Description logics knowledgebases

Description logics

• a family of variable-free logics developed in AI
• used to define ontologies for the Semantic Web (OWL DL)

Terminological box (TBox)

• corresponds to database conceptual schema
• vocabulary: atomic concepts and roles
• containment and transitivity assertions, definitions

Assertional box (ABox)

• corresponds to database instance
• named individuals
• assertions stating membership of individuals in concepts and roles
Concepts

Atomic concepts

- correspond to entity types

Singleton concepts

- the concept consists of a single individual: \{a\}

Boolean concepts

- intersection of concepts: \(C \cap D\)
- union of concepts: \(C \cup D\)
- negation of a concept: \(\neg C\)
- top concept: \(\top = A \cup \neg A\)
- bottom concept: \(\bot = A \cap \neg A\)

Further concepts

Quantification and number restriction

- \(C\) is a concept, \(R\) a role
- individuals associated with some individual in \(C\) through \(R\): \(\exists R.C\)
- individuals associated only with individuals in \(C\) through \(R\): \(\forall R.C\)
- individuals associated with at most \(k\) individuals through \(R\): \(\leq k R\)
- individuals associated with at least \(k\) individuals through \(R\): \(\geq k R\)

Datatypes

In \(\exists R.C\) and \(\forall R.C\), \(C\) can be a datatype (Integer, String,...).
Roles

Atomic roles
- correspond to relationship types

Inverse roles
- an individual a is associated with an individual b through R^{-} if and only if b is associated with a through R.

Assertions

Definition
- atomic concept A is defined as concept C: $A \equiv C$

Containment
- concept C is contained in concept D: $C \subseteq D$
- role R is contained in role S: $R \subseteq S$

Transitivity
- role R is transitive: $R^{+} \subseteq R$

Membership
- individual a is a member of concept C: $a \in C$
- pair (a, b) belongs to role R: $(a, b) \in R$
E-R constructs in description logics

Integer attribute A for entity type E

- E is a concept, A is a role
- assertion:
 $$E \sqsubseteq \forall A.\text{Integer}$$
- single-valuedness not enforced (no $\leq k.\text{Integer}$ or $\geq k.\text{Integer}$)

Relationship R is between entity types E_1 and E_2

- E_1 and E_2 are concepts, R is a role
- assertions:
 $$E_1 \sqsubseteq \forall R.E_2$$
 $$E_2 \sqsubseteq \forall R^-.E_1$$

Further E-R constructs

Relationship R is $n:1$

- assertion:
 $$E_1 \sqsubseteq \leq 1 R$$

E_1 isa E_2

- assertion:
 $$E_1 \sqsubseteq E_2$$

Problematic constructs

- single-valued attributes
- keys
- n-ary relationships for $N > 2$ (but can be simulated)
Concepts C_1 and C_2 are disjoint

- assertion:

$$C_1 \cap C_2 \subseteq \bot$$

Single parents

- assertion:

$$\text{SingleParent} \equiv \text{Person} \cap (\forall \text{Parent}. \leq 1\text{Parent}^-)$$

Typical ontology reasoning tasks

- **correctness** of knowledge: *does the knowledgebase imply a given containment assertion?*

- **querying ontologies**: *does the knowledgebase imply a given membership assertion?*