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Abstract A consistent query answer in an inconsistent database is an answer ob-
tained in every (minimal) repair. The repairs are obtained by resolving all conflicts
in all possible ways. Often, however, the user is able to provide a preference on
how conflicts should be resolved. We investigate here the framework of preferred
consistent query answers, in which user preferences are used to narrow down the
set of repairs to a set of preferred repairs. We axiomatize desirable properties
of preferred repairs. We present three different families of preferred repairs and
study their mutual relationships. Finally, we investigate the complexity of preferred
repairing and computing preferred consistent query answers.
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1 Introduction

In many novel database applications, violations of integrity constraints cannot
be avoided. A typical example is integration of two consistent data sources that
contribute conflicting information. Inconsistencies also often occur in the context
of long-running operations where transaction mechanisms are not employed. Finally,
integrity enforcement may be disabled because of efficiency considerations. Integrity
constraints, however, capture important semantic properties of the stored data.
These properties directly influence the way a user formulates a query. Evaluation
of the query over an inconsistent database may yield answers that are meaningless or
misleading.

The framework of repairs and consistent query answers [4] has been proposed to
offset the impact of inconsistencies on the accuracy of query answers. A repair is a
consistent database minimally different from the given one, and a consistent answer
to a query is an answer present in every repair. This approach does not physically
remove any facts from the database. The framework of [4] has served as a foundation
for most of the subsequent work in the area of querying inconsistent databases (for
the surveys of the area see [6–8, 12, 14], other works include [32, 33]).

Recently, the problem of database repairing has received an enlivened interest [2,
17]. Essentially, the goal is to construct a repair of a possibly inconsistent instance by
resolving every conflict present in the given instance. In the case of denial constraints,
the class of constraints we consider in this paper, a conflict is simply a set of facts that
are present in the given instance that together violate a constraint. A resolution of a
conflict is the deletion of one of the facts creating the conflict. Typically, there exists
more than one repair and a repairing algorithm needs to make some nondeterministic
choices when repairing the database instance. It is desirable for the algorithm to be
sound i.e., always producing a repair, that is, an instance which is not only consistent
but also minimally different from the given one. It is even more desirable for the
algorithm to be complete i.e., allowing to produce every repair, with an appropriate
sequence of choices [28].

Example 1 Consider the schema consisting of two relations

Emp(Name, Salary, Dept) and Mgr(Name, Salary, Dept),

and the set of constraints F0 consisting of

Emp : Name → Name Salary Dept,

∀x, y, z, x′, y′. ¬ [
Emp(x, y, z) ∧ Mgr

(
x′, y′, z

) ∧ y > y′] .

The first constraint is a key dependency requiring the employee information to be
associated with her name. The second constraint is a denial constraint requiring that
no employee of a department earns more than the manager of the department.

Now, consider the inconsistent database instance

I0 = {
Emp(John, $40k, IT), Emp(John, $50k, IT),

Emp(John, $80k, IT), Mgr(Mary, $70k, IT)
}
.
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This instance contains three conflicts w.r.t. the functional dependency and one
conflict w.r.t. the denial constraint. I0 has three repairs w.r.t. F0:

I′
1 = {Emp(John, $80k, IT)} ,

I′
2 = {Emp(John, $50k, IT), Mgr(Mary, $70k, IT)} ,

I′
3 = {Emp(John, $40k, IT), Mgr(Mary, $70k, IT)} .

Consider the query Q0 = ∃x, y. Emp(John, x, y) ∧ x > $60k asking whether John
earns more than $60k. The answer to Q1 in the database instance I0 is true. However,
true is not a consistent answer to Q1 because of the repairs I′

2 and I′
3. ��

One of the drawbacks of the framework of consistent query answers is that it
considers all possible ways to resolve the existing conflicts. The user, however, may
have a preference on what resolutions to consider. Typical information used to
express the preference includes:

– the timestamp of creation/last modification of the fact; the conflicts can be
resolved by removing from consideration old, outdated facts,

– the source of the fact (in data integration setting); the user can consider the data
from one source more reliable than the data from another source,

– the data values stored in the conflicting facts.

To improve the quality of consistent answers we propose extending the framework
of repairs and consistent query answers with the preference information. We use the
preference information to define a set of preferred repairs (a subset of all repairs).
Query answers obtained in every preferred repair are called preferred consistent
query answers. For instance, in the previous example if the database contains an
employee who earns more than her manager, then we might prefer to remove the
information about the employee rather than the information about the manager of
the department. Then the preferred repairs are I′

2 and I′
3, and consequently, false is

the preferred consistent answer to Q0.
We observe, however, that there may be more that one way to select the preferred

repairs based on the user preference; especially, when a resolution of one conflict
affects the way in which another conflict can be resolved.

Example 2 We take the schema consisting of one relation name

Mgr(Name, Salary, Dept)

with two functional dependencies

Mgr : Name → Salary Dept and Mgr : Dept → Name Salary.

Consider the following inconsistent instance

I1 = {Mgr(Bob , $70k, RD), Mgr(Mary, $40k, IT), Mgr(Ken, $60k, IT),

Mgr(Bob , $60k, AD), Mgr(Mary, $50k, PR), Mgr(Ken, $50k, PR)}
This instance contains five conflicts:

1. Mgr(Bob , $70k, RD) and Mgr(Bob , $60k, AD).
2. Mgr(Mary, $40k, IT) and Mgr(Mary, $50k, PR),



212 S. Staworko et al.

3. Mgr(Ken, $60k, IT) and Mgr(Ken, $50k, PR),
4. Mgr(Mary, $40k, IT) and Mgr(Ken, $60k, IT),
5. Mgr(Mary, $50k, PR) and Mgr(Ken, $50k, PR),

These conflicts may arise from changes that are not yet fully propagated. For
instance, Bob may have been moved to manage R&D department while previously
being the manager of AD, or Bob may have been moved from AD department to
RD department. Similarly, Mary may have been promoted to manage PR whose
previous manager was moved to manage IT, or conversely, John may have been
moved to manage IT, while Mary was moved from IT to PR.

The set of repairs of I1 consists of four instances:

I′
1 = {Mgr(Bob , $70k, RD), Mgr(Mary, $50k, PR), Mgr(Ken, $60k, IT)},

I′
2 = {Mgr(Bob , $70k, RD), Mgr(Mary, $40k, IT), Mgr(Ken, $50k, PR)},

I′
3 = {Mgr(Bob , $60k, AD), Mgr(Mary, $40k, IT), Mgr(Ken, $50k, PR)},

I′
4 = {Mgr(Bob , $60k, AD), Mgr(Mary, $50k, PR), Mgr(Ken, $60k, IT)}.

Suppose that the user prefers to resolve a conflict created by two facts referring
to the same person by removing the tuples with the smaller salary. This preference
expresses the belief that if a manager is being reassigned, her salary is not decreased.
It applies to the first conflict: the fact Mgr(Bob , $70k, RD) is preferred over
Mgr(Bob , $60k, AD). Similarly, the preference applies to the second and the third
conflict. It does not apply to the last two conflicts as each of them involves facts
referring to different persons.

The preference information on resolutions of the first conflict allows us to
eliminate the last two repairs I′

3 and I′
4. Similarly, by applying the preference to the

conflicts 2 and 3 we may also eliminate the repair I′
2. This leaves us with only one

preferred repair I′
1.

We observe that while the preference applies to conflicts 1, 2, and 3, it does not
apply to conflicts 4 and 5 because conflicts 4 and 5 involve facts about different
persons. However, the preferential resolution of conflicts 2 and 3 implicitly resolves
the conflicts 4 and 5, which may not be desirable. Consequently, one may find the
reasons for eliminating I′

2 insufficient. ��

In this paper we consider three different families of preferred repairs. The families
are based on various notions of compliance of a repair with the user preference. The
first two notions, global and Pareto optimality, check if the compliance of a repair I′
can be improved by replacing a subset of facts X ⊆ I′ with a more preferred subset
of facts Y ⊆ I \ I′. These notions differ in the way they lift preference on facts to
preferences on sets of facts.

Global optimality requires that for every element in X there is a more pre-
ferred element in Y. This approach is inspired by the work on preferential
reasoning [23] and corresponds to the first way of selecting preferred repairs in
the previous example. For instance, I′

2 is not globally optimal because we can
replace X = {Mgr(Mary, $40k, IT), Mgr(Ken, $50k, PR)} with a more preferred
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Y = {Mgr(Mary, $50k, PR), Mgr(Ken, $60k, IT)}, obtaining the only globally-
optimal instance I′

1.
Pareto optimality requires a stronger support from the preference to conclude

that the compliance of a repair with the preference can be improved: every element
of Y needs to be preferred over every element of X. This approach is inspired by
the construction of the Pareto-optimal set of vectors [24] and it corresponds to the
second way of selecting preferred repairs in the previous examples. For instance,
I′

3 is not Pareto optimal because we can replace X = {Mgr(Bob , $60k, AD)} with
Y = {Mgr(Bob , $70, RD)}. We remark that for this notion of optimality the com-
pliance of I′

2 with the preference cannot be further improved, thus I′
2 is Pareto

optimal.
The third notion of completion optimality uses a different approach to verify an

optimal compliance of a repair with the preference. It views the preference only as a
step towards a total preference i.e., preference that specifies the preferred resolution
of every conflict, which yields exactly one repair. A repair is completion optimal if
the preference can be extended to a total preference that yields the given repair. In
the previous example completion optimality coincides with global optimality. The
instance I′

1 is completion optimal because we can add an appropriate preference for
conflicts 4 and 5.

For every family of preferred repairs we present a repairing algorithm. Each of
them is sound i.e., it produces a repair belonging to the corresponding family of
preferred repairs, and complete i.e., every repair from the family of preferred repairs
can be constructed using the corresponding repairing algorithm. For the family of
globally-optimal repairs and the family of Pareto-optimal repairs we define two pre-
orders on repairs whose maximal elements are exactly the globally-optimal repairs
and Pareto-optimal repairs respectively. It is an open question whether such an order
can be defined for completion-optimal repairs.

We also adapt two basic decision problems: repair checking [2, 14] and consistent
query answering [4] to obtain preferred repair checking and preferred consistent
query answering. Basically, preferred repair checking is finding if a given database
instance is a preferred repair, and preferred consistent query answering is finding if
an answer to a query is obtained in every preferred repair.

