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Abstract This paper addresses the problem of representing the set of repairs of a
possibly inconsistent database by means of a disjunctive database. Specifically, the
class of denial constraints is considered. We show that, given a database and a set
of denial constraints, there exists a (unique) disjunctive database, called canonical,
which represents the repairs of the database w.r.t. the constraints and is contained
in any other disjunctive database with the same set of minimal models. We propose
an algorithm for computing the canonical disjunctive database. Finally, we study the
size of the canonical disjunctive database in the presence of functional dependencies
for both subset-based repairs and cardinality-based repairs.
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1 Introduction

The problem of managing inconsistent data nowadays arises in several scenarios.
How to extract reliable information from inconsistent databases, i.e., databases
violating integrity constraints, has been extensively studied in the past several years.
Most of the works in the literature rely on the notions of repair and consistent query
answer [3]. Intuitively, a repair for a database w.r.t. a set of integrity constraints
is a consistent database which “minimally” differs from the (possibly inconsistent)
original database. The consistent answers to a query over an inconsistent database
are those tuples which can be obtained by evaluating the query in every repair of
the database. Let us illustrate the notions of repair and consistent query answer by
means of an example.

Example 1 Consider the following relation r

employee
Name Salary Dept
john 50 cs
john 100 cs

and the functional dependency f : Name → Salary Dept stating that each employee
has a unique salary and a unique department. Clearly, r is inconsistent w.r.t. f
as it stores two different salaries for the same employee john. Assuming that the
database is viewed as a set of facts and the symmetric difference is used to capture
the distance between two databases, there exist two repairs for r w.r.t. f , namely
{employee( john, 50, cs)} and {employee( john, 100, cs)}. The consistent answer to the
query asking for the department of john is cs (as this is the answer of the query
in both repairs), whereas the query asking for the salary of john has no consistent
answer (as the two repairs do not agree on the answer).

An introduction to the central concepts of consistent query answering is [11],
whereas surveys on this topic are [7, 9]. Recent work in this area has, however,
been tackling also the problem of database repairing under a variety of repair
semantics [1, 5, 8].

Inconsistency leads to uncertainty as to the actual values of tuple attributes. Thus,
it is natural to study the possible use of incomplete database frameworks in this
context. The set of repairs for a possibly inconsistent database could be represented
by means of an incomplete database whose possible worlds are exactly the repairs of
the inconsistent database.

In this paper, we consider a specific incomplete database framework: disjunctive
databases. A disjunctive database is a finite set of disjunctions of facts. Its seman-
tics is given by the set of minimal models. There is a clear intuitive connection
between inconsistent and disjunctive databases. For instance, the repairs of the
relation r of Example 1 could be represented by the disjunctive database D =
{employee( john, 50, cs) ∨ employee( john, 100, cs)}, as the minimal models of D are
exactly the repairs of r w.r.t. f . Consistent query answers might be obtained by query-
ing the disjunctive database under cautious reasoning. Disjunctive databases have
been studied for a long time [13, 15, 16, 20]. More recently, they have again attracted
attention in the database research community because of potential applications in
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data integration, extraction and cleaning [6]. Our approach should be distinguished
from the approaches that rely on stable model semantics of disjunctive logic programs
with negation to represent repairs of inconsistent databases [4, 10, 14].

In this paper we address the problem of representing the set of repairs of a
database w.r.t. a set of denial constraints by means of a disjunctive database (in other
words, a disjunctive database whose minimal models are the repairs).

We show that, given a database and a set of denial constraints, there exists
a unique, canonical disjunctive database which (a) represents the repairs of the
database w.r.t. the constraints, and (b) is contained in any other disjunctive database
having the same set of minimal models. We propose an algorithm for computing
the canonical disjunctive database which, in general, can be of exponential size.
Next, we study the size of the canonical disjunctive database in the presence of
restricted functional dependencies. We show that the canonical disjunctive database
is of linear size when only one key in considered, but it may be of exponential
size in the presence of two keys or one non-key functional dependency. Finally, we
demonstrate that these results hold also for a different, cardinality-based semantics of
repairs [18].

The paper is organized as follows. In Section 2, we introduce some basic notions
in inconsistent and disjunctive databases. In Section 3, we present an algorithm to
compute the canonical disjunctive database and show that this database is contained
in any other disjunctive database with the same minimal models. In Section 4, we
study the size of the canonical disjunctive databases in the presence of functional
dependencies. In Section 5, we investigate the size of the canonical disjunctive
databases under the cardinality-based semantics of repairs. Finally, in Section 6 we
draw the conclusions and outline some possible future research topics.

2 Preliminaries

In this section we introduce some basic notions of relational, inconsistent, and
disjunctive databases.

2.1 Relational databases

We assume the standard concepts of the relational data model. A database is a
collection of relations. Each relation is a finite set of tuples and has a finite set
of attributes. The values of each attribute are integers, rationals or uninterpreted
constants. Each tuple t̄ in a relation p can be viewed as a fact p(t̄); then a database
can be viewed as a finite set of facts.

We say that a database is consistent w.r.t. a set of integrity constraints if it satisfies
the integrity constraints, otherwise it is inconsistent. In this paper we consider the
class of denial constraints. A denial constraint is a first-order logic sentence of the
following form:

∀X1 . . . Xn ¬[
p1

(
X1

) ∧ · · · ∧ pn
(
Xn

) ∧ ϕ
(
X1, . . . , Xn

)]

where the Xi’s are sequences of variables, the pi’s are relational symbols and ϕ is
a conjunction of atoms referring to built-in, arithmetic or comparison, predicates.
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Special cases of denial constraints are functional dependencies and key constraints.
A functional dependency is of the form

∀X1 X2 X3 X4 X5 ¬[
p
(
X1, X2, X4

) ∧ p
(
X1, X3, X5

) ∧ X2 �= X3
]

The previous functional dependency can be also stated as X → Y, where X is the
set of attributes of p corresponding to X1 whereas Y is the set of attributes of p
corresponding to X2 (and X3). A key constraint is of the form

∀X1 X2 X3 ¬[
p
(
X1, X2

) ∧ p
(
X1, X3

) ∧ X2 �= X3
]

We say that the set of attributes corresponding to X1 is a key.

2.2 Inconsistent databases

As already said in the introduction, a repair of a database w.r.t. a set of integrity
constraints is a consistent database which “minimally” differs from the (possibly
inconsistent) original database [3]. The symmetric difference is used to capture
the distance between two databases. For subset-based repairs, that we will call
simply repairs, the symmetric difference has to be minimal under set inclusion.
Because we consider denial constraints, repairs are maximal consistent subsets of the
original database. In Section 5 we will consider cardinality-based repairs, where the
cardinality of the symmetric difference is minimized.

