Data Integration: Query Evaluation

Jan Chomicki

University at Buffalo
Interpreting schema mappings

Semantics

• \(M \): function mapping source instances to sets of target instances:

\[M : I(S) \rightarrow 2^{I(T)} \]

where \(S \) is a source schema and \(T \) is a target schema

• specified using assertions (source-to-target dependencies) or queries

• completeness assumptions: OWA vs. CWA

• special classes: GAV, LAV, GLAV

Certain answers

A tuple \(t \) is a certain answer to a query \(Q \) over the source instance \(s \in I(S) \) with respect to \(M \) if \(t \in Q(w) \) for every target instance \(w \in M(s) \).

CWA vs. OWA

• Closed World Assumption (CWA): complete knowledge

• Open World Assumption (OWA): incomplete knowledge
Global-as-view (GAV)

Setting

- **source-to-target dependencies:**
 - under OWA: $\forall t. \phi_S(t) \Rightarrow R(t)$
 - under CWA: $\forall t. \phi_S(t) \Leftrightarrow R(t)$
 - $\phi_S(t)$: disjunction of conjunctions of source atoms

- queries: unions of conjunctive queries (defined using Datalog)

Query evaluation by unfolding

1. **preprocessing:** each atom in the query is replaced by one with fresh variables and additional conditions added
2. **applicability:** can the head A of a rule r can be made identical to a query atom B by a renaming substitution θ of all variables?
3. **unfolding:** replace B by the body of a rule r to which θ has been applied
4. **termination:** stop when only source atoms are left
5. **result:** take the union Q_u of all obtained queries
6. **correctness:** the evaluation of Q_u over the source instances returns the certain answers (under both OWA and CWA)
Unfolding example

Setting

- Databases:
 - Source: \(\text{emp}(N,A), \text{num}(N,Id) \)
 - Target: \(\text{name}(Id,N), \text{addr}(Id,A) \)

- Source-to-target dependency (GAV):
 \[\forall N, A, Id. \ \text{emp}(N,A) \land \text{num}(N,Id) \Rightarrow \text{name}(Id,N) \]

1. Query:

 \[
 \text{query}(N) :- \ \text{emp101}(N).
 \text{emp101}(N) :- \ \text{name}(101,N).
 \]

2. Preprocessing and renaming of the query atoms:

 \[
 \text{query}(N) :- \ \text{emp101}(N).
 \text{emp101}(N1) :- \ \text{name}(X,N1), X=101.
 \]

3. Unfolding the first query rule with the second:

 \[
 \text{query}(N) :- \ \text{name}(X,N), X=101.
 \]

4. Renaming of the source-to-target dependency:

 \[
 \text{name}(Id2,N2) :- \ \text{emp}(N2,A2), \text{num}(N2,Id2).
 \]

5. Unfolding with the source-to-target dependency:

 \[
 \text{query}(N) :- \ \text{emp}(N,A2), \text{num}(N,X), X=101.
 \]
Local-as-view (LAV)

Setting

- Source-to-target dependencies (OWA):

 \[\forall t. \ R(t) \Rightarrow \phi_T(t) \]

- \(\phi_T(t) \): conjunctive query over the target
- queries: sets of Datalog rules (no inequalities).

Query rewriting

- the rewriting produces a set of Datalog rules with Skolem function symbols:
 - EDB predicates: source relations
 - IDB predicates: target relations
- function symbols can be eliminated.
Query evaluation in LAV

Inverse rules

- for every source-to-target dependency:

\[\forall x_1, \ldots, x_m.(A \Rightarrow \exists y_1, \ldots y_k.B_1 \land \cdots \land B_n) \]

produce \(n \) inverse rules \(B'_1 : -A, \ldots, B'_n : -A \)

- \(B'_i \) is like \(B_i \), except that each of \(y_1, \ldots y_k \) is replaced by the (Skolem) term \(f(x_1, \ldots, x_m) \) where \(f \) is a different, unique function symbol.