Recall from [14] that the class of denial constraints lies on the tractability frontier
of consistent query answering. On the one hand for the class of denial constraints
repair checking and computing consistent answers to quantifier-free ground queries
is in PTIME. On the other hand, computing consistent answers to conjunctive
queries i.e., conjunctions of positive literals with existential quantifiers, becomes
coNP-complete even in the presence of one functional dependency i.e., a simple
denial constraint. It seems natural that this tractability frontier should shift after
incorporating a nontrivial component into the inputs of the definitions of the decision
problems and the interesting question is how much.

We show that using the notion of global optimality leads to intractability of both
preferred consistent query answering, which becomes �

p
2 -complete, and preferred

repair checking, which becomes coNP-complete. The complexity is reduced if we use
the notion of Pareto optimality: the preferred consistent query answering becomes
coNP-complete and preferred repair checking is in LOGSPACE. Using completion-
optimal repairs also reduces the complexity: preferred repair checking is in PTIME
and preferred consistent query answering becomes coNP-complete. It is an open
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question whether in this case the preferred repair checking is PTIME-complete or in
LOGSPACE. Finally, we identify a tractable case of quantifier-free ground queries
and one FD per relation, for which preferred consistent query answering is in PTIME
for every of the aforementioned families of preferred repairs.

The contributions of this paper are:

– A formal framework of families of preferred repairs and preferred consistent
query answers for relational databases.

– A list of desirable properties of families of preferred repairs.
– Three different families of preferred repairs based on different notions of

optimal compliance with the user preference.
– Repairing algorithm for every family of preferred repairs. The algorithms are

both sound and complete.
– A thorough analysis of computational implications of preferences in the context

of repairing and consistent query answers.

The presented work is an extension of [29]. The current paper extends the framework
of preferred consistent query answers to denial constraints (instead of functional
dependencies), provides detailed proofs of all claims, and presents sound and
complete repairing algorithms for every considered family of preferred repairs
(instead of just the repairing algorithm for the family of completion-optimal repairs
only). Additionally, we further broaden the analysis of computational complexity
by identifying a family of preferred repairs for which preferred repair checking is
in LOGSPACE, offering a possibility of parallel implementation for this decision
problem.

The paper is organized as follows. In Section 2 we recall basic notions of relational
databases and the framework of repairs and consistent query answers. In Section 3
we extend this framework with preferences on conflict resolution. In Sections 4, 5,
and 6 we present the families of globally-, Pareto-, and completion-optimal repairs
respectively. We investigate their properties and mutual relationships, and analyze
the computational implications of their semantics. In Section 7 we present a tractable
case of preferred consistent query answering. Section 8 contains a discussion of
related work. Finally, in Section 9 we summarize our results and outline directions
for future work.

2 Preliminaries

In this section we recall the basic notions of relational databases [1] and the
framework of consistent query answers [4]. A database schema S is a set of relation
names of fixed arity (greater than 0) whose attributes are drawn from an infinite set
of names U . Every element of U is typed but for simplicity we consider only two
disjoint infinite domains: Q (rationals) and D (uninterpreted constants). We assume
that two constants are equal if and only if they have the same name, and we allow
the standard built-in relation symbols = and 
= over D. We also allow the built-in
relation symbols =, 
=, <, ≤, >, and ≥ with their natural interpretation over Q. We
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use these symbols together with the vocabulary S of relational names to build a first-
order language L. An L-formula is:

– closed (or a sentence) if it has no free variables,
– ground if it has no variables whatsoever,
– quantif ier-free if it has no quantifiers,
– atomic if it has no quantifiers and no Boolean connectives.

Finally, a fact is an atomic ground L-formula.
Database instances are finite, first-order structures over the schema. Often, we

find it more convenient to view an instance I as the finite set of all facts satisfied by
the instance i.e., {R(t) | R ∈ S, I |= R(t)}. In this paper we use the standard notion
of satisfaction (or entailment) of an L-formula φ in a database instance I, in symbols
I |= φ. An L-formula is valid iff it is satisfied in every database instance I. Notice
that the validity of a quantifier-free ground formula using only built-in predicates is
decided in a straightforward fashion.

In the sequel, we denote tuples of variables by x̄, ȳ, . . ., tuples of constants by
t, s, . . ., quantifier-free formulas using only built-in predicates by ϕ, instances by
I, J, . . ., relation names by R, P, . . ., and attribute names by A, B, C, . . .. The symbols
X, Y, . . . are used to denote finite sets of attribute names. We also use X, Y, . . . to
denote finite sets of facts, and it will always be clear from the context which usage is
employed.

2.1 Integrity constraints

In general, an integrity constraint is a closed L-formula. In this paper we consider the
class of denial constraints, L-sentences of the form

∀x̄. ¬ [R1 (x̄1) ∧ . . . ∧ Rn (x̄n) ∧ ϕ (x̄)] ,

where ϕ(x̄) is a quantifier-free formula referring to built-in relation names only and
x̄1 ∪ . . . ∪ x̄n = x̄. We also make a natural assumption that n > 0.

The class of denial constraints contains functional dependencies (FDs) commonly
formulated as R : X → Y, where X and Y are sets of attributes of R. An FD R :
X → Y is expressed by the following denial constraint

∀x̄, ȳ1, ȳ2, z̄, z̄′. ¬ [
R (x̄, ȳ1, z̄) ∧ R

(
x̄, ȳ2, z̄′) ∧ ¬ (ȳ1 = ȳ2)

]
,

where x̄ is the vector of variables corresponding to the attributes X, and ȳ1 and ȳ2

are two vectors of variables corresponding to the attributes Y. A key dependency is
a functional dependency R : X → Y, where Y comprises all attributes of R. If the
relation name is known from context, for clarity we omit it in our notation i.e., we
write X → Y instead of R : X → Y. Database consistency is defined in the standard
way.

Definition 1 Given a database instance I and a set of integrity constraints F, I is
consistent with F if I |= F in the standard model-theoretic sense; otherwise I is
inconsistent.
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We observe that an empty instance satisfies any set of denial constraints. This
conforms to the behavior of typical SQL database management systems: an empty
database satisfies any set of constraints expressed in SQL. Also, note that denial
constraints can be represented using standard SQL assertions. We remark, however,
that the converse is not necessarily the case.

2.2 Queries

In this paper we deal only with closed queries i.e., closed L-formulas. The query
answers are Boolean: true or false. A query is atomic (quantif ier-free) if the L-
formula is atomic (quantifier-free respectively). A conjunctive query is an existen-
tially quantified conjunction of atomic L-formulas.

Definition 2 Given an instance I and a closed query Q, true is the answer to Q in I
if I |= Q; otherwise the answer to Q in I is false.

2.3 Repairing

In the original framework, when repairing a database two operations are considered:
inserting a fact and deleting a fact. In the presence of denial constraints inserting
facts cannot resolve inconsistencies, and thus the repairs of the original instance are
obtained by deleting facts only i.e., the repairs are subsets of the original instance.

Definition 3 (Repair) Given an instance I and a set of denial constraints F, an
instance I′ is a repair of I w.r.t. F if and only if I′ is a maximal subset of I that is
consistent with F. By Rep(I, F) we denote the set of all repairs of I w.r.t. F.

To identify the facts whose mutual presence causes inconsistency we use the
notion of a conflict.

Definition 4 (Conflict) Given a instance I and a set of denial constraints F, a set of
facts {R1(t1), . . . , Rn(tn)} ⊆ I is a conf lict in I w.r.t. F if for some denial constraint in
F of the form

∀x̄. ¬[R1(x̄1) ∧ . . . ∧ Rn(x̄n) ∧ ϕ(x̄)]
there exists a substitution ρ of variables x̄ such that ϕ(ρ(x̄)) is valid and ρ(x̄i) = ti for
every i ∈ {1, . . . , n}.

We recall the notion of a conflict hypergraph that allows to visualize all the
conflicts present in the instance [5, 13]. We recall that a hypergraph is a generalization
of an undirected graph by allowing more than two nodes to be connected by a
hyperedge. Formally, a hypergraph is a pair consisting of a set of nodes and a set
of hyperedges, where a hyperedge is a subset of the node set. Given a hypergraph G
we denote its set of nodes by V(G), and its set of hyperedges by E(G).

Definition 5 (Conflict hypergraph) Given a set of integrity constraints F and a
database instance I, the conf lict hypergraph G(I, F) of I w.r.t. F is a hypergraph
whose set of nodes is I and set of hyperedges consists of all conflicts in I w.r.t. F.
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The size of the hypergraph is he sum of the size of the node set and the cardinalities
of all hyperedges. We observe that assuming F to be fixed, the maximum cardinality
of every hyperedge in a conflict hypergraph is bounded from above by a constant.
Consequently, the size of a conflict hypergraph G(I, F) is polynomial in the size of
the instance I.

Two nodes are neighboring (or are neighbors) in a hypergraph if there exists
a hyperedge containing both nodes. The neighborhood of a node v ∈ V(G) in a
hypergraph G is

nG(v) = {
v′ ∈ V(G) | ∃e ∈ E(G).

{
v, v′} ⊆ e

}
.

A hyperedge connecting exactly two nodes is called simply an edge and a hypergraph
having only edges is called a graph. Similarly, we define the conflict graph. The
conflict graph for the instance in Example 1 is in Fig. 1. The conflict hypergraph
is also a compact representation of all repairs as we recall the following fact.

Proposition 1 [5, 13] A maximal independent set of G(I, F) is any maximal set of
vertices that contains no hyperedge. Any maximal independent set is a repair of I w.r.t.
F and vice versa.

We recall that for only one key dependency (per relation name), the conflict graph
is a union of pairwise disjoint cliques and every repair consists of exactly one element
from each clique [5]. To generalize this observation to FDs we assume only one
relation name R and one functional dependency R : X → Y. Now, given an instance
I, an X-cluster is the set of all facts (of R) in I that have the same attribute value in
X, and similarly, an (X, Y)-cluster is the set of all facts (of R) in I that have the same
attribute value in X and Y. Clearly, an X-cluster is a union of all (X, Y)-clusters
with the same attribute value in X. We recall that every repair contains exactly one
(X, Y)-cluster from each X-cluster. We also remark that conflicts are present only
inside an X-cluster and two facts from the same X-cluster form a conflict if and only
if they belong to different (X, Y)-clusters.