The set of repairs of a database DB w.r.t. a set F of denial constraints is denoted
by repairs(DB, F).

Given a database DB and a set F of denial constraints, the conflict hypergraph [12]
for DB and F, denoted by GDB,F , is a hypergraph whose set of vertices is the set
of facts of DB, whereas the set of edges consists of all the subset-minimal set of
facts of DB violating together a denial constraint in F. Thus, e ⊆ DB is an edge of
GDB,F if and only if (1) e violates a denial constraint in F, i.e., there exist a denial
constraint

∀X1 . . . Xn ¬[
p1

(
X1

) ∧ · · · ∧ pn
(
Xn

) ∧ ϕ
(
X1, . . . , Xn

)]

in F and a substitution θ s.t. pi(θ(Xi)) ∈ e for i = 1..n and ϕ(θ(X1), . . . , θ(Xn)) is true
(recall that ϕ is a conjunction of atoms referring to built-in, arithmetic or comparison,
predicates); and (2) there is no e′ � e which violates a denial constraint in F.

A fact t of DB is said to be conflicting (w.r.t. F) if there exists an edge {t, t1, . . . , tm}
(m ≥ 0) in GDB,F . For a fact t of DB, we denote by edgesDB,F(t) the set of edges of
GDB,F containing t, i.e., edgesDB,F(t) = {e | e is an edge of GDB,F and t ∈ e}.

2.3 Disjunctive databases

A disjunction is a finite set of facts. A disjunction containing exactly one fact is
called a singleton disjunction. A disjunctive database D is a finite set of non-empty
disjunctions. A database DB is a model of D if for every d ∈ D, d ∩ DB �= ∅ (we
will also say that DB satisfies D); DB is minimal if there is no DB′ � DB s.t. DB′

is a model of D. We denote by MM(D) the set of minimal models of D. Given
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two distinct disjunctions d1 and d2 in D, we say that d1 subsumes d2 iff d1 � d2. The
reduction of D, denoted by reduction(D), is the disjunctive database obtained from
D by discarding all the subsumed disjunctions, that is

reduction(D) = {d | d ∈ D ∧ �d′ ∈ D s.t. d′ subsumes d}.
Observe that for any disjunctive database D, MM(D) = MM(reduction(D)).

2.4 Computational complexity

We refer to data complexity [21], i.e., the complexity is a function of the number
of facts in the database. The set of integrity constraints is considered fixed. In
this setting, the conflict hypergraph is of polynomial size and can be computed in
polynomial time. We study the size of a disjunctive database representing the set of
repairs of a relational database DB w.r.t. a set of integrity constraints F as a function
of the number of facts in DB.

3 Disjunctive databases for representing repairs

In this section we propose an algorithm to compute a disjunctive database whose
minimal models are the repairs of a given database w.r.t. a set of denial constraints.
We show that the so computed disjunctive database is the canonical one, that is
any other disjunctive database whose minimal models coincide with the repairs of
the original database is a superset of the canonical one (containing, in addition,
only disjunctions which are subsumed by disjunctions in the canonical disjunctive
database).

Note that a disjunctive database representing the repairs of a database DB w.r.t. a
set F of denial constraints may be obtained by rewriting the following DNF formula
in CNF:

∨

R∈repairs(DB,F)

∧

t∈R

t

A drawback of this approach is that the construction of the DNF formula requires
the computation of all the repairs, which are, in general, exponentially many. In some
cases, e.g. in the presence of one key constraint, even if the number of repairs is
exponential, the disjunctive database can be computed in polynomial time (see next
section).

Example 2 Consider the relation below where A is a key.

A B
t′1 a1 b 1

t′′1 a1 b 2
...

...
...

t′n an b 1

t′′n an b 2
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There are 2n repairs, namely {{t1, . . . , tn} | ti ∈ {t′i, t′′i } for i = 1..n}. Thus, the corre-
sponding DNF formula consists of 2n disjuncts, where each disjunct is the conjunction
of n facts. The DNF formula needs to be converted in CNF. As we will show in
the next section, there exists a disjunctive database of linear size; we propose an
algorithm which computes it in polynomial time.

The following proposition identifies necessary conditions that a disjunctive data-
base has to satisfy in order to its minimal models be the repairs for a database and
a set of denial constraints. The algorithm that we propose to compute a disjunctive
database representing a set of repairs draws on these conditions.

Proposition 1 Let DB be a database and F a set of denial constraints. Given a
disjunctive database D whose minimal models are the repairs of DB w.r.t. F, then:

1. for each fact t ∈ DB,

(a) if {t} is an edge of GDB,F, then {t} �∈ D;
(b) otherwise, let edgesDB,F(t) = {e1, . . . , em} and D′ = {{t} ∪ {t1} ∪ · · · ∪ {tm} |

ti ∈ ei − {t} f or i = 1..m}. Then, for each disjunction d′ ∈ D′ there is a
disjunction d ∈ D s.t. d ⊆ d′.

2. for each edge {t1, . . . , tk} of GDB,F with k ≥ 2, if there are k disjunctions
d1, . . . , dk ∈ D s.t. d j ∩ {t1, . . . , tk} = {t j} for j = 1..k, then there is a disjunction
d in D s.t. d ⊆ (d1 ∪ · · · ∪ dk) − {t1, . . . , tk}.

Proof

1.a Straightforward.
1.b Suppose by contradiction that the condition does not hold and let d′ be a

disjunction in D′ s.t. there is no disjunction d ∈ D s.t. d ⊆ d′. Let S be the set of
facts appearing in D and M = S − d′. It is easy to see that M is a model of D
(the only disjunctions that M could not satisfy are those ones that contain only
facts in d′) and thus there exists M′ ⊆ M which is a minimal model of D. Since
M′ ∪ {t} is consistent, then M′ is not a repair, which is a contradiction.

2. Suppose by contradiction that there exist an edge {t1, . . . , tk} of GDB,F and
k disjunctions d1, . . . , dk ∈ D s.t. d j ∩ {t1, . . . , tk} = {t j} for j = 1..k, and there
is no disjunction d in D s.t. d ⊆ (d1 ∪ · · · ∪ dk) − {t1, . . . , tk}. Let S be the set
of facts appearing in D, d′ = (d1 ∪ · · · ∪ dk) − {t1, . . . , tk} and M = S − d′. It is
easy to see that M is a model ofD (the only disjunctions that M could not satisfy
are those ones that contain only facts in d′) and thus there exists M′ ⊆ M which
is a minimal model of D. Note that {t1, . . . , tk} ⊆ M′, otherwise there would be
a disjunction di (1 ≤ i ≤ k) not satisfied by M′. Hence, M′ is inconsistent w.r.t.
F, which is a contradiction. ��

Intuitively, a disjunctive database representing a set of repairs has to satisfy
conditions 1.a and 2 of the previous proposition in order to its minimal models be
consistent, whereas condition 1.b has to be satisfied in order to minimal models be
maximal (consistent) subsets of the original database.

