
Conceptual Database Design

Jan Chomicki
University at Buffalo

Jan Chomicki () Conceptual database design 1 / 30

Outline

1 Entity-Relationship Data Model

2 Mapping E-R schemas to relations

3 Description logics

Jan Chomicki () Conceptual database design 2 / 30



Entity-Relationship (E-R) Data Model

Proposed by Peter Chen in 1976.

Features

used for the description of the conceptual schema of the database

not used for database implementation

formal notation

close to natural language

Can be mapped to various data models

relational

object-oriented, object-relational

XML

description logics

Jan Chomicki () Conceptual database design 3 / 30

Basic ER model concepts

Schema level Instance level

Domain Domain element (value)

Entity type Entity

Relationship type Relationship (instance)

Cardinality constraints Valid relationships

Attribute Attribute value

Key Unique key value

Jan Chomicki () Conceptual database design 4 / 30



Entities

Entity

Something that exists and can be
distinguished from other entities.

Examples

A person, an account, a course.

Entity type

A set of entities with similar
properties. Entity types can overlap.

Examples

Persons, employees, Citibank
accounts, UB courses.

Entity type extension

The set of entities of a given type in
a given database instance.

Notation

entities: e1, e2, . . .

“entity e is of type T”: T (e).

Jan Chomicki () Conceptual database design 5 / 30

Attributes

Domain

A predefined set of primitive, atomic
values (entity types are not
domains!).

Examples

Integers, character strings, decimals.

Attribute

A (partial) function from an entity
type to a domain, representing a
property of the entities of that type.

Examples

Name : Person → String

Balance : Account → Decimal

Notation

A(e): “the value of the
attribute A for the entity e”.

Example

Name(e1)=’Brown’

Jan Chomicki () Conceptual database design 6 / 30



Keys

Key

A (minimal) set of attributes that uniquely identifies every entity in an entity type.

Examples

Entity type Key

Americans SSN

ATT accounts Phone number

NY vehicles License plate number

US vehicles (License plate number,State)

an entity type can have multiple keys

one key is selected as the primary key.

Jan Chomicki () Conceptual database design 7 / 30

Relationships

Relationship type of arity k

A subset of the Cartesian
product of some entity types
E1, . . . , Ek , representing an
association between the
entity types. Relationship
types can have attributes.

Examples

Teaches(Employee,Class)

Sells(Vendor,Customer,Product)

Parent(Person,Person)

Relationship instance of arity k

A k-tuple of entities of the
appropriate types.

Example

Teaches(e1,c1) where
Employee(e1) and Class(c1) and
Name(e1)=’Brown’.

Jan Chomicki () Conceptual database design 8 / 30



Cardinality constraints

Binary relationship type R(A, B) is:

1 : 1 if for every entity e1 in A there is at most one entity e2 in B such that
R(e1, e2) and vice versa.

N : 1 if for every entity e1 in A there is at most one entity e2 in B such that
R(e1, e2).

N : M otherwise.

Jan Chomicki () Conceptual database design 9 / 30

Advanced schema-level concepts

isa relationships

weak entity types

complex attributes

roles.

Jan Chomicki () Conceptual database design 10 / 30



isa relationships

Definition

A isa B if every entity in the entity
type A is also in the entity type B.

Example

Faculty isa Employee.

If A isa B, then:

Attrs(B) ⊆ Attrs(A) (inheritance of attributes),

Key(A) = Key(B) (inheritance of key).

Example

Rank : Faculty → {’Assistant’,’Associate’,. . .}

Rank is not defined for non-faculty employees (or defined differently).

Jan Chomicki () Conceptual database design 11 / 30

Weak entity types

Definition

A is a weak entity type if:

A does not have a key.

the entities in A can be identified through an identifying relationship type R(A, B)
with another entity type B.

The entities in A can be identified by the combination of:

the borrowed key of B.

some partial key of A.

Example

Entity types: Account, Check.
Identifying relationship type: Issued.
Borrowed key (of Account): AccNo.
Partial key (of Check): CheckNo.

Jan Chomicki () Conceptual database design 12 / 30



Complex attributes

Attribute values

sets (multivalued attributes).

tuples (composite attributes).

Multivalued attribute

Degrees : Faculty → 2{
′B.A.′,′B.S.′,...,′Ph.D.′,...}

Composite attribute

Address : Employee → Street× City× Zipcode

Multivalued and composite attributes can be expressed using other constructs of the E-R
model.

Jan Chomicki () Conceptual database design 13 / 30

Roles

Roles are necessary in a relationship type that relates an entity type to itself. Different
occurrences of the same entity type are distinguished by different role names.

Example

In the relationship type ParentOf(Person, Person) the introduction of role names
gives ParentOf(Parent:Person,Child:Person)

Jan Chomicki () Conceptual database design 14 / 30



ER design

General guidelines

schema: stable information, instance: changing information.

avoid redundancy (each fact should be represented once).

no need to store information that can be computed.

keys should be as small as possible.

introduce artificial keys only if no simple, natural keys available.

How to choose entity types

things that have properties of their own, or

things that are used in navigating through the database.

avoid null attribute values if possible by introducing extra entity types.

Jan Chomicki () Conceptual database design 15 / 30

isa relationship design

Generalization (bottom-up)

generalize a number of different
entity types (with the same
key) to a single type.

factor out common attributes.

Example

Student isa Person

Teacher isa Person

Name : Person → String

Specialization (top-down)

specialize an entity type to one
or more specific types.

add attributes in more specific
entity types.