Example 3 Consider the database schema consisting of exactly one relation name
R(A, B, C) and the FD R : A → B. Take the following database instance

I2 = {R(1, 1, 1), R(1, 1, 2), R(1, 1, 3), R(1, 2, 1), R(1, 2, 2),

R(2, 1, 1), R(2, 1, 2), R(2, 1, 3), R(2, 2, 1)}.

Fig. 1 The conflict graph
G(I0, F0)
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Fig. 2 A- and (A, B)-clusters of I2

Its conflict graph is presented in Fig. 2. I2 has two A-clusters each consisting of
two (A, B)-clusters (indicated with a dotted line). For instance, the consider the
A-cluster {R(2, 1, 1), R(2, 1, 2), R(2, 1, 3), R(2, 2, 1)} which consists of two (A, B)-
clusters: {R(2, 2, 1)} and {R(2, 1, 1), R(2, 1, 2), R(2, 1, 3)}. ��

Finally, we recall the basic database repairing algorithm [28]. Algorithm 1 iterates
over the facts of the input instance I in some arbitrary order and creates a repair
J. For every fact it adds the fact to J if so does not violate the set of denial
constraints F; otherwise the fact is discarded. Naturally, the constructed instance
J is consistent with F. Moreover, J is a repair i.e., maximal consistent subset of I,
since the algorithm considers adding every fact to the constructed instance. Thus
Algorithm 1 is sound, it always produces a repair.

We observe that depending on the order in which Algorithm 1 iterates over
the facts in input instance, we may obtain different repairs. For instance, in Ex-
ample 1 the repair I′

2 is obtained with the following ordering of the facts of I0:
(1) Mgr(Mary, $70k, IT), (2) Emp(John, $50k, IT), (3) Emp(John, $40k, IT), and
(4) Emp(John, $80k, IT). On the other hand the repair I′

3 is obtained with the
following ordering of I0: (1) Mgr(Mary, $70k, IT), (2) Emp(John, $40k, IT), (3)
Emp(John, $50k, IT), and (4) Emp(John, $80k, IT). In fact, for every I′ ∈ Rep(I, F)

there exists an ordering of I for which Algorithm 1 returns I′: it suffices to take any
ordering of I′ and append to it any ordering of I \ I′. Hence, we say that Algorithm 1
is complete because it is capable of producing any repair.

Algorithm 1 Constructing a repair of I w.r.t. F

1: Io ← I
2: J ← ∅

3: while Io 
= ∅ do
4: choose R(t) ∈ Io

5: Io ← Io \ {R(t)}
6: if J ∪ {R(t)} |= F then
7: J ← J ∪ {R(t)}
8: return J
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2.4 Complexity classes

We make use of the following complexity classes:

– LOGSPACE: the class of decision problems solvable in logarithmic space by
deterministic Turing machines (the input tape is read-only);

– PTIME: the class of decision problems solvable in polynomial time by determin-
istic Turing machines;

– coNP: the class of decision problems whose complements are solvable in polyno-
mial time by nondeterministic Turing machines;

– �
p
2 : the class of decision problems whose complements are solvable in polyno-

mial time by nondeterministic Turing machines with an NP oracle.

We remark that these complexity classes are used only to measure the data complex-
ity i.e., the complexity expressed in terms of the size of the database size only [31] (cf.
Section 3.3).

3 Conflict resolution preferences

To represent the preference information we use a relation on pairs of neighboring
facts i.e., pairs of facts present in a conflict. Resolving a conflict consists of deleting
one of its elements and the relation is used to indicate those tuples that the user
prefers to keep in the database. We observe, however, that a cycle in the relation may
make the choice of the tuple to keep ambiguous, if not impossible. Consequently, we
work with acyclic relations only.

Definition 6 (Priority) Given an instance I and a set of denial constraints F, a
priority � of I w.r.t. F is a binary relation on I such that: (1) � is acyclic and (2)
for every R(t), R′(t′) ∈ I if R(t) � R′(t′), then R(t) and R′(t′) are neighbors.

In the sequel, we omit the reference to the instance I and the set of denial
constraints F if they are known from the context.

From the point of the user interface it is often more natural to define the priority
as some acyclic binary relation on facts of I and then consider the restriction of the
priority relation to the conflicting facts. Clearly, this approach can be handled with
the notion of priorities.

To help visualizing the priority we use the prioritized conf lict hypergraphs.
Basically, we extend the conflict hypergraph with directed edges corresponding to
the priority relation: R(t) → P(s) reads R(t) � P(s). The examples we present in
this paper use only conflict graphs i.e., conflict hypergraphs where edges connect
exactly two nodes. Consequently, a prioritized graph can be seen as a graph with
some of its edges oriented. For instance, Fig. 3 contains the conflict graph for the
instance in Example 1 with the priority corresponding to the following preference:
if the database contains an employee who earns more than her manager, then the
information about the employee should be removed.

Definition 7 (Priority extension) Given an instance I, a set of denial constraints F,
and two priorities � and �′ of I w.r.t. F, �′ is an extension of �, denoted � ⊆ �′ if
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Fig. 3 Prioritized conflict
graph

and only if R(t) �′ R′(t′) whenever R(t) � R′(t′) for R(t), R′(t′) ∈ I. A priority � of
I w.r.t. F is total if there exists no priority �′ of I w.r.t. F that is different from � and
extends �.

Note that both an extension of a priority and a total priority are also acyclic and
defined on pairs of neighboring facts only.

Proposition 2 A priority � is total if and only if for every conf lict C and any two facts
x1, x2 ∈ C we have that either x1 � x2 or x2 � x1.

Proof The if part is trivial. For the only if part suppose there is a priority � that
is total yet there exists neighboring x1 and x2 such that x1 
� x2 and x2 
� x1 i.e.,
both �1 = � ∪ {(x1, x2)} and �2 = � ∪ {(x2, x1)} are cyclic. Since � is not cyclic, �1

has a cycle that traverses (x1, x2) i.e., there exists a chain x2 � y1 � . . . � yn � x1.
Similarly, �2 being cyclic implies that there exists a chain x1 � z1 � . . . � zm � x2.
Together this implies that x1 � . . . � x2 � . . . � x1; a contradiction. To finish the
proof we observe that the acyclicity of priority implicitly excludes the possibility of
both x � y and y � x being true at the same time for some facts x and y. ��

3.1 Preferred repairs and consistent query answers

Now, we introduce the general framework of prioritized repairing and query of
inconsistent databases. We begin by defining a general notion of a family of preferred
repairs. We do not make any assumptions on how such a family constructs preferred
repairs. For generality, we do not even assume that the constructed instances are
repairs in the sense of Definition 3. Instead, we list later on the desirable properties
that a well-behaved family should satisfy.

Definition 8 (Preferred repairs) A family of preferred repairs is a function XRep
defined on triplets (I, F,�), where � is a priority in I w.r.t. a set of denial constraints
F, such that XRep(I, F,�) is a set of database instances over the same schema.
We say that a family YRep subsumes a family XRep, denoted XRep � YRep, if
XRep(I, F,�) ⊆ YRep(I, F,�) for every (I, F,�).

We generalize the notion of consistent query answers [4] by considering only
preferred repairs when evaluating a query (instead of all repairs). We can easily
generalize our approach to open queries as in [13, 15].
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Definition 9 (X -preferred consistent query answer) Given a closed query Q, a triple
(I, F,�), and a family of preferred repairs XRep, true (false) is the X -preferred
consistent query answer to Q in I w.r.t. F and � if and only if for every I′ ∈
XRep(I, F,�) we have I′ |= Q (I′ 
|= Q respectively).

Note that we obtain the original notion of consistent query answer if we consider
the family of all repairs Rep(I, F).

3.2 Desirable properties of preferred repairs

Now, we identify desirable properties of arbitrary families of preferred repairs. The
properties should be satisfied for an arbitrary instance I and an arbitrary set of denial
constraints F.

3.2.1 P1 Non-emptiness

Because the set of preferred repairs is used to define preferred consistent query
answers, it is important that for any preference the framework is not trivialized by an
empty set of preferred repairs:

XRep(I, F,�) 
= ∅.

3.2.2 P2 Monotonicity

The operation of extending the preference allows to improve the state of our
knowledge of the real world. The better such knowledge is the finer the (preferred
consistent) answers we should obtain. This is achieved if extending the preference
can only narrow the set of preferred repairs:

�1 ⊆ �2 =⇒ XRep(I, F,�2) ⊆ XRep(I, F,�1).

3.2.3 P3 Non-discrimination

Removing repairs from consideration must be justified by existing preference. In
particular, no repair should be removed if no preference is given:

XRep(I, F, ∅) = Rep(I, F).

3.2.4 P4 Categoricity

Ideally, a preference that cannot be further extended (the priority is total) should
specify how to resolve every conflict:

� is total =⇒ |XRep(I, F,�)| = 1.

3.2.5 P5 Conservativeness

We also note that properties P2 and P3 together imply that preferred repairs are a
subset of all repairs:

XRep(I, F,�) ⊆ Rep(I, F).
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In fact, in the remainder of the paper we consider only families of preferred repairs
that satisfy P5. We also observe that P5 with P1 imply that the only preferred repair
of a consistent database instance is the instance itself.

3.3 Data complexity

We also adapt the decision problems to include the priority. Note that the priority
relation is of size quadratic in the size of the database instance, and therefore, it is
natural to make it a part of the input. For a family XRep of preferred repairs the
decision problems we study are defined as follows:

(i) X -preferred repair checking i.e., the complexity of the following set

BX
F = {(

I,�, I′) : I′ ∈ XRep (I, F,�)
}
.

(ii) X -preferred consistent query answering i.e., the complexity of the following set

DX
F,Q = {

(I,�) : ∀I′ ∈ XRep (I, F,�) .I′ |= Q
}
.

4 Globally-optimal repairs

We investigate several different families of preferred repairs. The first family of
preferred repairs is based on the notion of optimal compliance of the repair with
the priority. Essentially, the compliance of a repair can be improved by replacing a
subset of facts with a more preferred subset of facts. The way we define a set of facts
being more preferred than another set of facts is inspired by the work on preferred
models of logic programs [30] and preferential reasoning [23].