- all the occurrences of the same variable are replaced by the same term

Query evaluation through rewriting

1. construct the inverse rules
2. the query rule and the inverse rules are evaluated bottom-up
3. the evaluation terminates
4. only the substitutions that do not contain Skolem terms are returned to the user
5. the result is the set of certain answers
Global-and-Local-as-view (GLAV)

Assertions

- source-to-target (ST) dependencies:

\[
\forall t. \phi_S(t) \Rightarrow \phi_T(t)
\]

where \(\phi_S, \phi_T, \) and \(\psi_T \) are conjunctive queries

- target integrity constraints \(\Sigma_t \)
 - tuple-generating dependencies (tgds): \(\forall x (\phi_T(x) \Rightarrow \exists y \psi_T(x,y)) \)
 - equality-generating dependencies: \(\forall x (\phi_T(x) \Rightarrow x_1 = x_2) \).

Query evaluation in data exchange

1. construct any universal solution \(J_0 \)
2. evaluate the query over \(J_0 \)
3. discard answers with nulls
4. the above returns certain answers for unions of conjunctive queries without inequalities
Solutions and certain answers

Solution
Given a source instance I, a target instance J is

- a solution for I if J satisfies target integrity constraints and (I, J) satisfy source-to-target dependencies
- a universal solution for I if it is a solution for I and there is a homomorphism from it to any other solution for I
- solutions can contain labelled nulls

There may be multiple solutions...

Certain answers

- query answers obtained in every solution J for I
Building a universal solution

Apply repetitively a variant of the chase to the source instance using target and source-to-target dependencies.

Chasing a tgd

1. find a substitution h that (1) h makes the LHS true in the constructed instance, and (2) h cannot be extended to a substitution that makes the RHS true in that instance
2. apply h to the RHS, mapping the existentially quantified variables to fresh labelled nulls
3. add the resulting facts to the instance.

Chasing an egd

Find a substitution h such that makes the LHS true and $h(x_1) \neq h(x_2)$:

- if $h(x_1)$ and $h(x_2)$ are constants, then FAILURE
- otherwise, identify $h(x_1)$ and $h(x_2)$ (preferring constants).
Chase at work

Source and target databases

Source: \(\text{Emp}(N, A), \text{Num}(N, Id) \)
Target: \(\text{Name}(Id, N), \text{Addr}(Id, A) \)

Source-to-target dependencies

\(\forall n, a. \ \text{Emp}(n, a) \Rightarrow \exists id. \ \text{Name}(id, n) \land \text{Addr}(id, a) \)

\(\forall n, a, id. \ \text{Emp}(n, a) \land \text{Num}(n, id) \Rightarrow \text{Name}(id, n) \)

Target constraints

\(\text{Name} : \ N \rightarrow Id, Id \rightarrow N, \text{Addr} : \ Id \rightarrow A. \)

Chase sequence

\(I_0 = \{ \text{Emp}(Li, LA), \text{Num}(Li, 111) \} \)
\(I_1 = \{ \text{Emp}(Li, LA), \text{Num}(Li, 111), \text{Name}(id_1, Li), \text{Addr}(id_1, LA) \} \)
\(I_2 = \{ \text{Emp}(Li, LA), \text{Num}(Li, 111), \text{Name}(id_1, Li), \text{Addr}(id_1, LA), \text{Name}(111, Li) \} \)
\(I_3 = \{ \text{Emp}(Li, LA), \text{Num}(Li, 111), \text{Name}(111, Li), \text{Addr}(111, LA) \} \)
Chase

Result

- there is a sequence of chase applications that ends in failure: no universal solution
- otherwise: every finite sequence that cannot be extended yields a universal solution

Acyclic tgds

- no cycles in the program dependency graph
 - nodes: relations
 - edges from the relations in the body of a tgd to the one in the head
- prevent the recurrent generation of labelled nulls
- more fine-grained analysis possible

Termination
For acyclic tgds, each chase sequence is of length polynomial in the size of the input.