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The Context: Big-data

Man on the moon with 32KB (1969); my laptop had 2GB RAM (2009)

Google collects 270PB data in a month (2007), 20000PB a day (2008)

2010 census data is expected to be a huge gold mine of information

Data mining huge amounts of data collected in a wide range of domains 
from astronomy to healthcare has become essential for planning and 
performance.

We are in a knowledge economy.

Data is an important asset to any organization

Discovery of knowledge; Enabling discovery; annotation of data

We are looking at newer 

programming models, and

Supporting algorithms and data structures.

NSF refers to it as “data-intensive computing” and industry calls it “big-
data” and “cloud computing”
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Purpose of this talk

To provide a simple introduction to:
“The big-data computing” : An important 
advancement that has a potential to impact 
significantly the CS and undergraduate curriculum. 
A programming model called MapReduce for 
processing “big-data”
A supporting file system called Hadoop Distributed 
File System (HDFS) 

To encourage students to explore ways to infuse 
relevant concepts of this emerging area into their 
projects.
To explore ways of contributing the HDFS project.
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The Outline

The concept 

Introduction to MapReduce

From CS Foundation to MapReduce

MapReduce programming model

Hadoop Distributed File System 

Demo 

Our experience with the framework

Summary

References
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The Concept
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Big Data issues
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Issues: Big data  storage 
write once read many
Distributed data server
(not file server or dbms)

Read Client: 
wordcount,

index, 
pagerank

Write Client:
Web crawler

Issue: Efficient parallel
Processing of big data
More than multithreading
Algorithmic level



Big Data solutions?
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Issues: Big data  storage 
write once read many
Distributed data server
(not file server or dbms)
Google’s solution: GFS
Yahoo’s answer: HDFS

Read Client: 
wordcount,

index, 
pagerank

Write Client:
Web crawler

Issue: Efficient parallel
Processing of big data
More than multithreading
Algorithmic level
Google’s solution: mapreduce



MapReduce
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What is MapReduce?

MapReduce is a programming model Google has used 
successfully is processing its “big-data” sets (~ 20000 peta 
bytes per day)

Users specify the computation in terms of a map and a 
reduce function, 
Underlying runtime system automatically parallelizes the 
computation across large-scale clusters of machines, and
Underlying system also handles machine failures, 
efficient communications, and performance issues.

-- Reference: Dean, J. and Ghemawat, S. 2008. MapReduce: 
simplified data processing on large clusters. Communication of 
ACM 51, 1 (Jan. 2008), 107-113.
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From CS Foundations to MapReduce

Consider a large data collection: 
{web, weed, green, sun, moon, land, part, web, 

green,…}
Problem: Count the occurrences of the different words 

in the collection.

Lets design a solution for this problem; 
We will start from scratch
We will add and relax constraints 
We will do incremental design, improving the solution for 
performance and scalability
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Word Counter and Result Table

Data
collection

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1
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ResultTable

Main

DataCollection

WordCounter

parse( )
count( )

{web, weed, green, sun, moon, land, part, 
web, green,…}

B. Ramamurthy 



Multiple Instances of Word Counter

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1
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Thread

DataCollection ResultTable

WordCounter

parse( )
count( )

Main

1..*1..*

Data
collection

Observe: 
Multi-thread
Lock on shared data
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Improve Word Counter for Performance 
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Data
collection

WordList

Thread

Main

1..*
1..*

DataCollection

Parser
1..* Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

N 
o 

No need for lock

Separate counters
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Peta-scale Data
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Data
collection

WordList

Thread

Main

1..*
1..*

DataCollection

Parser
1..* Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1
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Addressing the Scale Issue
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Single machine cannot serve all the data: you need a distributed
special (file) system
Large number of commodity hardware disks: say, 1000 disks 1TB 
each

Issue: With Mean time between failures (MTBF) or failure rate of
1/1000, then at least 1 of the above 1000 disks would be down at a 
given time. 
Thus failure is norm and not an exception.
File system has to be fault-tolerant: replication, checksum
Data transfer bandwidth is critical (location of data)

Critical aspects: fault tolerance + replication + load balancing, 
monitoring
Exploit parallelism afforded by splitting parsing and counting
Provision and locate computing at data locations 
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Peta-scale Data
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Data
collection

WordList

Thread

Main

1..*
1..*

DataCollection

Parser
1..* Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1
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Peta Scale Data is Commonly Distributed 
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Data
collection

WordList

Thread

Main

1..*
1..*

DataCollection

Parser
1..* Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Data
collection

Data
collection

Data
collection

Data
collection Issue: managing the

large scale data
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Write Once Read Many (WORM) data
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Data
collection

WordList

Thread

Main

1..*
1..*

DataCollection

Parser
1..* Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Data
collection

Data
collection

Data
collection

Data
collection
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WORM Data is Amenable to Parallelism
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Data
collection

WordList

Thread

Main

1..*
1..*

DataCollection

Parser
1..* Counter

1..*

ResultTable

Data
collection

Data
collection

Data
collection

Data
collection

1. Data with WORM 
characteristics : yields 
to parallel processing;  

2. Data without 
dependencies: yields 
to out of order 
processing
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Divide and Conquer: Provision Computing at Data Location
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WordList

Thread

Main

1..*
1..*

DataCollection

Parser
1..* Counter

1..*

ResultTable

Data
collection

WordList

Thread

Main

1..*
1..*

DataCollection

Parser
1..* Counter

1..*

ResultTable

Data
collection

Data
collection

WordList

Thread

Main

1..*
1..*

DataCollection

Parser
1..* Counter

1..*

ResultTable

WordList

Thread

Main

1..*
1..*

DataCollection

Parser
1..* Counter

1..*

ResultTable

Data
collection

For our example,
#1: Schedule parallel parse tasks
#2: Schedule parallel count tasks

This is a particular solution;
Lets generalize it:

Our parse is a mapping operation:
MAP: input <key, value> pairs

Our count is a reduce operation:
REDUCE: <key, value> pairs reduced

Map/Reduce originated from Lisp
But have different meaning here

Runtime adds distribution + fault 
tolerance + replication + monitoring +
load balancing to your base application!