Definition 10 (Globally-optimal repairs GRep) Given an instance I, a set of denial
constraints F, and a priority �, an instance I′ ⊆ I is globally optimal w.r.t. � and F if
no nonempty subset X of facts from I′ can be replaced with a subset Y of I \ I′ such
that

∀x ∈ X. ∃y ∈ Y. y � x (∗G)

and the resulting set of facts is consistent with F. GRep is the family of globally-
optimal repairs i.e., GRep(I, F,�) is the set of all repairs of I w.r.t. F that are globally
optimal w.r.t. � and F.

We emphasize that the family GRep selects all globally-optimal repairs. In general,
it is, however, possible to define a family that selects only some of the globally-
optimal repairs, or even more generally, a family that constructs a set of globally-
optimal instances that need not be repairs.

The notion of global optimality identifies repairs whose compliance with the
priority cannot be further improved. For the instance I0 in Example 1 with the
priority in Fig. 3 the set of globally-optimal repairs consists of I′

2 and I′
3.

In the sequel, we fix an instance I and a set of denial constraints F, and omit them
when referring to the elements of GRep(I, F,�). Before investigating the properties
of GRep we present an alternative characterization of globally-optimal repairs.
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Proposition 3 For a given priority � and two repairs I′
1 and I′

2, I′
1 globally dominates

I′
2, denoted I′

1 �G I′
2, if

∀x ∈ I′
2 \ I′

1. ∃y ∈ I′
1 \ I′

2. y � x. (�G)

The following facts hold:

(i) a repair I′ is globally optimal if and only if it is �G-maximal i.e., there is no
repair I′′ dif ferent from I′ such that I′′ �G I′;

(ii) if � is acyclic, then so is �G .

Proof

(i) We prove the contraposition i.e., I′ is not globally optimal if and only if there
exists a repair I′′ 
= I′ such that I′′ �G I′. For the if part take X = I′ \ I′′ and
Y = I′′ \ I′, and note that (∗G) follows from (�G). Naturally, (I′ \ X) ∪ Y = I′′
is consistent. For the only if part take any nonempty X ⊆ I′ and Y ⊆ I \ I′ such
that (∗G) is satisfied and J = (I′ \ X) ∪ Y is consistent. We take any repair I′′
that contains J. Such a repair exists since J is consistent. Clearly, I′ \ I′′ ⊆ X
and also Y ⊆ I′′ \ I′. Hence (�G) follows from (∗G). Consequently, I′ is not
globally optimal.

(ii) Suppose �G is cyclic i.e., there exists a sequence of different repairs I′
0, . . . , I′

n−1
such that I′

i � I′
i+1 for i ∈ {0, . . . , n − 1}, where the + operator is interpreted

modulo n. We show that � is cyclic as well. We construct inductively infinite
sequences of facts y1, y2, . . . and numbers k1, k2, . . . such that y j+1 � y j for j ∈
N and y j 
∈ I′

k j
and y j ∈ I′

k j+1 for j ∈ N.
For j = 1 let y1 be any element of I′

1 \ I′
0 and k1 = 1. Now, suppose we have

constructed the two sequences up to their j-th elements y j and k j such that
y j 
∈ I′

k j
and y j ∈ I′

k j+1. If y j ∈ I′
0, then y j must have been pushed out somewhere

between I′
0 and I′

k j
i.e., there exists k j+1 ∈ {0, . . . , k j − 1} such that y j ∈ I′

k j+1
and

y j 
∈ I′
k j+1+1. By I′

k j+1+1 �G I′
k j+1

there exists an element y j+1 ∈ I′
k j+1+1 \ I′

k j+1
such

that y j+1 � y j. The case when y j 
∈ I′
0 is treated symmetrically: y j must have

been pushed out somewhere between I′
k j+1 and I′

n = I′
0.

Clearly, I has only a finite number of elements and thus any infinite �-chain
must have a repetition, and consequently � is cyclic. ��

Proposition 4 GRep satisf ies the properties P1–P4.

Proof We get P1 by acyclicity of �G and Proposition 3. To show P2 we observe that
if a repair is globally optimal w.r.t. �2, then it is globally optimal w.r.t. any �1 such
that �1 ⊆ �2. P3 follows directly from definition: to show that a repair is not globally
optimal, � needs to be nonempty.

Showing P4 requires a more elaborate argument. Take a total �. By P1 there
exists at least one globally-optimal repair. Suppose that there exist two different
globally-optimal repairs I′

0 and I′
1. In the remaining part of the proof for i ≥ 2 we

let I′
i = I′

i mod 2. We show that � is cyclic by creating an infinite chain . . . � x1 � x0

such that xi ∈ I′
i \ I′

i+1 for every i ∈ N. For x0 we take any element from I′
0 \ I′

1. Now,
assuming that the sequence has been defined up to the i-th element xi, we choose
xi+1 to be any element of I′

i+1 \ I′
i such that xi � xi+1. We show the existence of
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xi+1 using global optimality of I′
i+1 as follows. First, we observe that the instance

I′
i+1 ∪ {xi} is inconsistent since xi 
∈ I′

i+1 and I′
i+1 is a repair i.e., a maximal consistent

subset of I. Let C1, . . . , Ck be all conflicts present in I′
i+1 ∪ {xi}. Clearly, for every

j ∈ {1, . . . , k} the conflict C j contains a fact z j 
∈ I′
i since C j 
⊆ I′

i by the consistency of
I′

i . Let X = {z1, . . . , zk} and Y = {xi}. Naturally, (I′
i+1 \ X) ∪ Y is consistent, and thus

by global optimality of I′
i+1 there exists an element xi+1 ∈ X such that xi 
� xi+1. But

by totality of � and the fact that every element of X is a neighbor of xi, we have that
xi+1 � xi. Clearly, xi+1 
∈ I′

i , and moreover, xi+1 ∈ I′
i+1 because xi+1 ∈ C j \ {xi} ⊆ I′

i+1
for some j ∈ {1, . . . , k}. This shows that � is cyclic; a contradiction. ��

Now, we present Algorithm 2 that constructs globally-optimal repairs. It begins
with an arbitrary repair I′ obtained with Algorithm 1 and then iteratively attempts to
improve the compliance of the repair with the priority. At each iteration it replaces
a subset X ⊆ I′ of facts with a more preferred subset Y ⊆ I \ I′ and extends the
obtained consistent instance J = (I′ \ X) ∪ Y to a repair I′′ in a manner analogous
to the way Algorithm 1 creates a repair: by attempting to add to J any fact from I \ J
as long as doing so does not create a conflict.

Algorithm 2 Constructing a globally-optimal repair of I w.r.t. F

1: construct a repair I′ /*Algorithm 1*/
2: while ∃X ⊆ I′. ∃Y ⊆ I \ I′.∀x ∈ X. ∃y ∈ Y. y � x do
3: J ← (I′ \ X) ∪ Y
4: extend J to a repair I′′ /*Algorithm 1*/
7: I′ ← I′′
8: return I′

Naturally, Algorithm 2 is sound because its main loop stops only if the instance
I′ is globally optimal and since �G is acyclic, the loop always terminates. It is also
complete because it is based on Algorithm 1 which constructs any repair, in particular
any globally-optimal repair can be constructed in the line 1: of Algorithm 2. We
observe that if I′

i is the repair constructed in the i-th iteration of the main loop, then
I′

i+1 �G I′
i . Since �G is acyclic and the number of repairs bounded by an exponential

function of the size of I, the algorithm performs at most an exponential number of
iterations. Checking global optimality (line 2:) can be done in exponential time, and
thus the algorithm works in exponential time.

Theorem 1 Algorithm 2 is a sound and complete algorithm constructing globally-
optimal repairs. It works in time exponential in the size of the input instance and the
priority relation.

Algorithm 2 follows a rather simple principle: start with an arbitrary repair and
iteratively improve its compliance with the priority until an optimal one is obtained.
For such an approach to be tractable, two concerns would need to be addressed: (1)
the preferred repair checking problem needs to be in PTIME and (2) the number
of possible iterations needs to be bounded by a polynomial. Later on we show
that G-preferred repair checking is coNP-complete (Theorem 2) which shows that
this approach cannot be tractable (unless P = NP), and furthermore, it suggests
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that there does not exist a tractable sound and complete algorithm constructing G-
preferred repairs. However, for other families of preferred repairs considered in this
paper the preferred repair checking problem is in PTIME. In the following example
we construct a �G-chain of exponential length, thus showing that the number of
iterations of Algorithm 2 may be exponential. The same construction shows that for
the other families of repairs an algorithm based on the same principle might require
an exponential number of iterations. Consequently, more sophisticated solutions are
required.

Example 4 For a given n ∈ N we construct an instance In and a priority �n such that
the size of In is O(n), the size of �n is O(n2), and there exists a �G-chain of length
�(2n).

Intuitively, we construct a chain of repairs which emulates a n-bit binary counter,
incremented from 0 = (0 · · · 0)2 to 2n − 1 = (1 · · · 1)2. Incrementing a counter consists
of setting to 1 the least significant bit with value 0 and setting to 0 all the preceding
bits (up to this point all set to 1). For instance, if n = 3 and we wish to increment the
number 3 = (011)2, then we obtain 4 = (100)2 by setting to 1 the third bit and setting
to 0 the first and second bit. This operation can be seen as a (cascading) propagation
of the carry bit. Notice that even numbers have their least significant bit set to 0 and
thus require no propagation of the carry bit.

We work with instances of one relation only R(A, B) and the constructed instance
In comprises of the following facts:

– p0
i = R(i, 0) representing the i-th bit set to 0, for i ∈ {0, . . . , n − 1}

– p1
i = R(i, 1) representing the i-th bit set to 1, for i ∈ {0, . . . , n − 1},

– pc
i = R(i, 2) representing the i-th bit being carried over to the (i + 1)-th bit, for

i ∈ {0, . . . , n − 2}.
To ensure proper behavior of the counter we use the following three constraints:

R : A → B,

∀i, j. ¬[R(i, 2) ∧ R( j, 1) ∧ i > j],
∀i, j. ¬[R(i, 1) ∧ R( j, 2) ∧ j = i − 1].