The following algorithm computes a disjunctive database representing the repairs
of a database w.r.t. a set of denial constraints.



Disjunctive databases for representing repairs

Algorithm 1
Input: a database DB and a set F of denial constraints
Output: a disjunctive database whose minimal models are the repairs for DB and F

1. DB′ = DB − {t | {t} is an edge of GDB,F}.
2. D̂ = {{t} ∪ {t1} ∪ · · · ∪ {tm} | t ∈ DB′ ∧ edgesDB′,F(t) = {e1, . . . , em} ∧ ti ∈

ei − {t} f or i = 1..m}.
3. Construct a maximal sequence

D̂ = D̂0 � D̂1 � · · · � D̂n

such that for each i ∈ {1, . . . , n}, for some k ≥ 2, there exist facts t1, . . . , tk ∈ DB′

and disjunctions d1, . . . , dk ∈ D̂i−1 such that:

(i) {t1, . . . , tk} is an edge of GDB′,F ;
(ii) for each j ∈ [1..k], |d j| ≥ 2 and d j ∩ {t1, . . . , tk} = {t j}; and

(iii) D̂i = D̂i−1 ∪ {d} where d = (d1 ∪ · · · ∪ dk) − {t1, . . . , tk}.
4. Return reduction(D̂n).

We denote by D(DB, F) the disjunctive database returned by Algorithm 1 with
the input consisting of a database DB and a set F of denial constraints.

Example 3 Consider a database DB = {t1, t2, t3, t4, t5} and a set F of denial con-
straints s.t. the edges of GDB,F are {t1, t2, t3}, {t3, t4}, {t4, t5}. Then, D̂0 contains the
following disjunctions:

{t1, t2} (1)

{t1, t3} (2)

{t2, t3} (3)

{t1, t3, t4} (4)

{t2, t3, t4} (5)

{t3, t4, t5} (6)

{t4, t5} (7)

By considering the edge {t3, t4} and the disjunctions (2) and (7), we can obtain D̂1 =
D̂0 ∪ {d}, where d is

{t1, t5} (8)

Let us consider again the edge {t3, t4} and the disjunctions (3) and (7); we have D̂2 =
D̂1 ∪ {d′}, where d′ is

{t2, t5} (9)

Consider now the edge {t4, t5} and the disjunctions (5) and (8); we have D̂3 = D̂2 ∪
{d′′}, where d′′ is

{t1, t2, t3} (10)

Consider now the edge {t3, t4} and the disjunctions (7) and (10); we have D̂4 = D̂3 ∪
{d′′′}, where d′′′ is

{t1, t2, t5} (11)
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It can be verified that the sequence is maximal. Thus, the disjunctive database
returned by Algorithm 1 is reduction(D̂4), namely the disjunctive database containing
the disjunctions (1), (2), (3), (7), (8), (9).

The first, second and third step of Algorithm 1 ensure that condition 1.a, 1.b and
2 of Proposition 1 hold, respectively. The third step can be viewed as an instance of
“resolution”:

{t1} ∪ d1 . . . {tk} ∪ dk ¬(t1 ∧ t2 ∧ · · · ∧ tk)
d1 ∪ · · · ∪ dk

where k ≥ 2, |di| ≥ 1 ∧ di ∩ {t1, . . . , tk} = ∅ (1 ≤ i ≤ k), and {t1, . . . , tk} is an edge of
the conflict hypergraph. Moreover, observe that, since D̂i−1 � D̂i (1 ≤ i ≤ n), and
the number of disjunctions is bounded (if the original database has h facts, there
cannot be more than 2h − 1 disjunctions), the sequence if finite. In the last step of the
algorithm, subsumed disjunctions are deleted.

The following theorem states the correctness of Algorithm 1.

Theorem 1 Given a database DB and a set F of denial constraints, the set of minimal
models of D(DB, F) is equal to the set of repairs of DB w.r.t. F.

Proof Since the the disjunctive database D(DB, F) returned by Algorithm 1 is
equal to reduction(D̂n), then MM(D(DB, F)) = MM(D̂n). First we prove (1)
repairs(DB, F) ⊆ MM(D̂n) and next (2) repairs(DB, F) ⊇ MM(D̂n).

(1) Consider a repair R in repairs(DB, F). First we show that (a) R is a model of
D̂n and next (b) that it is a minimal model.

(a) We show by induction on increasing i that for each 0 ≤ i ≤ n, for each
d ∈ D̂i, R ∩ d �= ∅.
Basis i = 0. Suppose by contradiction that there exists a disjunction
{t} ∪ {t1} ∪ · · · ∪ {tm} in D̂0, where edgesDB′,F(t) = {e1, . . . , em} and ti ∈ ei −
{t} for i = 1..m, such that R ∩ ({t} ∪ {t1} ∪ · · · ∪ {tm}) = ∅. Observe that
edgesDB′,F(t) = edgesDB,F(t). Since in each edge in edgesDB,F(t) there is
a fact (different from t) which is not in R, then R ∪ {t} is consistent, which
violates the maximality of R.
Step i − 1 → i. Consider a disjunction d ∈ D̂i. If d ∈ D̂i−1, then R ∩ d �=
∅ by the induction hypothesis. If d �∈ D̂i−1, then there exist k ≥ 2 facts
t1, . . . , tk ∈ DB′ and disjunctions d1, . . . , dk ∈ D̂i−1 such that:

(i) {t1, . . . , tk} is an edge of GDB′,F ;
(ii) for each j ∈ [1..k], |d j| ≥ 2 and d j ∩ {t1, . . . , tk} = {t j}; and

(iii) d = (d1 ∪ · · · ∪ dk) − {t1, . . . , tk}.
By the induction hypothesis, R ∩ d j �= ∅ for j = 1..k. Hence, R ∩ d �=
∅, otherwise it would be the case that {t1, . . . , tk} ⊆ R, which is a
contradiction.

(b) We now show that R is a minimal model, reasoning by contradiction.
Assume that there exists a model M′ � R and let t be a fact in R but
not in M′. Observe that t is a conflicting fact (it cannot be the case that
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there is a model of D̂n which does not contain a non-conflicting fact
because D̂n contains a singleton disjunction {t′} for each non-conflicting
fact t′). Moreover, as R is a repair, t is s.t. {t} is not an edge of GDB,F

and then t is in DB′. For each edge ei in edgesDB′,F(t) = {e1, . . . , em}
there is a fact ti ∈ ei − {t} which is not in R since R is consistent and
edgesDB′,F(t) = edgesDB,F(t). The same holds for M′ as it is a subset of
R. Then, the disjunction {t} ∪ {t1} ∪ · · · ∪ {tm}, which is in D̂0 and thus in
D̂n, is not satisfied by M′, which contradicts that M′ is a model. Hence R
is a minimal model of D̂n.

