Data Integration: Metadata

Jan Chomicki

University at Buffalo
Schematic discrepancies

The information in the schema of one database may correspond to the information in the instance of another database.

Postulates

1. the same constant may be a relation name, a column name and an attribute value
2. schema elements should be first-class objects
3. queries may define more than one relation, each with varying number of columns.

Correspondences

- attribute value \iff relation name
- attribute value \iff column name
- column name \iff relation name
A successor of SchemaSQL [LSS01].

Features

- metavaraibles, ranging over relation and column names
- dynamically varying relation schemas (INTO, ON)

Database schemas
DA: Exams(Sid,Exam,Grade)

DB: Theory(Sid,Grade), AI(Sid,Grade), Systems(Sid,Grade)

DC: Students(Sid,Theory, AI, Systems)
Attribute values \iff relation names

DA2DB

select E.Sid as "Sid", E.Grade as "Grade"
into E. Exam
from DA.Exams as E

DB2DA

select T.Sid as "Sid", R as "Exam", T.Grade as "Grade"
into "Exams"
from DB :R as T
Attribute values \iff column names

DA2DC

```sql
select E.Sid as "Sid", E.Grade on E.Exam
into "Students"
from DA.Exams as E
```

DC2DA

```sql
select C.Sid as "Sid", A as "Exam", C.A as "Grade"
into "Exams"
from DC: R as C, R:A
where R="Students" and A <> "Sid"
```
FISQL queries

Semantics

- a generalization of SQL semantics
- metavariables range over relation and column names
- output: special treatment for dynamic schemas

FIRA

- extension of relational algebra
- operators map federated databases to federated databases
- new operators: partition, transpose,....

FISQL can be translated to FIRA and vice versa.
L.V.S. Lakshmanan, F. Sadri, and I.N. Subramanian.
SchemaSQL – A Language for Interoperability in Relational Multi-Database Systems.

C.M. Wyss and E. L. Robertson.
Relational Languages for Metadata Integration.