The first constraint ensures that a bit is set to 0, set to 1, or being carried to the higher
bit. The second constraint ensures that propagating a carry bit resets all lower bits to
0. The third constraint ensures that a bit can be carried over only if the immediately
higher bit is set to 0. The correct order of increment is ensured by the priority relation
�n defined as:

p1
i �n p0

i for i ∈ {0, . . . , n − 1},
p1

i �n pc
i−1 for i ∈ {1, . . . , n − 1},

pc
i �n p1

j for i ∈ {1, . . . , n − 2} and j ∈ {0, . . . , i}.
Notice that px

i �n py
j implies that either i > j or i = j, x = 1, and y = 0. Conse-

quently, �n is acyclic.
Now, we construct a �G-chain of repairs that corresponds to subsequent natural

numbers ranging from 0 to 2n − 1. Additionally, for odd numbers the chain contains
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also repairs that represent the cascading propagation of the carry bit. Figure 4
contains an example of an instance I3 and a sequence of repairs that constitutes a
�G-chain.

For instance, I′
0 and I′

1 correspond to 0 = (000)2 and 1 = (001)2 respectively while
I′

1,c corresponds to 1 being incremented with a carry bit. For every i ∈ {0, . . . , 2n −1}
let (bi

0, bi
1, . . . , bi

n−1) be the binary representation of i, where bi
j ∈ {0, 1} and bi

0

denotes the least significant bit i.e.,
∑n−1

j=0 2 jb i
j = i. The repair corresponding to

i ∈ {0, . . . , 2n − 1} is

I′
i =

{
p

bi
0

0 , p
bi

1
1 , . . . , p

bi
n−1

n−1

}
.

For every odd i ∈ {1, 3, . . . , 2n − 3} we also construct the repair that propagates
the carry bit in a cascading fashion

I′
i,c =

{
p0

0, . . . , p0
ji−2, pc

ji−1, p
bi

ji
ji , . . . , p

bi
n−1

n−1

}
,

Fig. 4 The instance I3 and the chain I′
7 �G I′

6 �G I′
5,c �G I′

5 �G I′
4 �G I′

3,c �G I′
3 �G I′

2 �G
I′

1,c �G I′
1 �G I′

0



Prioritized repairing and consistent query answering in relational databases 227

where ji is the position of the least significant bit of the binary representation of i
that is set to 0 i.e., the minimal j such that bi

j = 0. It can be easily shown that

I′
2n−1 �G I′

2n−2 �G I′
2n−3,c �G I′

2n−3,c �G . . .

. . . �G I′
3,c �G�G I′

3 �G�G I′
2 �G�G I′

1,c �G I′
1 �G I′

0.

Finally, we observe that in the worst case scenario Algorithm 2 may traverse the
full length of the constructed chain during its execution with In and �n. We remark,
however, that in this example the globally-optimal repair I′

2n−1 may be attained in just
one iteration of the main loop i.e., I′

2n−1 �G I′
i for i ∈ {0, . . . , 2n − 2} and I′

2n−1 �G I′
i,c

for i ∈ {1, 3, . . . , 2n − 3}. ��

Now, we investigate computational properties of globally-optimal repairs. We
observe that verifying whether a repair I′ is not globally optimal can be easily
accomplished with a nondeterministic Turing machine: it suffices to guess the sets X
and Y, verify that (I′ \ X) ∪ Y is consistent, and check that (∗G) holds. Consequently,
BG

F is in coNP. The membership of DG
F,Q in �

p
2 follows from Definition 9: true is not

the G-preferred consistent answer to a query if the query is not true in some globally-
optimal repair.

Proposition 5 G-preferred repair checking is in coNP and G-preferred consistent
query answering is in �

p
2 .

The upper bounds are tight.

Theorem 2 There exists a set of 4 FDs and an atomic query for which G-preferred
repair checking is coNP-hard and G-preferred consistent query answering is �

p
2 -hard.

Proof We show �
p
2 -hardness of DG

F,Q by reducing the satisfaction of ∀∗∃∗QBF

formulas to DG
F,Q. Consider the following formula:

� = ∀x1, . . . , xn.∃xn+1, . . . , xn+m.�,

where � is (quantifier-free) 3CNF i.e., � equals to c1 ∧ . . . ∧ cs, and ck is a clause
of three literals 	k,1 ∨ 	k,2 ∨ 	k,3 for k ∈ {1, . . . , s}. We call the variables x1, . . . , xn

universal and xn+1, . . . , xn+m existential. We use the function q to identify the type of
a variable with a given index: q(i) = 1 for i ≤ n and q(i) = 0 for i > n. We also use
the following two auxiliary functions var and sgn on literals of �:

var(xi) = var(¬xi) = i, sgn(xi) = 1, sgn(¬xi) = −1.

A valuation is a (possibly partial) function assigning a Boolean value to the variables.
We construct instances over the schema consisting of a single relation

R (A1, B1, A2, B2, A3, B3, A4, B4) .

The set of integrity constraints is

F = {A1 → B1, A2 → B2, A3 → B3, A4 → B4} .
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The constructed database instance I� consists of the following facts:

– vi and v̄i corresponding to the positive and negative valuations of xi resp. (for
i ∈ {1, . . . , n + m})

vi = R (0, q(i), i, 1, i, 1, i, 1) , v̄i = R (0, q(i), i, −1, i, −1, i, −1) ,

– dk corresponding to the clause ck (for k ∈ {1, . . . , s})
dk = R

(
0, 1, var(	k,1), sgn(	k,1), var(	k,2), sgn(	k,2), var(	k,3), sgn(	k,3)

)
,

– p∃ and p∀ used to partition the set of all repairs into repairs that correspond to
the valuations of existential and universal variables respectively:

p∃ = R(0, 0, 0, 0, 0, 0, 0, 0), p∀ = R(0, 1, 0, 0, 0, 0, 0, 0).

For the ease of reference by Lk,p we denote the fact corresponding to the satisfying
valuation of literal 	k,p i.e.:

Lk,p =
{

vi when 	k,p = xi,
v̄i when 	k,p = ¬xi.

The constructed priority relation �� is the minimal priority of I� w.r.t. F such that:

vi �� dk, if ck uses a positive literal xi,

v̄i �� dk, if ck uses a negative literal ¬xi,

p∃ �� vi, for all i ∈ {1, . . . , n},
p∃ �� v̄i, for all i ∈ {1, . . . , n},
p∃ �� p∀.

Figure 5 contains a prioritized conflict graph of the instance and the priority obtained
for the formula:

�0 = ∀x1, x2, x3.∃x4, x5.(¬x1 ∨ x4 ∨ x2) ∧ (¬x2 ∨ ¬x5 ∨ ¬x3).

The query used in the reduction is Q = p∃ and we claim that � is valid if and only
if true is G-preferred consistent query answer to p∃ in I� w.r.t. F and �� . The proof
is technically elaborate but can be summarized as follows. First, we partition the
set of repairs into ∃- and ∀-repairs that correspond to valuations of existential and

Fig. 5 The prioritized conflict graph for �0. Dotted lines used for conflicts w.r.t. A1 → B1
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universal variables. Next, we show that an ∃-repair globally dominates a ∀-repair
iff the combined valuation satisfies �. Consequently, we argue that if the ∃-repairs
are the only globally-optimal repairs, then for every valuation of universal variables
there exists a valuation of existential variables that together satisfy � i.e., � is valid.

We partition the set of all repairs of I� into two disjoint classes: ∃-repairs
that contain p∃ and ∀-repairs that do not contain p∃. Because of the FD A1 →
B1 every ∀-repair contains p∀. For the same reason, a ∀-repair is always a sub-
set of {v1, v̄1, . . . , vn, v̄n, d1, . . . , dn, p∀} whereas an ∃-repair is always a subset of
{vn+1, v̄n+1, . . . , vn+m, v̄n+m, p∃}.

We use ∃- and ∀-repairs to represent all possible valuation of existential and
universal variables respectively. To easily move from a valuation of variables to a
repair we define the following two operators:

I∃[V] = {vi | V(xi) = true ∧ q(i) = 0} ∪ {v̄i | V(xi) = false ∧ q(i) = 0} ∪ {p∃},
I∀[V] = {vi | V(xi) = true ∧ q(i) = 1} ∪ {v̄i | V(xi) = false ∧ q(i) = 1} ∪ {p∀} ∪

{
dk

∣∣∣
∣
if for every literal 	k,i of ck that uses a universal
variable for which V is defined, we have V 
|= 	k,i

}
.

Note that I∀[V] contains the types corresponding to clauses that are not satisfied by
the valuation of universal variables V alone.

For instance, take the formula �0 in Fig. 5 and the following total valuation V0 of
variables x1, . . . , x5:

V0(x1) = true, V0(x2) = false, V0(x3) = false, V0(x4) = true, V0(x5) = true.

Then, the repairs corresponding to the valuation of existential and universal vari-
ables are

I∃[V0] = {v4, v5, p∃} and I∀[V0] = {v1, v̄2, v̄3, d1, p∀} .

To move in the opposite direction, from a repair to a (possibly partial) valuation
we use:

V[I′](xi) =

⎧
⎪⎨

⎪⎩

true if vi ∈ I′,
false if v̄i ∈ I′,
undefined otherwise.

We observe that V[·] defines a one-to-one correspondence between ∃-repairs and
total valuations of existential variables. A similar statement, however, does not hold
for ∀-repairs because of the interaction between facts dk and the facts corresponding
to universal variables. For example, for the instance in Fig. 5 if we take the repair
I0 = {v1, v3, d1, d2, p∀}, the corresponding valuation V[I0] of universal variables is
undefined for x2.

Consequently, for some ∀-repair I′ the function V[I′] may be only a partial
valuation of universal variables. We call a ∀-repair I′ strict if V[I′] is a total valuation
of universal variables. In this way, V[·] defines a one-to-one correspondence between
strict ∀-repairs and total valuations of the universal variables. The following result
allows us to remove non-strict ∀-repairs from consideration.
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Lemma 1 Strict ∀-repairs are exactly �G-maximal ∀-repairs.

Proof First, we prove that no non-strict ∀-repair is �G-maximal. For that we show
how to construct from a non-strict ∀-repair I′ a strict ∀-repair I′′ such that I′′ �G I′.
We take the partial valuation V ′ = V[I′] and extend it to a total valuation V ′′ of
universal variables by assigning false value to variables undefined by V ′ i.e.,

V ′′ = V ′ ∪ {(xi, false) | 1 ≤ i ≤ n ∧ V ′(xi) is undefined}.
Now, we go back to the repair I′′ = I∀[V ′′] and show that

∀q′ ∈ I′ \ I′′. ∃q′′ ∈ I′′ \ I′. q′′ � q′.