(2) Consider a minimal model M in MM(D̂n). We show first (a) that it is consistent
w.r.t. F and then (b) that it is maximal.

(a) First of all, it is worth noting that D̂n doesn’t contain a singleton disjunc-
tion {t} s.t. t is a conflicting fact of DB. This can be shown as follows. Two
cases may occur: either {t} is an edge of GDB,F or it is not. As for the first
case, since we have proved above that each repair of DB and F is a model
of D̂n and no repair contains t, it cannot be the case that {t} is a singleton
disjunction of D̂n. Let us consider the second case. For any conflicting
fact t in DB s.t. {t} is not an edge of GDB,F , there exist a repair R1 s.t.
t ∈ R1 and a repair R2 s.t. t �∈ R2. As we have proved above, there are two
minimal models of D̂n corresponding to R1 and R2, then it cannot be the
case that {t} ∈ D̂n. We prove that M is consistent w.r.t. F by contradiction,
assuming that M contains a set of facts t1, . . . , tk s.t. e = {t1, . . . , tk} is in
GDB,F . Let Sti = {d − {ti} | d ∈ D̂n and d ∩ {t1, . . . , tk} = {ti}} for i = 1..k.
Two cases may occur: either (i) for some ti, the set Sti is empty, or (ii)
all the sets Sti are not empty. (i) Let t j be a fact in e s.t. St j is empty. It
is easy to see that M − {t j} is a model, which contradicts the minimality
of M. (ii) For each d1 ∈ St1 , . . . , dk ∈ Stk , it holds that d1 ∪ · · · ∪ dk ∈ D̂n

(note that this follows from the the definition of the algorithm and the fact
that each di is not empty, the latter being true since for any conflicting fact
t of DB there does not exist a singleton disjunction {t} in D̂n). Thus, there
is a set St j s.t. M satisfies each d in St j , otherwise it would be the case that
some d1 ∪ · · · ∪ dk in D̂n, where di is in Sti for i = 1..k, is not satisfied. It
is easy to see that M − {t j} is a model, which contradicts the minimality of
M. Hence M is consistent w.r.t. F.

(b) Now we prove that M is a maximal (consistent) subset of DB reasoning by
contradiction, thus assuming that there exists M′ � M which is consistent.
Let t be a fact in M′ but not in M. Once again, note that edgesDB′,F(t) =
edgesDB,F(t). Since M′ is consistent, for each edge ei in edgesDB′,F(t) =
{e1, . . . , em} there is a fact ti ∈ ei − {t} which is not in M′. The same holds
for M as it is a (proper) subset of M′. This implies that M does not
satisfy the disjunction {t} ∪ {t1} ∪ · · · ∪ {tm} in D̂0 and then in D̂n, thus
contradicting the fact the M is a model. Hence, M is a maximal consistent
subset of DB, that is a repair. ��

Given a database DB containing n facts, a rough bound on the size of D(DB, F)

is that it cannot have more than 2n − 1 disjunctions and each disjunction contains at
most n facts, for any set F of denial constraints (in the next section we will study
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more precisely the size of D(DB, F) for special classes of denial constraints, namely
functional dependencies and key constraints).

The following theorem allows us to say when two disjunctive databases have the
same minimal models.

Theorem 2 Two disjunctive databases D1 and D2 have the same minimal models if
and only if reduction(D1) = reduction(D2).

Proof

(⇐) Trivial.
(⇒) Suppose by contradiction that D1 and D2 have the same minimal models and

reduction(D1) �= reduction(D2). Thus, reduction(D1) − reduction(D2) �= ∅ or
reduction(D2) − reduction(D1) �= ∅ (or both). Suppose that the first case holds
and let d1 be a disjunction in reduction(D1) − reduction(D2) (the reasoning
below can be applied analogously to the second case). Two cases may occur:
either (a) there exists d2 ∈ reduction(D2) which subsumes d1, or (b) the
previous condition does not hold.

(a) Let I be the interpretation S − d2 where S is the set of facts appearing in
reduction(D1). It is easy to see that I is a model of reduction(D1) (the
only disjunctions that I could not satisfy are those ones that contain
only facts in d2; such disjunctions are not in reduction(D1) as they
subsume d1 and reduction(D1) does not contain two disjunctions s.t. one
subsumes the other). Thus, there exists M ⊆ I which is a minimal model
of reduction(D1). As d2 ∈ reduction(D2), each model of reduction(D2)

contains a fact in d2, then M is not a minimal model of reduction(D2). It
follows that M is a minimal model of D1 and is not a minimal model of
D2, which is a contradiction.

(b) The reasoning is similar to case (a). Specifically, let I be the interpreta-
tion S − d1 where S is the set of facts appearing in reduction(D2). It is
easy to see that I is a model of reduction(D2) (the only disjunctions that
I could not satisfy are those ones which contain only facts in d1; such
disjunctions are not in reduction(D2) as reduction(D2) contains neither
d1 nor a disjunction which subsumes d1). Thus, there exists M ⊆ I which
is a minimal model of reduction(D2). As d1 ∈ reduction(D1), each model
of reduction(D1) contains a fact in d1, then M is not a minimal model of
reduction(D1). It follows that M is a minimal model of D2 and is not a
minimal model of D1, which is a contradiction. ��

Corollary 1 Given a database DB and a set F of denial constraints, there exists a
unique disjunctive database, henceforth called canonical and denoted byDmin(DB, F),
s.t. (i) the minimal models of Dmin(DB, F) are the repairs for DB and F, and (ii)
Dmin(DB, F) is contained in any other disjunctive database with the same set of
minimal models.

Proof Straightforward from Theorem 2. ��
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Whenever DB and F are clear from the context, we simply write Dmin instead of
Dmin(DB, F).

Example 4 Consider the relation r below

emp
Name Dept
john cs
john math
john physics

and the following denial constraint stating that each employee may have at most two
different departments:

∀X, Y1, Y2, Y3¬
[
emp(X, Y1) ∧ emp(X, Y2) ∧ emp(X, Y3)

∧ Y1 �= Y2 ∧ Y2 �= Y3 ∧ Y1 �= Y3
]

Clearly, the relation above is inconsistent. There are three repairs which are obtained
from the original relation by deleting exactly one tuple. Let t1, t2, t3 be the facts
corresponding to the tuples in r. In this case, Dmin is as follows:

{ t1, t2}
{ t2, t3}
{ t1, t3}

It can be easily verified that the minimal models of Dmin are the repairs of r w.r.t.
the denial constraint above. Moreover, note that Dmin is equal to its reduction and
then Theorem 2 entails that any other disjunctive database D with the same set of
minimal models is s.t. reduction(D) = Dmin, that is D is a superset of Dmin containing,
in addition, disjunctions which are subsumed by disjunctions in Dmin.