One node
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Mapper and Reducer
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Remember: MapReduce is simplified processing for larger data sets: 
MapReduce Version of WordCount Source code
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http://hadoop.apache.org/core/docs/current/mapred_tutorial.html


Map Operation

MAP: Input data <key, value> pair

Data
Collection: split1

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

Split the data to
Supply multiple
processors

Data
Collection: split 2

Data
Collection: split n

Map
…

…

Map
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Reduce

Reduce

Reduce

Reduce Operation

MAP: Input data <key, value> pair

REDUCE: <key, value> pair <result>

Data
Collection: split1 Split the data to

Supply multiple
processors

Data
Collection: split 2

Data
Collection: split n Map

Map
…

…

Map
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C
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n
t

C
ou

n
t

C
ou

n
t

Large scale data splits

Parse-hash

Parse-hash

Parse-hash

Parse-hash

Map <key, 1> Reducers (say, Count)

P-0000  

P-0001 

P-0002  

, count1

, count2

,count3
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Cat

Bat

Dog

Other 
Words
(size:
TByte)

map

map

map

map

split

split

split

split

combine

combine

combine

reduce

reduce

reduce

part0

part1

part2

MapReduce Example in my operating systems class 
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MapReduce Programming 
Model
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MapReduce programming model

Determine if the problem is parallelizable and solvable using 
MapReduce (ex: Is the data WORM?, large data set).
Design and implement solution as Mapper classes and 
Reducer class. 
Compile the source code with hadoop core.
Package the code as jar executable.
Configure the application (job) as to the number of mappers 
and reducers (tasks), input and output streams
Load the data (or use it on previously available data)
Launch the job and monitor.
Study the result.
Detailed steps.
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MapReduce Characteristics

Very large scale data: peta, exa bytes
Write once and read many data: allows for parallelism without 
mutexes
Map and Reduce are the main operations: simple code
There are other supporting operations such as combine and 
partition (out of the scope of this talk).
All the map should be completed before reduce operation starts.
Map and reduce operations are typically performed by the same 
physical processor.
Number of map tasks and reduce tasks are configurable.
Operations are provisioned near the data.
Commodity hardware and storage.
Runtime takes care of splitting and moving data for operations.
Special distributed file system. Example: Hadoop Distributed File 
System and Hadoop Runtime.
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Classes of problems “mapreducable”

Benchmark for comparing: Jim Gray’s challenge on data-
intensive computing. Ex: “Sort”
Google uses it (we think) for wordcount, adwords, pagerank, 
indexing data. 
Simple algorithms such as grep, text-indexing, reverse 
indexing
Bayesian classification: data mining domain
Facebook uses it for various operations: demographics
Financial services use it for analytics
Astronomy: Gaussian analysis for locating extra-terrestrial 
objects.
Expected to play a critical role in semantic web and web3.0
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Scope of MapReduce

Pipelined Instruction level

Concurrent Thread level

Service Object level

Indexed File level

Mega Block level

Virtual System Level

Data size: small

Data size: large
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Hadoop
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What is Hadoop?

At Google MapReduce operation are run on a special 
file system called Google File System (GFS) that is 
highly optimized for this purpose.
GFS is not open source.
Doug Cutting and Yahoo! reverse engineered the 
GFS and called it Hadoop Distributed File System 
(HDFS).
The software framework that supports HDFS, 
MapReduce and other related entities is called  the 
project Hadoop or simply Hadoop.
This is open source and distributed by Apache.
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Basic Features: HDFS

Highly fault-tolerant

High throughput

Suitable for applications with large data sets

Streaming access to file system data

Can be built out of commodity hardware 
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Hadoop Distributed File System
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Application

Local file 
system

Master node

Name Nodes

HDFS Client

HDFS Server

Block size: 2K

Block size: 128M
Replicated
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More details: We discuss this in great detail in my Operating 
Systems course



Hadoop Distributed File System
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Application

Local file 
system

Master node

Name Nodes

HDFS Client

HDFS Server

Block size: 2K

Block size: 128M
Replicated
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More details: We discuss this in great detail in my Operating 
Systems course

heartbeat

blockmap



Relevance and Impact on Undergraduate courses

Data structures and algorithms: a new look at traditional 
algorithms such as sort: Quicksort may not be your 
choice! It is not easily parallelizable. Merge sort is better.
You can identify mappers and reducers among your 
algorithms. Mappers and reducers are simply place 
holders for algorithms relevant for your applications. 
Large scale data and analytics are indeed concepts to 
reckon with similar to how we addressed “programming 
in the large” by OO concepts.
While a full course on MR/HDFS may not be warranted, 
the concepts perhaps can be woven into most courses in 
our CS curriculum.
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Demo

VMware  simulated Hadoop and MapReduce demo

Remote access to NEXOS systems lab

5-node HDFS running HDFS on Ubuntu 8.04

1 –name node and 4 data-nodes

Each is an old commodity PC with 512 MB RAM, 
120GB – 160GB external memory

Zeus (namenode),  datanodes: hermes, dionysus, 
aphrodite, athena
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Summary

We introduced MapReduce programming model for 
processing large scale data

We discussed the supporting Hadoop Distributed 
File System

The concepts were illustrated using a simple example

We reviewed some important parts of the source 
code for the example.

Relationship to Cloud Computing 
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