There are 4 cases of values of q′ to consider:

1. q′ = p∃, q′ = vi, or q′ = v̄i for i ∈ {n + 1, . . . , n + m} is not possible because
neither of I′ and I′′ contains these facts (being ∀-repairs)

2. q′ = p∀ is not possible because both I′ and I′′ are ∀-repairs.
3. q′ = vi or q′ = v̄i for some i ∈ {1, . . . , n} is also impossible because from the

construction of I′′ we know that

I′′ ∩ {v1, v̄1, . . . , vn, v̄n} ⊆ I′ ∩ {v1, v̄1, . . . , vn, v̄n}.
4. q′ = dk for some k ∈ {1, . . . , s}. The neighborhood of dk in the conflict graph

consists of facts p∃, Lk,1, Lk,2, and Lk,3. We observe that none of these facts
belongs to I′. However, one of the facts must belong to I′′ because q′ 
∈ I′′ and
I′′ is a maximal consistent subset of I� . Since I′′ is a ∀-repair, p∃ does not
belong to I′′. Therefore, for some p ∈ {1, 2, 3} the fact Lk,p must belong to I′′.
Consequently, q′′ = Lk,p �� q′.

Now, we show that every strict ∀-repair is also �G-maximal among ∀-repairs.
Suppose otherwise i.e., for some strict ∀-repair I′ there exists an ∀-repair I′′ such
that I′ �G I′′. Since I′ is strict it contains vi or v̄i for every i ∈ {1, . . . , n}. By the con-
struction of the priority �� the repairs I′ and I′′ must agree on facts v1, v̄1, . . . , vn, v̄n.
Therefore I′ = I∀[V[I′′]] and using the reasoning from the previous part we can show
that I′′ �G I′. Since �� is acyclic, by Proposition 3 this gives us I′ = I′′. ��

The central result in our reduction follows.

Lemma 2 For any total valuation V, I∃[V] �G I∀[V] if and only if V |= �.

Proof For the if part, because a ∀-repair is disjoint with any ∃-repair, it is enough
to show that for any fact q′ ∈ I∀[V] there exists a fact q′′ ∈ I∃[V] such that q′′ � q′.
For p∀, v1, v̄1, . . . , vn, v̄n we simply choose p∃. If dk belongs to I∀[V], then none of
the neighbors of dk belongs to I∀[V]. This implies that none of the literals using a
universal variable is satisfied by V. Hence there must exist a literal 	k,p of the clause
ck,p that uses an existential variables and that is satisfied by V. Consequently, we
have Lk,p ∈ I∃[V] and Lk,p �� dk.

For the only if part take any k ∈ {1, . . . , s} and consider the conjunct ck = 	k,1 ∨
	k,2 ∨ 	k,3. If none of the literals, which use universal variables, is satisfied by V, then
none of the corresponding Lk,p belongs to I∀[V], and consequently, dk is in I∀[V].
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Then I∃[V] must contain a fact Lk,p′ corresponding to one of the literals of ck using
an existential variable. This implies that V |= 	k,p′ , and consequently, V |= ck. ��

This gives us.

Corollary 1 The QBF � is valid if and only if for any strict ∀-repair I′ there exists an
∃-repair I′′ such that I′′ �G I′.

Because only an ∃-repair can be preferred over a strict ∀-repair and for every non-
strict ∀-repair there is a more preferred strict ∀-repair, we can make a more general
statement.

Corollary 2 The QBF � is valid if and only if for any ∀-repair I′ there exists a repair
I′′ such that I′′ �G I′.

∀-repairs are defined as repairs that do not contain the fact p∃ and thus:

|= ∀x1, . . . , xn. ∃xn+1, . . . , xn+m. � iff

∀I′ ∈ Rep(I�, F). [I′ |= ¬p∃] ⇒ [∃I′′ ∈ Rep(I�, F). I′′ �G I′] iff

∀I′ ∈ Rep(I�, F). [�I′′ ∈ Rep(I�, F). I′′ �G I′] ⇒ [I′ |= p∃] iff

∀I′ ∈ GRep(I�, F,��). I′ |= p∃ iff

(I�,��) ∈ DG
F,p∃ .

We finish by observing that the reduction can be carried out in polynomial time.
To show coNP-hardness of BG

F we remark that a 3CNF formula � can be treated as
a ∀∗∃∗QBF with no universal variables. This way, we use the previous transformation
to reduce the complement of 3SAT to BG

F ; If I� is the instance obtained in the
reduction with �, then {p∃} is a globally-optimal repair of I� if and only if � 
∈ 3SAT.

��

5 Pareto-optimal repairs

The high computational cost of using global optimality compels us to seek different
notions of optimality that may reduce the computational complexity. The next family
of repairs that we consider is closely related to GRep. Similarly to GRep, it selects a
set of repairs whose compliance with the priority cannot be further improved by
replacing a set of facts with a more preferred set of facts. The only difference is in the
way we lift the priority relation to a preference relation of sets of facts. This notion
is inspired by the construction of the Pareto optimal set of vectors [24].

Definition 11 (Pareto-optimal repairs PRep) Given an instance I, a set of integrity
constraints F, and a priority �, an instance I′ ⊆ I is Pareto optimal w.r.t. � and F
if no nonempty subset X of facts from I′ can be replaced with a nonempty set Y of
facts from I \ I′ such that

∀x ∈ X. ∀y ∈ Y. y � x (∗P)
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and the resulting set of facts is consistent with F. PRep is the family of Pareto-optimal
repairs i.e., PRep(I, F,�) is the set of all repairs of I w.r.t. F that are Pareto optimal
w.r.t. � and F.

We emphasize that the family PRep selects all Pareto-optimal repairs. In general,
it is, however, possible to define a family that selects only some of the Pareto-optimal
repairs, or even more generally, a family that constructs a set of Pareto-optimal
instances that need not be repairs. This will allow us to state some general results
e.g., Theorem 3 states that any family of Pareto-optimal repairs that satisfies P1 and
P leads inadvertently to intractability of preferred consistent query answering. In the
sequel, we fix an instance I and a set of denial constraints F, and omit them when
referring to the elements of PRep(I, F,�).

Proposition 6 PRep satisf ies P1-P4. Also, GRep � PRep.

Proof GRep � PRep follows from Definitions 10 and 11. The arguments used to
prove P1 through P4 are essentially the same as in Proposition 4. ��

To show that PRep 
� GRep we recall the instance I1 from Example 2 whose
prioritized conflict graph is in Fig. 6. The repairs I′

1 and I′
2 are Pareto optimal but

only I′
1 is globally optimal.

The family of Pareto-optimal repairs can be viewed as an approximation of
GRep enjoying better computational properties. We believe, however, that Pareto
optimality is a more cautious and conservative alternative to global optimality
because it requires a stronger support from the priority to eliminate a repair. For
instance, recall that I′

2 from Example 2 is not globally optimal because we can
replace Mgr(Mary, $40k, IT) with the more preferred Mgr(Mary, $50k, PR) and
Mgr(Ken, $50k, PR) with the more preferred Mgr(Ken, $60k, IT). However, the
same process can be seen as replacing Mgr(Mary, $40k, IT) with Mgr(Ken, $60k, IT)

and Mgr(Ken, $50k, PR) with Mgr(Mary, $50k, PR), and neither of those swaps
improves the compliance with the preference. Consequently, I′

2 is Pareto optimal.
Similarly to GRep, P-preferred repairs have an alternative characterization that is

based on extending the priority to a pre-order on repairs.

Proposition 7 For a given priority � and two repairs I′
1 and I′

2, I′
1 Pareto dominates

I′
2, denoted I′

1 �P I′
2 if

∃y ∈ I′
1 \ I′

2. ∀x ∈ I′
2 \ I′

1. y � x. (�P)

Fig. 6 Prioritized conflict graph from Example 2
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The following facts hold:

(i) a repair I′ is Pareto optimal if and only if it is �P -maximal i.e., there is no repair
I′′ dif ferent from I′ such that I′′ �P I′;

(ii) if � is acyclic, then so is �P .

Proof

(i) We prove the contraposition i.e., I′ is not Pareto optimal if and only if there
exists a repair I′′ 
= I′ such that I′′ �P I′.
For the if part take X = I′ \ I′′ and Y = {y}, where y ∈ I′′ \ I′ such that ∀x ∈ X
we have y � x (it exists by I′′ �P I′). Clearly, X and Y validate (∗P) and (I′ \
X) ∪ Y is consistent (as a subset of I′′). Consequently, I′ is not Pareto optimal.
For the only if part take any nonempty X ⊆ I′ and Y ⊆ I \ I′ such that (∗P)
holds and J = (I′ \ X) ∪ Y is consistent. Take any repair I′′ that contains all
facts of J. Clearly, I′ \ I′′ = X and Y ⊆ I′′ \ I′ so it suffices to take X and any
y ∈ Y to verify (�P).

(ii) We observe that I′ �P I′′ implies I′ �G I′′. Thus, if �P has cycles, then so
does �G , and consequently, �. ��

The class of Pareto-optimal repairs is the largest class of preferred repairs we
consider in this paper. The remaining families select subsets of Pareto optimal, and
in general, it is possible to consider other families that select only Pareto-optimal
repairs. The following result states a rather general observation on the computa-
tional implications of introducing preferences to the framework of consistent query
answers.

Theorem 3 There exists an atomic query Q and a set F of two FDs such that for
any family XRep of Pareto optimal repairs satisfying P1 and P2 the problem of X -
consistent query answering i.e., the membership of the set

DX
F,Q = {

(I,�) | ∀I′ ∈ XRep(I, F,�). I′ |= Q
}
,

is coNP-hard.