As stated by the following corollary, Algorithm 1 computes the canonical disjunc-
tive database.

Corollary 2 Given a database DB and a set F of denial constraints, then D(DB, F) =
Dmin(DB, F).

Proof Straightforward from Theorems 1 and 2. ��

4 Functional dependencies

In this section we study the size of the canonical disjunctive database representing
the repairs of a database in the presence of functional dependencies. Specifically,
we show that when the constraints consist of only one key, the canonical disjunctive
database is of linear size, whereas for one non-key functional dependency or two
keys the size of the canonical database may be exponential.

We observe that in the presence of only one functional dependency, the conflict
hypergraph has a regular structure (in the sense that it follows a pattern) that
“induces” a regular disjunctive database which can be identified without performing
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Algorithm 1. When two key constraints are considered, we are not able to provide
such a characterization; this is because the conflict hypergraph has an irregular
structure and it is harder to identify a pattern for Dmin.

The size of a disjunction d, denoted by ||d||, is equal to |d|. The size of a disjunctive
database D, denoted as ||D||, is the sum of the size of the disjunctions occurring in it,
that is ||D|| = ∑

d∈D ||d||. We study the size ||Dmin|| of Dmin as a function of the size
of the given database.

One key. Given a relation r and a key constraint k stating that the set X of attributes
is a key of r, we denote by cliques(r, k) the partition of r into n = |πX (r)| sets
C1, . . . , Cn, called cliques, s.t. each Ci does not contain two facts with different values
on X. Observe that (i) facts in the same clique are pairwise conflicting with each
other, (ii) the set of repairs of r w.r.t. k is {{t1, . . . , tn} | ti ∈ Ci for i = 1..n}.

Proposition 2 Given a relation r and a key constraint k, then Dmin is equal to

{{t1, . . . , tm} | ∃C = {t1, . . . , tm} ∈ cliques(r, k)}

Proof It is straightforward to see that the minimal models of the disjunctive database
reported above are the repairs of r w.r.t. k; since it coincides with its reduction,
Theorem 2 implies that it is the canonical one. ��

Example 5 Consider the relation of Example 2. There are n cliques Ci = {t′i, t′′i }, 1 ≤
i ≤ n. Then, Dmin = {{t′i, t′′i } | 1 ≤ i ≤ n}.

It is easy to see that when one key constraint is considered, ||Dmin|| = |r|.

Proposition 3 Given a relation and a key constraint, Dmin is computed in polynomial
time by Algorithm 1.

Proof It can be easily verified that Dmin = D̂ and that D̂ is computed in polynomial
time. ��

Two keys. We now show that, in the presence of two key constraints, Dmin may have
exponential size. Let DBn (n > 0) be the family of databases, containing 3n facts, of
the following form:

A B
t11 a b 1
...

...
...

tn1 a b n

t12 a1 b 1

t13 a1 b ′
1

...
...

...

tn2 an b n

tn3 an b ′
n
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Fig. 1 Conflict hypergraph for
a database in DB4 w.r.t. A, B
key constraints
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t32

t33

t11

t31

t12

t13

t32
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t22
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t43

Let DB ∈ DBn and A, B be two keys. The conflict hypergraph for DB w.r.t. the two
key constraints consists of the following edges:

{{ti1, t j1} | 1 ≤ i, j ≤ n ∧ i �= j} ∪ {{ti1, ti2} | 1 ≤ i ≤ n} ∪ {{ti2, ti3} | 1 ≤ i ≤ n}
Thus, the conflict hypergraph contains a clique {t11, . . . , tn1} of size n and, moreover,
ti1 is connected to ti2 which is in turn connected to ti3 (i = 1..n).

Example 6 The conflict hypergraph for a database in DB4, assuming that A and B
are two keys, is reported in Fig. 1.

The following proposition identifies the canonical disjunctive database for a
database in DBn for which A and B are keys; such a disjunctive database has
exponential size.

Proposition 4 Consider a database DB in DBn and a set of constraints F consisting
of two keys, A and B. Then Dmin is equal to D where

D = {{ti2, ti3} | 1 ≤ i ≤ n} ∪ {{ti1, ti2} ∪
⋃

j=1..n ∧ j�=i

{t jz j} | 1 ≤ i ≤ n ∧ z j ∈ {1, 3}}

Proof First of all, we show that the minimal models of D are the repairs of DB w.r.t.
F; in particular we prove that (1) MM(D) ⊆ repairs(DB, F) and (2) MM(D) ⊇
repairs(DB, F).

(1) Consider a minimal model M ∈ MM(DB). First we show that (a) M is
consistent w.r.t. F and next (b) that it is maximal.

(a) Let E be the set of edges of GDB,F . First we show that for each e = {t′, t′′} in
E and pair of disjunctions d′, d′′ in D s.t. d′ ∩ {t′, t′′} = {t′} and d′′ ∩ {t′, t′′} =
{t′′}, there is a disjunction in D which is equal to or subsumes (d′ ∪ d′′) −
{t′, t′′}; next we use this property to show that M is consistent w.r.t. F. We
recall that E is the union of the following three sets:

E1 = {{ti1, t j1} | 1 ≤ i, j ≤ n ∧ i �= j}
E2 = {{ti1, ti2} | 1 ≤ i ≤ n}
E3 = {{ti2, ti3} | 1 ≤ i ≤ n}
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Let us consider the case where e ∈ E1, that is e = {ti1, t j1} (1 ≤ i, j ≤ n ∧
i �= j). Then, a disjunction in D containing ti1 but not t j1 is of the form

d′
1 : {

ti1, ti2, t j3
} ∪

⋃

z=1..n ∧ z�=i, j

{
t′zkz

}

where kz ∈ {1, 3}, or of the form

d′
2 : {

th1, th2, ti1, t j3
} ∪

⋃

z=1..n ∧ z�=h,i, j

{
t′zkz

}

where 1 ≤ h ≤ n ∧ h �= i, j and kz ∈ {1, 3}. Likewise, a disjunction in D
that contains t j1 but not ti1 is of the form

d′′
1 : {

t j1, t j2, ti3
} ∪

⋃

z=1..n ∧ z�=i, j

{
t′′zkz

}

where kz ∈ {1, 3}, or of the form

d′′
2 : {

tk1, tk2, t j1, ti3
} ∪

⋃

z=1..n ∧ z�=k,i, j

{
t′′zkz

}

where 1 ≤ k ≤ n ∧ k �= i, j and kz ∈ {1, 3}. In all the four possible cases,
there is disjunction in D which subsumes (d′ ∪ d′′) − {t′, t′′}:
– if d′ = d′

