Data Integration: Description Logics

Jan Chomicki

University at Buffalo

Description logics knowledgebases

Description logics

- a family of variable-free logics developed in AI
- used to define ontologies for the Semantic Web (OWL DL)

Terminological box (TBox)

- corresponds to database conceptual schema
- vocabulary: atomic concepts and roles
- containment and transitivity assertions, definitions

Assertional box (ABox)

- corresponds to database instance
- named individuals
- assertions stating membership of individuals in concepts and roles

Concepts

Atomic concepts

• correspond to entity types

Singleton concepts

• the concept consists of a single individual: {*a*}

Boolean concepts

- intersection of concepts: $C \sqcap D$
- union of concepts: $C \sqcup D$
- negation of a concept: $\neg C$
- top concept: $\top = A \sqcup \neg A$
- **bottom** concept: $\bot = A \sqcap \neg A$

Further concepts

Quantification and number restriction

- C is a concept, R a role
- individuals associated with some individual in C through R: $\exists R.C$
- individuals associated only with individuals in C through R: $\forall R.C$
- individuals associated with at most k individuals through $R: \leq k R$
- individuals associated with at least k individuals through $R: \ge k R$

Datatypes

In $\exists R.C$ and $\forall R.C$, C can be a datatype (Integer, String,...).

Atomic roles

correspond to relationship types

Inverse roles

• an individual a is associated with an individual b through R⁻ if and only if b is associated with a through R.

Assertions

Definition

• atomic concept A is defined as concept $C: A \equiv C$

Containment

- concept C is contained in concept D: $C \sqsubseteq D$
- role R is contained in role S: $R \sqsubseteq S$

Transitivity

• role *R* is transitive: $R^+ \sqsubseteq R$

Membership

- individual a is a member of concept C: $a \in C$
- pair (a, b) belongs to role R: $(a, b) \in R$

Integer attribute A for entity type E

- *E* is a concept, *A* is a role
- assertion:

 $E \sqsubseteq \forall A.Integer$

• single-valuedness not enforced (no $\leq k.Integer$ or $\geq k.Integer$)

Relationship R is between entity types E_1 and E_2

- E_1 and E_2 are concepts, R is a role
- assertions:

$$E_1 \sqsubseteq \forall R.E_2$$

$$E_2 \sqsubseteq \forall R^-.E_1$$

Further E-R constructs

Relationship R is n:1

• assertion:

$$E_1 \sqsubseteq \leq 1 R$$

E_1 isa E_2

• assertion:

 $E_1 \sqsubseteq E_2$

Problematic constructs

- single-valued attributes
- keys
- *n*-ary relationships for N > 2 (but can be simulated)

Concepts C_1 and C_2 are disjoint

• assertion:

$$C_1 \sqcap C_2 \sqsubseteq \bot$$

Single parents

• assertion:

SingleParent
$$\equiv$$
 Person \sqcap (\forall Parent. \leq 1Parent⁻)

Typical ontology reasoning tasks

- correctness of knowledge: *does the knowledgebase imply a given containment assertion?*
- querying ontologies: does the knowledgebase imply a given membership assertion?