Proof We show the hardness by reducing the complement of SAT to DX
F,Q. Take

then any CNF formula � = c1 ∧ . . . ∧ ck over variables x1, . . . , xn and let c j = 	 j,1 ∨
. . . ∨ 	 j,m j . We assume that there are no repetitions of literals in a clause (i.e., 	 j,k1 
=
	 j,k2 ). We construct a relation instance I� over the schema R(A1, B1, A2, B2) in the
presence of two functional dependencies F = {A1 → B1, A2 → B2}. The instance I�

consists of the following facts:

– wi = R(i, 1, i, 1) corresponding to the positive valuation of xi (for i ∈ {1, . . . , n}),
– w̄i = R(i, −1, −i, 1) corresponding to the negative valuation of xi (for every i ∈

{1, . . . , n}),
– d j = R(n + j, 1, 0, 1) corresponding to the clause c j (for every j ∈ {1, . . . , m}),
– v

j
i = R(n + j, 1,−i, 0) encoding the use of xi in the clause c j (for any i ∈ {1, . . . , n}

and j ∈ {1, . . . , m} such that c j uses xi),



234 S. Staworko et al.

– v̄
j
i = R(n + j, 1, i, 0) encoding the use of ¬xi in the clause c j (for any i ∈ {1, . . . , n}

and j ∈ {1, . . . , m} such that c j uses ¬xi),
– b = R(0, 0, 0, 0) corresponding to the formula �.

The constructed priority �� is the minimal priority of I� w.r.t. F such that:

w̄i �� v
j
i , v

j
i �� d j, d j �� b ,

wi �� v̄
j
i , v̄

j
i �� d j.

Figure 7 presents prioritized conflict graph obtained from the formula � = (¬x1 ∨
x2 ∨ x3) ∧ (¬x3 ∨ ¬x4 ∨ x5). The query we consider is Q = ¬b . We claim that

(I�,��) ∈ DX
F,Q ⇐⇒ ∀I′ ∈ XRep (I�, F,��) . b 
∈ I′ ⇐⇒ � 
∈ SAT.

For the if part, suppose there exists a repair I′ ∈ XRep(I�, F,��) such that b ∈ I′.
Obviously, for every j ∈ {1, . . . , m} the fact d j does not belong to I′. Also, for every
j at least one fact neighboring to d j, other than b , is present in I′, or otherwise I′ is
not a Pareto-optimal repair. Similarly, I′ has either wi or w̄i for every i ∈ {1, . . . , n},
and hence, the following valuation is properly defined:

V(xi) =
{

true if wi ∈ I′,
false if w̄i ∈ I′.

We claim that V |= �. Suppose otherwise and take any clause c j unsatisfied by V.
Let x 
= b be the fact neighboring to d j that is present in I′. W.l.o.g. we can assume
that x = v̄ j,i0 for some i0 and then ¬xi0 is a literal of c j. Also then, wi0 does not belong
to I′ and so V(xi0) = false. This implies that V |= ¬xi0 and V |= c j; a contradiction.

For the only if part, suppose there exists a valuation V such that V |= � and
consider the following instance

I′ = {wi | V (xi) = true} ∪ {w̄i | V(xi) = false} ∪
{
v

j
i | V(xi) = true

}
∪

{
v̄

j
i | V(xi) = false

}
∪ {b}.

First, we note that I′ is a repair and a Pareto-optimal one. Next, we show that I′ ∈
XRep(I�, F,��). To prove this consider the following priority �′ = �� ∪ {(vi, v̄i) |
V(xi) = true} ∪ {(v̄i, vi) | V(xi) = false}. It can be easily verified that I′ is the only
Pareto-optimal repair of I� w.r.t. F and �′. Since XRep satisfies P1, we get
I′ ∈ XRep(I�, F,�′). Note that �′ is an extension of �� and thus I′ belongs to

Fig. 7 The prioritized conflict graph for � = (¬x1 ∨ x2 ∨ x3) ∧ (¬x3 ∨ ¬x4 ∨ x5)
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XRep(I�, F,�) by P2. Finally, we observe that b ∈ I′ which implies that true is not
an X -preferred consistent query answer to Q in I� w.r.t. F and ��; a contradiction.

We finish the proof with the observation that the described reduction requires
time polynomial in the size of the formula �. ��

We also present an alternative characterization of Pareto-optimal repairs that
yields a tractable procedure for repair checking.

Lemma 3 A repair I′ is not Pareto optimal w.r.t. � if and only if there exists a fact
y ∈ I \ I′ such that for every conf lict C in I′ ∪ {y} there is x ∈ C such that y � x.

Proof For the if part, let C1, . . . , Ck be all conflicts in I′ ∪ {y} and xi be the
element of Ci such that y � xi (for i ∈ {1, . . . , k}). Clearly, (I′ \ {x1, . . . , xk}) ∪ {y} is
consistent, which shows that I′ is not Pareto optimal.

For the only if part, take any nonempty X and Y such that (I′ \ X) ∪ Y is
consistent and ∀y ∈ Y. ∀x ∈ X. y � x. Fix any y ∈ Y and take any conflict C in
I′ ∪ {y}. Clearly, C contains an element x of X since (I′ \ X) ∪ Y is consistent.
Naturally y � x. ��

Corollary 3 P-preferred repair checking is in LOGSPACE and P-preferred consis-
tent query answering is coNP-complete.

Proof We observe that to check the condition of Lemma 3 we need to iterate over
I \ I′ which can be accomplished with two pointers: one to iterate over I and the
other to scan I′. Recall that a conflict is a set of facts and its cardinality is bounded
by the size of F which is assumed to be a constant parameter. Hence, we can iterate
over all conflicts of I′ (extended with one fact) using a constant number of pointers
scanning I′. Consequently, P-preferred repair checking is in LOGSPACE. DP

F,Q
belongs to coNP from the definition of P-preferred consistent query answers and
is coNP-complete by Theorem 3. ��

Now, we investigate a sound and complete algorithm for computing Pareto-
optimal repairs. First, we observe that it is possible to use an algorithm similar
to Algorithm 2, starting with an arbitrary repair and attempting to iteratively
improve its compliance with the priority until a Pareto-optimal repair is reached.
While checking Pareto optimality can be done in polynomial time, we note that
the sequence of repairs, constructed in Example 4, of exponential length is also a
�P -chain. Consequently, such an algorithm may require an exponential number of
iterations to obtain a Pareto-optimal repair.

We propose a simpler approach where we construct an arbitrary repair and if it
is not Pareto optimal we discard it and construct a completion-optimal repair using
Algorithm 4 presented in the next section. Completion-optimal repairs constitute a
subset of Pareto-optimal repairs and thus if the algorithm fails to construct a Pareto-
optimal repair in the first stage, then the repair constructed in the second stage is
Pareto optimal. Consequently, Algorithm 3 is sound. We recall that Algorithm 1 is
complete, i.e it may return any repair, in particular, any Pareto-optimal repair. If
the repair constructed in step 1 of Algorithm 3 is Pareto optimal, then this repair is
returned. Consequently, the algorithm is complete. Finally, it works in polynomial
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time since checking Pareto optimality is in LOGSPACE and Algorithms 1 and 4
work in polynomial time.

Algorithm 3 Constructing a Pareto-optimal repair of I w.r.t. F and �
1: construct a repair I′ of I /*Algorithm 1*/
2: if I′ is Pareto optimal w.r.t. � then
3: return I′
4: else
5: return any completion-optimal repair of I w.r.t. � /*Algorithm 4*/

Proposition 8 Algorithm 3 is a sound and complete algorithm constructing Pareto-
optimal repairs. It works in time polynomial in the size of the input instance and the
priority relation.

6 Completion-optimal repairs

The last family of preferred repairs is based on a notion of optimality different
from global and Pareto optimality and intuitively can be described as follows. When
repairing a database with a priority that is not total and resolving a conflict that is
not prioritized, we commit to a particular prioritization of this conflict. In this view,
constructing a repair that conforms to a given priority is equivalent to constructing
a total extension of that priority such that the constructed repair is the only repair
globally optimal w.r.t. the total priority. We remark that this notion is quite robust as
it remains identical if we replace in it global optimality by Pareto optimality. The
same holds for all results stated in this section. This is because GRep and PRep
coincide for total priorities by GRep � PRep and P4 for PRep and GRep. Another
motivation for the family of repairs presented in this section is a fairly intuitive and
natural repairing algorithm which we present later on.

Definition 12 (Completion-optimal repairs CRep) Given an instance I, a set of denial
constraints F, and a priority �, an instance I′ ⊆ I is completion optimal w.r.t. � and
F if and only if there exists a total priority �′ ⊇ � such that I′ is globally optimal
w.r.t. �′ and F. CRep is the family of completion-optimal repairs i.e., CRep(I, F,�) is
the set of all repairs of I w.r.t. F that are completion optimal w.r.t. � and F.

We remark that CRep selects all completion-optimal repairs and that it is possible
to consider families that select only some completion-optimal repairs. We fix an
instance I and a set of denial constraints F, and omit them when referring to the
elements of CRep(I, F,�).

Example 5 Consider the schema of one relation name R(A, B, C, D) with a set
of two functional dependencies F4 = {R : A → B, R : C → D}. Take the following
instance

I4 = {R(1, 1, 1, 1), R(1, 2, 1, 2), R(1, 3, 0, 0), R(0, 0, 1, 3)}
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and the following priority relation

�4 = {(R(1, 1, 1, 1), R(1, 3, 0, 0)), (R(1, 2, 1, 2), R(0, 0, 1, 3))} .

The corresponding prioritized conflict graph is presented in Fig. 8. The instance I4

has 3 repairs:

I′
1 = {R(1, 1, 1, 1)} , I′

2 = {R(1, 2, 1, 2)} , I′
3 = {R(1, 3, 0, 0), R(0, 0, 1, 3)} .

We note that all three repairs are globally optimal w.r.t. �4. The repairs I′
1 and I′

2 are
completion optimal as witnessed by the following total extensions of �4 (�′

4 for I′
1

and �′′
4 for I′

2):

�′
4 = �4 ∪ {(R(1, 1, 1, 1), R(0, 0, 1, 3)), (R(1, 2, 1, 2),R(1, 3, 0, 0)),

(R(1, 1, 1, 1), R(1, 2, 1, 2))}
�′′

4 = �4 ∪ {(R(1, 1, 1, 1), R(0, 0, 1, 3)), (R(1, 2, 1, 2),R(1, 3, 0, 0)),

(R(1, 2, 1, 2), R(1, 1, 1, 1))}.
On the other hand, there is no total extension of �4 for which the repair I′

3 is globally
optimal, and hence, I′

3 is not completion optimal. ��

It is an open question whether there exists an intuitive definition of a pre-order on
repairs whose maximal elements are exactly completion-optimal repairs. We show,
however, the family of completion-optimal repairs is the smallest family of globally-
optimal repairs that satisfies the properties P1 and P2. Notice that GRep is only
one of the possible families of globally-optimal repairs satisfying P1 and P2. CRep is
another one.