1 and d′′ = d′′
1 , then there are both {t j2, t j3} and {ti2, ti3} in D;

– if d′ = d′
1 and d′′ = d′′

2 , then we have {ti2, ti3} in D;
– if d′ = d′

2 and d′′ = d′′
1 , then we have {t j2, t j3} in D;

– if d′ = d′
2 and d′′ = d′′

2 , there are both {th1, th2, ti3, t j3} ∪ ⋃
z=1..n ∧ z�=h,i, j{t′zkz

} and {tk1, tk2, ti3, t j3} ∪ ⋃
z=1..n ∧ z�=k,i, j{t′′zkz

} in D.

Let us consider the case where e ∈ E2, namely e = {ti1, ti2} (1 ≤ i ≤ n). A
disjunction containing ti1 but not ti2 is of the form

{tk1, tk2, ti1} ∪
⋃

z=1..n ∧ z�=i,k

{
tzkz

}

where 1 ≤ k ≤ n ∧ k �= i and kz ∈ {1, 3}, whereas a disjunction containing
ti2 but not ti1 is of the form {ti2, ti3}. Thus, (d′ ∪ d′′) − {t′, t′′}, which is
equal to

{tk1, tk2, ti3} ∪
⋃

z=1..n ∧ z�=i,k

{
tzkz

}

is in D. Finally, consider the last case where e ∈ E3, that is e = {ti2, ti3} (1 ≤
i ≤ n). A disjunction containing ti2 but not ti3 is of the form

{ti1, ti2} ∪
⋃

z=1..n ∧ z�=i

{
t′zkz

}
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where kz ∈ {1, 3}, whereas a disjunction containing ti3 but not ti2 is of the
form

{th1, th2, ti3} ∪
⋃

z=1..n ∧ z�=h,i

{
t′′zkz

}

where 1 ≤ h ≤ n ∧ h �= i and kz ∈ {1, 3}; (d′ ∪ d′′) − {t′, t′′} is subsumed or
equal to the disjunction

{th1, th2, ti1} ∪
⋃

z=1..n ∧ z�=h,i

{
t′′zkz

}

which is in D.
Assume by contradiction that M is not consistent. Then there are two facts
ta, tb ∈ M s.t. {ta, tb } ∈ E. Let Sta = {d − {ta} | d ∈ D and d ∩ {ta, tb } = {ta}}
and Stb = {d − {tb } | d ∈ D and d ∩ {ta, tb } = {tb }}. As we have seen before,
both these sets are not empty. We have previously proved that for each
da ∈ Sta and db ∈ Stb there is a disjunction in D which equals or subsumes
da ∪ db . Then, there is a set Stx among Sta and Stb s.t. M satisfies each d
in Stx , otherwise there would be da ∈ Sta , db ∈ Stb and a disjunction in D
which is equal to or subsumes da ∪ db which is not satisfied by M. Consider
the interpretation M′ = M − {tx} and let ty be the fact among ta and tb
which is not tx. We now show that M′ is a model, that contradicts the
minimality of M. Clearly, M′ satisfies every disjunction in D which does
not contain tx. As for the disjunctions in D containing tx, it is easy to see
that they are satisfied by M′: disjunctions containing ty are satisfied since
ty ∈ M′, disjunctions not containing ty are satisfied as well since M′ satisfies
every disjunction in Stx . Hence M is consistent w.r.t. F.

(b) Now we prove that M is a maximal (consistent) subset of DB. First of
all, we note that for each fact t ∈ DB there is a disjunction {t, t1, . . . , tn}
(n ≥ 1) in D s.t. t1, . . . , tn are facts conflicting with t:

– for the facts ti2 and ti3 (i = 1..n) such disjunctions are {ti2, ti3};
– for the facts ti1 (i = 1..n) such disjunctions are {ti1, ti2} ∪⋃

z=1..n ∧ z�=i{tz1}.
Assume by contradiction that M is not a maximal (consistent) subset of
DB. Then there exists M′ � M which is consistent. Let t be a fact in M′

but not in M. Since M′ is consistent, each fact conflicting with t is not in M′

and, thus, neither in M. This implies that M doesn’t satisfy the disjunction
{t, t1, . . . , tn} containing t and some fact conflicting with it: the fact that M
is a model is contradicted.

(2) Consider a repair R for DB and F. We show first (a) that R is a model of D and
next (b) that it is a minimal model.

(a) Suppose by contradiction that R is not a model of D, then there is a
disjunction d ∈ D which is not satisfied by R. Specifically, d is either of
the form {ti2, ti3} (1 ≤ i ≤ n) or {ti1, ti2} ∪ ⋃

z=1..n ∧ z�=i{tzkz}, 1 ≤ i ≤ n and
kz ∈ {1, 3}. In the former case, R ∪ {ti3} is consistent, since the only fact
conflicting with ti3, namely ti2, is not in R. This contradicts the maximality
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of R. As for the latter case, let T3 = {t j3 | t j3 ∈ d}. For each t j3 ∈ T3 we
have that t j2 ∈ R, because R does not contain t j3 and t j3 is conflicting only
with t j2 (if t j2 was not in R, then R would not be maximal). Then for
each t j3 ∈ T3, R does not contain t j1 since it contains t j2 and otherwise
it would not be consistent. Thus R does not contain any fact tk1 with
1 ≤ k ≤ n ∧ k �= i. Since R contains neither the facts tk1’s nor ti2, which
are all the facts conflicting with ti1, then R ∪ {ti1} is consistent (observe that
ti1 �∈ R). This contradicts the maximality of R. Hence R is a model of D.

(b) We now show that R is a minimal model of D reasoning by contradiction.
Assume that there exists a model M′ � R of D and let t be a fact in R but
not in M′. All the facts conflicting with t are not in R as R is consistent.
The same holds for M′ since it is a (proper) subset of R. We recall that
for each fact t′ ∈ DB there is a disjunction in D containing t′ and only
facts conflicting with t′; then there is a disjunction d = {t, t1, . . . , tn} in D
s.t. t1, . . . , tn are facts conflicting with t. Since M′ does not satisfy d, it is
not a model, thus we get a contradiction. Hence R is a minimal model
of D.