Example

Salary : Teacher → Decimal

Jan Chomicki () Conceptual database design 16 / 30



Mapping E-R schemas to relations

Assumption

No complex attributes.

Multiple stages

1 creating relation schemas from entity types.

2 creating relation schemas from relationship types.

3 identifying keys.

4 identifying foreign keys.

5 schema optimization.

Jan Chomicki () Conceptual database design 17 / 30

Mapping entity types to relations

Entity type Relation schema

E1 such that E1 isa E2 Key(E2)

∪(Attrs(E1)− Attrs(E2))

E1 is a weak entity type Key(E2)

identified by R(E1, E2) ∪(Attrs(E1)− Attrs(E2))

E1 is none of the above Attrs(E1)

Jan Chomicki () Conceptual database design 18 / 30



Mapping relationship types to relations

Relationship type Relation schema

R(E1, . . . , En) Key(E1) ∪ · · ·Key(En)

∪Attrs(R)

No relations are created from isa or identifying relationships.

Different occurrences of the same attribute name should be named differently.

Jan Chomicki () Conceptual database design 19 / 30

Identifying keys

Relation schema W is the result of mapping an entity type E1 or a relationship type
R(E1, E2).

Source of W Key of W

Entity type E1 Key(E1)

Weak entity type E1 Union of borrowed

and partial keys of E1

R(E1, E2) is 1 : 1 Key(E1) or Key(E2)

R(E1, E2) is N : 1 Key(E1)

R(E1, E2) is N : M Key(E1) ∪ Key(E2)

These rules can be generalized to arbitrary relationship types R(E1, . . . , En).

Jan Chomicki () Conceptual database design 20 / 30



Identifying foreign keys

Relation schema W is the result of mapping an entity type E1 or a relationship type
R(E1, E2).

Source of W Foreign keys of W

Entity type E1 No foreign keys

Weak entity type E1 Borrowed key of E1

Entity type E1 Key(E1)

such that E1 isa E2

R(E1, E2) Key(E1), Key(E2)

Jan Chomicki () Conceptual database design 21 / 30

Schema optimization

Combine relation schemas with identical keys coming from the same entity type.

Student(SName,Address) can be combined with Advising(SName,Faculty) to yield
Student(SName,Address,Faculty).

Different keys

Student(SName,Address) should not be combined with Grades(SName,Course,Grade).

Different entity types

Student(SName,Address) should not be combined with Graduate(SName).

Jan Chomicki () Conceptual database design 22 / 30



Description logics knowledgebases

Description logics

a family of variable-free logics developed in AI

used to define ontologies for the Semantic Web (OWL DL)

Terminological box (TBox)

corresponds to database conceptual schema

vocabulary: atomic concepts and roles

containment and transitivity assertions, definitions

Assertional box (ABox)

corresponds to database instance

named individuals

assertions stating membership of individuals in concepts and roles

Jan Chomicki () Conceptual database design 23 / 30

Concepts

Atomic concepts

correspond to entity types

Singleton concepts

the concept consists of a single individual: {a}

Boolean concepts

intersection of concepts: C u D

union of concepts: C t D

negation of a concept: ¬C

top concept: > = A t ¬A

bottom concept: ⊥ = A u ¬A

Jan Chomicki () Conceptual database design 24 / 30



Further concepts

Quantification and number restriction

C is a concept, R a role

individuals associated with some individual in C through R: ∃R.C

individuals associated only with individuals in C through R: ∀R.C

individuals associated with at most k individuals through R: ≤ k R

individuals associated with at least k individuals through R: ≥ k R

Datatypes

In ∃R.C and ∀R.C , C can be a datatype (Integer, String,...).

Jan Chomicki () Conceptual database design 25 / 30

Roles

Atomic roles

correspond to relationship types

Inverse roles

an individual a is associated with an individual b through R− if and only if b is
associated with a through R.

Jan Chomicki () Conceptual database design 26 / 30



Assertions

Definition

atomic concept A is defined as concept C : A ≡ C

Containment

concept C is contained in concept D: C v D

role R is contained in role S : R v S

Transitivity

role R is transitive: R+ v R

Membership

individual a is a member of concept C : a ∈ C

pair (a, b) belongs to role R: (a, b) ∈ R

Jan Chomicki () Conceptual database design 27 / 30

E-R constructs in description logics

Integer attribute A for entity type E

E is a concept, A is a role

assertion:

E v ∀A.Integeru ≤ 1 A

Relationship R is between entity types E1 and E2

E1 and E2 are concepts, R is a role

assertions:

E1 v ∀R.E2

E2 v ∀R−.E1

Jan Chomicki () Conceptual database design 28 / 30



Further E-R constructs

Relationship R is n : 1

assertion:

E1 v ≤ 1 R

E1 isa E2

assertion:

E1 v E2

Problematic constructs

keys

n-ary relationships for N > 2 (but can be simulated)

Jan Chomicki () Conceptual database design 29 / 30

Beyond E-R: ontologies

Concepts C1 and C2 are disjoint

assertion:

C1 u C2 v ⊥

Single parents

assertion:

SingleParent ≡ Person u (∀Parent. ≤ 1Parent−)

Typical ontology reasoning tasks

correctness of knowledge: does the knowledgebase imply a given containment
assertion?

querying ontologies: does the knowledgebase imply a given membership assertion?

Jan Chomicki () Conceptual database design 30 / 30


	Entity-Relationship Data Model
	Mapping E-R schemas to relations
	Description logics

