Data Integration: XML

Jan Chomicki

University at Buffalo
XML documents (simplified)

XML tree

- finite, ordered, unranked tree
- element, attribute and text nodes
- element and attribute names from a finite alphabet Σ
- attribute and text (#PCDATA) values from an infinite domain D
- only element nodes have children
- document order (left-to-right prefix order)

XML trees represent well-formed documents:
- matching, properly nested opening and closing tags
- single root element

Regular expressions over Σ

$$E := \varepsilon \mid a \mid E + E \mid E \cdot E \mid E^* \quad \text{where } a \in \Sigma.$$
Defining valid XML documents

XML schema definitions

- Document Type Definitions (DTDs)
- XML Schema

DTD (over Σ)

- **element-only** content: a function mapping each element name from Σ to a regular expression to which the concatenated children of the node must conform
- regular expression is **1-unambiguous**
 - parse with a single-symbol lookahead
 - counterexample: \((a + b)^*a\) and \(baa\).
- also text-only, mixed, empty, and unrestricted content
- **attributes**: text-valued (CDATA), enumerations, ID, IDREF
XML Schema

Simple types

- **base** types (many)
- **derived** types (by constraining facets)
- **list/union** types

Complex types

- **content model**: sequence, all, choice
- attribute declarations
- types can be recursive or anonymous
- element types can be locally declared

Integrity constraints

- keys
- foreign keys
XPath

Data model

- tree-based
- nodes: root, element, attribute, text, ...
- document order: left-to-right prefix traversal

Path expression

- describes a set of paths in a document
- returns a sequence of nodes in document order
- evaluated in a context:
 - node
 - position
 - size
- absolute (starting at root) or relative
- consists of steps separated by / or //
- wildcards
- union (|), intersection, difference
XPath axes

axis::nodeTest stepQualifiers

- **axis**:
 - **forward**: child, descendant, following-sibling, following, self, descendant-or-self
 - **backward**: parent, ancestor, preceding-sibling, preceding, ancestor-or-self
- **attribute**
- **node test**: name test (name or wildcard), kind test
- **step qualifiers**: predicate expressions (in square brackets)

Abbreviated syntax

1. child is the default axis, can be omitted
2. the attribute axis can be abbreviated to @
3. // is short for /descendant-or-self::node()/
4. . is short for self::node()
5. .. is short for parent::node()
6. a positive integer K is short for [position()=K]
Integrity constraints in XML Schema

Keys

<((key | unique) name="KeyNname">
 <selector xpath="Path/>
 <field xpath="Path1/>
 ...
 <field xpath="PathN/>
</key>

Foreign keys

<keyref name="RefName" refer="KeyName">
 <selector xpath="Path/>
 <field xpath="Path1/>
 ...
 <field xpath="PathN/>
</keyref>
XQuery

Features

- functional
- compositional: expressions can be nested arbitrarily
- recursion
- declarative: influenced by SQL (and OQL)

XQuery expressions

- Constants: numbers, strings,...
- Variables
- XPath expressions
- Element/attribute constructors
- Operators and functions: arithmetic,...
- FLWOR expressions
- Quantifiers
- Aggregation
- User-defined functions
FLWOR expressions

for variableRangeSpecifications
let variableDefinitions
where condition
order by orderExpression
return resultExpression

User-defined functions

declare function Name(Arguments) as Type
{Expression}
Storing XML documents in relational databases

Storing nodes and edges of the document tree

- a binary edge relation
- implementing XPath requires recursion (SQL3)

Encoding the tree structure using ranges (intervals)

- node A is an ancestor of node B \Rightarrow range of A contains range of B
- node A to the left of node B \Rightarrow range of A precedes range of B
- XPath queries can be translated to SQL2