We have shown that the minimal models of D are the repairs of DB w.r.t. F. Since
D = reduction(D), from Theorem 2 we have that D is the canonical disjunctive
database whose minimal models are the repairs of DB w.r.t. F. ��

Corollary 3 Consider a database DB in DBn and let A and B be two keys; ||Dmin|| =
2n + (n + 1) · n2n−1.

Proof From Proposition 4, it is easy to see that Dmin contains n disjunctions of 2 facts
and n2n−1 disjunctions of n + 1 facts. ��

The following lemma identifies the repairs of a database in DBn w.r.t. a set of
integrity constraints consisting of two keys, A and B. Such a lemma will be used in
the next section (see Corollary 4).

Lemma 1 Consider a database DB in DBn and a set of integrity constraints F
consisting of two keys, A and B. Then, the set of repairs is equal to R where

R = {{t12, . . . , tn2}} ∪ {{ti1, ti3} ∪
⋃

j=1..n ∧ j�=i

{t jz j} | 1 ≤ i ≤ n ∧ z j ∈ {2, 3}}

Proof It is easy to see that each database in R is a repair.
Consider a repair R of DB w.r.t. F. We show that R is in R using reasoning by

cases:

– Suppose that t13 ∈ R. Then t12 �∈ R and either (1) t11 ∈ R or (2) t11 �∈ R.

1. Since t11 ∈ R, for j = 2..n t j1 �∈ R and either t j2 or t j3 is in R, that is R =
{t11, t13, t2z2 , . . . , tnzn} where z j ∈ {2, 3}, j = 2..n. It is easy to see that R ∈ R.

2. Since t11 �∈ R, there exists tk1 ∈ R with 2 ≤ k ≤ n. Then tk2 �∈ R and tk3 ∈
R. For j = 2..n ∧ j �= k, t j1 �∈ R and either t j2 or t j3 is in R, that is R =
{t13, tk1, tk3} ∪ ⋃

j=2..n ∧ j�=k{t jz j} where z j ∈ {2, 3}. Clearly, R ∈ R.
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– Suppose that t13 �∈ R. Then t12 ∈ R and t11 �∈ R. Two cases may occur: either (1)
there exists tk1 ∈ R with 2 ≤ k ≤ n or (2) t j1 �∈ R for j = 1..n.

1. Since tk1 ∈ R then tk2 �∈ R and tk3 ∈ R. For j = 2..n ∧ j �= k, t j1 �∈ R and
either t j2 or t j3 is in R, that is R = {t12, tk1, tk3} ∪ ⋃

j=2..n ∧ j�=k{t jz j} where z j ∈
{2, 3}. It is easy to see that R ∈ R.

2. R = {t12, . . . , tn2} which is in R. ��

One functional dependency. Given a relation r and a functional dependency f :
X → Y, we denote by cliques(r, f ) the partition of r into n = |πX (r)| sets C1, . . . , Cn,
called cliques, s.t. each Ci does not contain two facts with different values on X.
For each clique Ci in cliques(r, f ) we denote by clusters(Ci) the partition of Ci into
mi = |πY (Ci)| sets G1, . . . , Gmi , called clusters, s.t. each cluster doesn’t contain two
facts with different values on Y. It is worth noting that (i) facts in the same cluster
are not conflicting each other, (ii) given two different clusters G1, G2 of the same
clique, each fact in G1 (resp. G2) is conflicting with every fact in G2 (resp. G1), (iii)
the set of repairs of r w.r.t. f is {G1 ∪ · · · ∪ Gn | Gi ∈ clusters(Ci) for i = 1..n}.

Proposition 5 Given a relation r and a functional dependency f , then Dmin is equal to
D where

D = {{t1, . . . , tk} |∃C ∈ cliques(r, f ) s.t. clusters(C)

= {G1, . . . , Gk} and t1 ∈ G1, . . . , tk ∈ Gk}

Proof We show first (1) that each minimal model of D is a repair for r and f and
next (2) that each repair of r w.r.t. f is a minimal model of D.

(1) Consider a minimal model M of D. Let cliques(r, f ) = {C1, . . . , Cn} be the
cliques for r and f . For each clique Ci in cliques(r, f ) there is a cluster G j

in clusters(Ci) = {G1, . . . , Gk} s.t. G j ⊆ M (otherwise M would not satisfy the
disjunction {t1, . . . , tk} in D where th ∈ Gh and th �∈ M, h = 1..k). Let G1, . . . , Gn

be such clusters, where each Gl is a cluster of Cl for l = 1..n. Since G1 ∪ · · · ∪
Gn ⊆ M and G1 ∪ · · · ∪ Gn is a model of D, then M = G1 ∪ · · · ∪ Gn, which is,
as we have observed before, a repair.

(2) Consider a repair R in repairs(r, f ). As R consists of one cluster for each
clique, it is easy to see that R is a model of D. We show that R is minimal
by contradiction assuming that there exists R′ � R which is a model of D. Let
t be a fact in R which is not in R′. Let Ct and Gt be the clique and the cluster,
respectively, containing t; moreover let clusters(Ct) = {Gt, G1, . . . , Gk}. The
disjunction {t, t1, . . . , tk}, where ti ∈ Gi, i = 1..k, which is in D, is not satisfied
by R′ as R′ contains exactly one cluster per clique (thus it does not contain any
fact in Gi, i = 1..k) and does not contain t. This contradicts the fact that R′ is a
model. So R is a minimal model of D.
Hence the minimal models of D are exactly the repairs for r and f ; as D is equal
to its reduction, Theorem 2 entails that D = Dmin. ��

Clearly, the size of Dmin may be exponential if the functional dependency is a non-
key dependency, as shown in the following example.
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Example 7 Consider the relation r, consisting of 2n facts, reported below and the
non-key functional dependency A → B.

A B C
t′1 a b 1 c1

t′′1 a b 1 c2

...
...

...
...

t′n a b n c1

t′′n a b n c2

There is a unique clique consisting of n clusters Gi = {t′i, t′′i }, i = 1..n. Then Dmin =
{{t1, . . . , tn} | ti ∈ Gi for i = 1..n} and ||Dmin|| = n2n.

5 Cardinality-based repairs

In this section we consider cardinality-based repairs, that is consistent databases
which minimally differ from the original database in terms of the number of facts in
the symmetric difference (in the previous sections we have considered subset-based
repairs, i.e., consistent databases for which the symmetric difference is minimal under
set inclusion).

It is worth noting that also when cardinality-based repairs are considered, a
canonical disjunctive database exists. In fact, a disjunctive database D representing
the cardinality-based repairs of a database DB w.r.t. a set F of denial constraints
might be naively computed by rewriting the following DNF formula in CNF:

∨

R∈repairsc(DB,F)

∧

t∈R

t

where repairsc(DB, F) is the set of cardinality-based repairs for DB and F. The-
orem 2 allows us to say that reduction(D) is contained in any other disjunctive
database with the same set of minimal models. We will denote by Dc

min the canonical
disjunctive database representing the cardinality-based repairs.

