1/19/2010

22

…

B. Ramamurthy

Reduce

Reduce

Reduce

Reduce Operation

MAP: Input data <key, value> pair

REDUCE: <key, value> pair <result>

Data
Collection: split1 Split the data to

Supply multiple
processors

Data
Collection: split 2

Data
Collection: split n Map

Map
…

…

Map

1/19/2010

23

…

B. Ramamurthy

C
ou

n
t

C
ou

n
t

C
ou

n
t

Large scale data splits

Parse-hash

Parse-hash

Parse-hash

Parse-hash

Map <key, 1> Reducers (say, Count)

P-0000

P-0001

P-0002

, count1

, count2

,count3

1/19/201024B. Ramamurthy

Cat

Bat

Dog

Other
Words
(size:
TByte)

map

map

map

map

split

split

split

split

combine

combine

combine

reduce

reduce

reduce

part0

part1

part2

MapReduce Example in my operating systems class

1/19/2010

25

B. Ramamurthy

MapReduce Programming
Model

B. Ramamurthy 1/19/2010

26

MapReduce programming model

Determine if the problem is parallelizable and solvable using
MapReduce (ex: Is the data WORM?, large data set).
Design and implement solution as Mapper classes and
Reducer class.
Compile the source code with hadoop core.
Package the code as jar executable.
Configure the application (job) as to the number of mappers
and reducers (tasks), input and output streams
Load the data (or use it on previously available data)
Launch the job and monitor.
Study the result.
Detailed steps.

1/19/2010

27

B. Ramamurthy

http://hadoop.apache.org/core/docs/current/mapred_tutorial.html

MapReduce Characteristics

Very large scale data: peta, exa bytes
Write once and read many data: allows for parallelism without
mutexes
Map and Reduce are the main operations: simple code
There are other supporting operations such as combine and
partition (out of the scope of this talk).
All the map should be completed before reduce operation starts.
Map and reduce operations are typically performed by the same
physical processor.
Number of map tasks and reduce tasks are configurable.
Operations are provisioned near the data.
Commodity hardware and storage.
Runtime takes care of splitting and moving data for operations.
Special distributed file system. Example: Hadoop Distributed File
System and Hadoop Runtime.

1/19/2010

28

B. Ramamurthy

Classes of problems “mapreducable”

Benchmark for comparing: Jim Gray’s challenge on data-
intensive computing. Ex: “Sort”
Google uses it (we think) for wordcount, adwords, pagerank,
indexing data.
Simple algorithms such as grep, text-indexing, reverse
indexing
Bayesian classification: data mining domain
Facebook uses it for various operations: demographics
Financial services use it for analytics
Astronomy: Gaussian analysis for locating extra-terrestrial
objects.
Expected to play a critical role in semantic web and web3.0

1/19/2010

29

B. Ramamurthy

Scope of MapReduce

Pipelined Instruction level

Concurrent Thread level

Service Object level

Indexed File level

Mega Block level

Virtual System Level

Data size: small

Data size: large

1/19/2010

30

B. Ramamurthy

Hadoop

B. Ramamurthy 1/19/2010

31

What is Hadoop?

At Google MapReduce operation are run on a special
file system called Google File System (GFS) that is
highly optimized for this purpose.
GFS is not open source.
Doug Cutting and Yahoo! reverse engineered the
GFS and called it Hadoop Distributed File System
(HDFS).
The software framework that supports HDFS,
MapReduce and other related entities is called the
project Hadoop or simply Hadoop.
This is open source and distributed by Apache.

1/19/2010

32

B. Ramamurthy

Basic Features: HDFS

Highly fault-tolerant

High throughput

Suitable for applications with large data sets

Streaming access to file system data

Can be built out of commodity hardware

1/19/2010

33

B. Ramamurthy

Hadoop Distributed File System

1/19/2010

34

Application

Local file
system

Master node

Name Nodes

HDFS Client

HDFS Server

Block size: 2K

Block size: 128M
Replicated

B. Ramamurthy

More details: We discuss this in great detail in my Operating
Systems course

Hadoop Distributed File System

1/19/2010

35

Application

Local file
system

Master node

Name Nodes

HDFS Client

HDFS Server

Block size: 2K

Block size: 128M
Replicated

B. Ramamurthy

More details: We discuss this in great detail in my Operating
Systems course

heartbeat

blockmap

Relevance and Impact on Undergraduate courses

Data structures and algorithms: a new look at traditional
algorithms such as sort: Quicksort may not be your
choice! It is not easily parallelizable. Merge sort is better.
You can identify mappers and reducers among your
algorithms. Mappers and reducers are simply place
holders for algorithms relevant for your applications.
Large scale data and analytics are indeed concepts to
reckon with similar to how we addressed “programming
in the large” by OO concepts.
While a full course on MR/HDFS may not be warranted,
the concepts perhaps can be woven into most courses in
our CS curriculum.

1/19/2010

36

B. Ramamurthy

Demo

VMware simulated Hadoop and MapReduce demo

Remote access to NEXOS systems lab

5-node HDFS running HDFS on Ubuntu 8.04

1 –name node and 4 data-nodes

Each is an old commodity PC with 512 MB RAM,
120GB – 160GB external memory

Zeus (namenode), datanodes: hermes, dionysus,
aphrodite, athena

1/19/2010

37

B. Ramamurthy

Summary

We introduced MapReduce programming model for
processing large scale data

We discussed the supporting Hadoop Distributed
File System

The concepts were illustrated using a simple example

We reviewed some important parts of the source
code for the example.

Relationship to Cloud Computing

1/19/2010

38

B. Ramamurthy

References

1. Apache Hadoop Tutorial: http://hadoop.apache.org
http://hadoop.apache.org/core/docs/current/mapred_tu
torial.html

2. Dean, J. and Ghemawat, S. 2008. MapReduce:
simplified data processing on large clusters.
Communication of ACM 51, 1 (Jan. 2008), 107-113.

3. Cloudera Videos by Aaron Kimball:

http://www.cloudera.com/hadoop-training-basic

4. http://www.cse.buffalo.edu/faculty/bina/mapreduce.html

1/19/2010

39

B. Ramamurthy

http://hadoop.apache.org/
http://hadoop.apache.org/core/docs/current/mapred_tutorial.html
http://hadoop.apache.org/core/docs/current/mapred_tutorial.html
http://www.cloudera.com/hadoop-training-basic

	MapReduce and Hadoop Distributed File System
	The Context: Big-data
	Purpose of this talk
	The Outline
	The Concept
	Big Data issues
	Big Data solutions?
	MapReduce
	What is MapReduce?
	From CS Foundations to MapReduce
	Word Counter and Result Table
	Multiple Instances of Word Counter
	Improve Word Counter for Performance
	Peta-scale Data
	Addressing the Scale Issue
	Peta-scale Data
	Peta Scale Data is Commonly Distributed
	Write Once Read Many (WORM) data
	WORM Data is Amenable to Parallelism
	Divide and Conquer: Provision Computing at Data Location
	Mapper and Reducer
	Map Operation
	Reduce Operation
	Slide Number 24
	MapReduce Example in my operating systems class
	MapReduce Programming Model
	��MapReduce programming model�
	MapReduce Characteristics
	Classes of problems “mapreducable”
	Scope of MapReduce
	Hadoop
	What is Hadoop?
	Basic Features: HDFS
	Hadoop Distributed File System
	Hadoop Distributed File System
	Relevance and Impact on Undergraduate courses
	Demo
	Summary
	References