We show that, likewise to what has been presented in Section 4, the size of Dc
min

is linear when only one key constraint is considered, whereas it may be exponential
when two keys or one non-key functional dependency are considered.

It is easy to see that in the presence of only one key constraint the cardinality-
based repairs coincide with the subset-based repairs, so the canonical disjunctive
database is of linear size.

When the constraints consists of one functional dependency, it is easy to see that
if for every clique its clusters have the same cardinality, then the cardinality-based
repairs coincide with the subset-based repairs. This is the case for the database of
Example 7, where the size of the canonical disjunctive database is exponential.

Finally, we consider the case where two key constraints are considered. We
directly show that the size of the canonical disjunctive database is also exponential.



Disjunctive databases for representing repairs

Corollary 4 Consider a database DB in DBn and a set of integrity constraints F
consisting of two keys, A and B. Then the set of cardinality-based repairs is

{{ti1, ti3} ∪
⋃

j=1..n ∧ j�=i

{
t jz j

} | 1 ≤ i ≤ n ∧ z j ∈ {2, 3}}

Proof Since cardinality-based repairs are subset-based repairs with maximum cardi-
nality, the claim is straightforwardly entailed by Lemma 1. ��

The following proposition identifies the canonical disjunctive database for a
database in DBn for which A and B are keys; such a disjunctive database is of
exponential size.

Proposition 6 Consider a database DB in DBn and a set of integrity constraints F
consisting of two keys, A and B. Then, Dc

min is equal to D where

D = {{ti2, ti3} | 1 ≤ i ≤ n} ∪ {{t1, . . . , tn}| ti ∈ {ti1, ti3}, i = 1..n}

Proof We first show that (1) each cardinality-based repair of DB w.r.t. F is a minimal
model of D and next that (2) each minimal model of D is a cardinality-based repair.

(1) Consider a cardinality-based repair R of DB w.r.t. F. We show first that (a) R
is a model of D and next that (b) it is a minimal model.

(a) From Corollary 4, it is easy to see that R satisfies each disjunction {ti2, ti3}
in D, 1 ≤ i ≤ n. Since Corollary 4 entails that there exists 1 ≤ j ≤ n s.t.
{t j1, t j3} ⊆ R, then R satisfies each disjunction {t1, . . . , tn} in D (where ti ∈
{ti1, ti3}, i = 1..n). Thus R is a model of D.

(b) We observe that for each fact t ∈ DB there is a disjunction {t, t1, . . . , tn}
(n ≥ 1) in D s.t. t1, . . . , tn are facts conflicting with t: for the facts ti2 and
ti3 (i = 1..n) such disjunctions are {ti2, ti3}; for the facts ti1 (i = 1..n) there is
the disjunction {t11, . . . , tn1}. In the same way as in Proposition 4, it can be
shown that R is a minimal model of D.

(2) Consider a minimal model M of D. The fact that M is a subset-based repair of
DB w.r.t. F can be shown in the same way as in Proposition 4.
It is easy to see that {t12, . . . , tn2} is not a model of D and then, from Lemma 1
and Corollary 4, M is a cardinality-based repair of DB w.r.t. F.

We have shown that D represents the cardinality-based repairs of DB w.r.t. F; since
D = reduction(D), from Theorem 2 we have that D is the canonical one. ��

Corollary 5 Consider a database DB in DBn and let A and B be two keys; ||Dc
min|| =

2n + n2n.

Proof From Proposition 6, it is easy to see that Dc
min contains n disjunctions of 2 facts

and 2n disjunctions of n facts. ��
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6 Conclusions

In this paper we have addressed the problem of representing, by means of a
disjunctive database, the set of repairs of a database w.r.t. a set of denial constraints.
We have shown that, given a database and a set of denial constraints, there exists
a unique canonical disjunctive database representing their repairs: any disjunctive
database with the same set of minimal models is a superset of the canonical one,
containing in addition disjunctions which are subsumed by the disjunctions in the
canonical one. We have proposed an algorithm to compute the canonical disjunctive
database. We have shown that the size of the canonical disjunctive database is linear
when only one key is considered, but it may be exponential in the presence of two
keys or one non-key functional dependency. We have shown that these results hold
also when cardinality-based repairs are considered.

A disjunctive database representing a set of repairs might be exploited for comput-
ing consistent query answers using existing efficient disjunctive logic programming
systems, such as DLV [17]. Indeed, every Relational Algebra query can be expressed
by means of stratified Datalog program, which can be combined with a disjunctive
database representing the repairs, directly providing the consistent answers under
cautious reasoning. Moreover, since a disjunction is true in every minimal model of
a disjunctive database D (or more generally, of a disjunctive logic program) iff it is
true in every model of D [19], then a propositional theorem prover might be used as
well to compute the consistent answers to negation-free queries.

One could potentially restrict inconsistent databases in such a way that the
resulting repairs can be succinctly represented by relational databases with OR-
objects [15]. Patterns of OR-objects leading to tractable conjunctive queries were
characterized in [16].

It could be advantageous to precompute a disjunctive specification of all repairs
and use it multiple times, perhaps even for different tasks. For instance, consider the
information coming from a set of sensors. It is often inconsistent, so it needs to be
repaired. But we may be interested in not throwing away any repairs and keeping
them all as a disjunctive database, so further processing on it (diagnosis etc.) can be
done using a single DLP system like DLV.

Approaches that rely on stable model semantics of Disjunctive Logic Programs
with negation (DLP) to represent repairs of inconsistent databases have been
proposed in [4, 10, 14]; however, they do not provide a study of the size of such
representations. Also, those approaches are based on more complex semantics than
minimal-model semantics. As future work, one could do an experimental comparison
of CQA computation using a fully-DLP approach with one in which the repairs are
represented as disjunctive databases (computed using the proposed algorithm) and
only queries are in a DLP format.

Other future work in this area could explore different representations for the
set of repairs. For instance, one can consider formulas with negation or non-clausal
formulas. Such formulas can be more succinct than disjunctive databases, making
query evaluation, however, potentially harder. On the other hand, more general sets
of integrity constraints could be considered.

We also observe that in the case of the repairs of a single relation the resulting
disjunctive database consists of disjunctions of elements of this relation. It has been
recognized that such disjunctions should be supported by database management
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systems [6], leading to a host of classical database research issues like query opti-
mization and evaluation.

Finally, other kinds of representations of sets of possible worlds, e.g., world-
set decompositions [2], should be considered. For example, the set of repairs of
the database in Example 7 can be represented as a world-set decomposition of
polynomial size.
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