Lemma 4 CRep � XRep for every family XRep of globally-optimal repairs that sat-
isf ies P1 and P2. In other words, a repair I′ is completion optimal w.r.t. F and � if
and only if I′ ∈ XRep(I, F,�) for every family XRep of globally-optimal repairs that
satisf ies P1 and P2.

Proof For the only if part, observe that by P4 for GRep I′ is the only globally-optimal
repair w.r.t. �. Consequently, I′ ∈ XRep(I, F,�′) for any family XRep satisfying P1.
Moreover, I′ ∈ XRep(I, F,�) because XRep satisfies P2 and � ⊆ �′. Thus, I′ is a
completion-optimal repair of I w.r.t. F and �.

For the if part, suppose � has no acyclic total extension �′ for which I′ is globally
optimal w.r.t. �′. Consider the following family of globally-optimal repairs

XRep
(
Io, Fo,�o) =

{
GRep (Io, Fo,�o) \ {I′} if �o ⊇ �, Io = I, and Fo = F,
GRep (Io, Fo,�o) otherwise.

Fig. 8 The prioritized conflict
graph G(I4, F4,�4)
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It can be easily seen that XRep satisfies P1 and P2. We observe that I′ 
∈
XRep(I, F,�). Consequently, I′ is not a completion-optimal repair of I w.r.t. F
and �. ��

Proposition 9 CRep satisf ies P1-P4 and CRep � GRep.

Proof CRep � GRep because GRep is a family of globally-optimal repairs that satisfies
both P1 and P2 (cf. Proposition 4).

P1 follows from the definition of completion-optimal repairs and the observation
that any priority � can be extended to some total �′ (the same argument as in the
proof of Proposition 4). Therefore, ∅ 
= GRep(I, F,�′) ⊆ CRep(I, F,�) by P4 for
GRep. P2 follows directly from Lemma 4.

To show P3 we take an arbitrary repair I′ and construct a priority � such that I′
is globally optimal w.r.t. �. For that we take any total ordering �1 of I′ and any total
ordering of �2 of I \ I′. We obtain � by a diligent composition of �1 with �2:

R(t) � R′ (t′
) ⇐⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R(t) �1 R′ (t′
)

if R(t), R′ (t′
) ∈ I′,

true if R(t) ∈ I′ and R′ (t′
) ∈ I \ I′,

R(t) �2 R′ (t′
)

if R(t), R′ (t′
) ∈ I \ I′,

false if R(t) ∈ I \ I′ and R′ (t′
) ∈ I′,

for any two neighboring facts R(t) and R′(t′) (R(t) 
� R′(t′) if R(t) and R′(t′) are not
neighboring). Clearly, � is acyclic since it is based on the acyclic components �1 and
�2, and we add an element (R(t), R′(t′)) only if R(t) ∈ I′ and R′(t′) 
∈ I′. Naturally,
� is a total priority. It is also easy to verify that I′ is globally optimal w.r.t. �. P4
follows from CRep � GRep, P4 for GRep, and P1 for CRep proved above. ��

Completion-optimal repairs can be also characterized as exactly those repairs that
can be obtained with an iterative accumulation of facts selected with the winnow
operator [11]:

ω�(I) = {
R(t) ∈ I | �R′(t′) ∈ I. R′(t′) � R(t)

}
.

Theorem 4 Algorithm 4 is a sound and complete algorithm constructing completion-
optimal repairs. It works in time polynomial in the size of the input instance and the
priority relation.

Algorithm 4 Constructing a completion-optimal repair

1: Io ← I
2: J ← ∅

3: while ω�(Io) 
= ∅ do
4: choose R(t) ∈ ω�(Io)

5: Io ← Io \ {R(t)}
6: if J ∪ {R(t)} |= F then
7: J ← J ∪ {R(t)}
8: return J
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Proof We observe that the instance resulting from an execution of Algorithm 4 can
be associated with the sequence of choices made in line 4 during the execution. We
also observe that this sequence is an ordering of the facts of the original instance I.

To show soundness, we take an instance I′ obtained with the sequence of choices
x1, . . . , xn. We show that I′ is completion optimal by extending � to a total priority
�′ for which I′ is globally optimal. The priority �′ is defined as

xi �′ x j ⇐⇒ xi and x j are neighboring and i < j.

Clearly, �′ is acyclic and a total priority. We also observe that � ⊆ �′ because xi � x j

implies that i < j i.e., xi is selected before x j and the choices are constrained by ω�.
To show that I′ is globally optimal w.r.t. �′ take any X ⊆ I′ and any Y ⊆ I \ I′

such that (I′ \ X) ∪ Y is consistent. Now, take any x j ∈ Y and observe that adding
x j to the instance being created by Algorithm 4 must have been prevented by some
conflict {xi1 , . . . , xik , x j} with the facts added previously i.e., i	 < j for 	 ∈ {1, . . . , k}.
Consequently, xi	 �′ x j for 	 ∈ {1, . . . , k}. We observe that at least one of xi1 , . . . , xik
must be present in X since Y contains x j, I′ contains xi1 , . . . , xik , and (I′ \ X) ∪ Y is
consistent. Thus, x j 
� x	 for some x	 ∈ X, I′ is globally optimal w.r.t. �′, and by P2
for GRep we get that I′ is globally optimal w.r.t. �.

To show completeness, we take a completion-optimal repair I′ and the total
priority �′ for which I′ is globally optimal and use �′ to construct a valid sequence
of choices yielding I′. Naturally, the same choice sequence is valid for an execution
with � because �′ extends �.

Take an execution of Algorithm 4 on I with �′ that constructs some instance I′′
with the sequence of choices x1, . . . , xn. Note that if xi and x j are neighboring, then
xi �′ x j if and only if i < j. Suppose that I′′ 
= I′ and take the minimal index i of the
element xi on which I′ and I′′ differ. Note that I′ ∩ {x1, . . . , xi−1} = I′′ ∩ {x1, . . . , xi−1}
and either xi ∈ I′ and xi 
∈ I′′, or xi 
∈ I′ and xi ∈ I′′. The first case is not possible
because Algorithm 4 would have discarded xi only if there had been a conflict
involving xi and some facts of I′′ ∩ {x1, . . . , xi−1}. Then, however, the same conflict
would have been included in I′ i.e., I′ would have not been consistent. Suppose then,
xi 
∈ I′ and xi ∈ I′′. Let C1, . . . , Ck be all conflicts present in I′ ∪ {xi} w.r.t. F, and
since I′ ∪ {xi} is not consistent, there exists at least one conflict in I′ ∪ {xi}. Naturally,
I′ ∩ {x1, . . . , xi−1} ∪ {xi} is consistent, and thus for every j ∈ {1, . . . , k} the conflict C j

contains a fact xi j such that i j > i. Let X = {xi1 , . . . , xik} and Y = {xi}, and observe
that (I′ \ X) ∪ Y is consistent. Moreover, X and Y satisfy (∗G) (Definition 10) since
i j > i implies that xi � xi j . Consequently, I′ is not globally optimal; a contradiction.

��

Corollary 4 C-preferred repair checking is in PTIME and C-preferred consistent query
answering is coNP-complete.

Proof To check if a repair I′ is completion optimal we use Algorithm 4 to simulate
the construction of I′ by restricting the choice in line 4 to facts ω�(J) ∩ I′. It can be
easily shown that the repair I′ is completion optimal if and only if such a simulation
can be performed successfully (i.e., it produces I′). Naturally, DC

F,Q belongs to coNP
and its coNP-completeness follows from Theorem 3. ��
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The exact complexity of C-preferred repair checking, namely whether it is PTIME-
complete or in LOGSPACE, remains an open question.

The introduced families of preferred repairs create a hierarchy:

CRep � GRep � PRep.

Recall from the previous section that PRep 
= GRep (cf. Fig. 6). We note that in
Example 5 all repairs are globally optimal but only I′

1 and I′
2 are completion optimal

which shows that CRep 
= GRep. Thus, the hierarchy is proper. We observe, however,
that under certain conditions this hierarchy collapses.

Proposition 10 PRep, GRep, and CRep coincide under one of the following conditions:

(i) the set of constraints F consists of one key dependency only;
(ii) the priority � can be extended to acyclic priorities only.

Moreover, GRep and CRep coincide if

(iii) the set of constraints F consists of one functional dependency only.

Proof For (i) to show that PRep � CRep in the presence of exactly one key depen-
dency, we use the fact that the conflict graph is a union of pairwise disjoint cliques
and every repair consists of exactly one element selected from each clique.

We fix an instance I, a key dependency F, and a priority �. Let C1, . . . , Cn be
the cliques of G(I, F). Take any I′ ∈ PRep(I, F,�) and let R1(t1), . . . , Rn(tn) be the
elements of I′ such that Ri(ti) ∈ Ci. Since I′ is Pareto optimal, then for every i there
is no y ∈ Ci \ {R(ti)} such that y � Ri(ti), and consequently, Ri(ti) ∈ ω�(Ci). Hence,
R1(t1), . . . , Rn(tn) is a proper choice sequence for Algorithm 4. Finally, we observe
that if the fact Ri(ti) has been added to the constructed repair, then none of the facts
of Ci \ {Ri(ti)} can be further added.

For (ii) We take any I′ ∈ PRep(I, F,�) and construct a total extension �′ of � by
prioritizing in favor of I′ all conflicts unprioritized by � i.e., �′ is any total priority
such that for any x ∈ I′ and any y conflicting with x if y 
� x then x �′ y. Since � can
be extended to acyclic orientations only, �′ is acyclic. Clearly, I′ is a Pareto-optimal
repair w.r.t. �′ and a unique one by P4 for PRep. Therefore I′ ∈ CRep(I, F,�′) and
by P2 we get I′ ∈ CRep(I, F,�).

For (iii) we assume a single relation name R with the functional dependency
X → Y and use the notions of X-cluster and (X, Y)-cluster (Section 2.3, page 8). Let
the instance I be the union of the X-clusters C1, . . . , Cn. Take any globally-optimal
repair I′ and let it be the union of the (X, Y)-clusters D1, . . . , Dn (Di ⊆ Ci for every
i ∈ {1, . . . , n}). By global optimality of I′ we have that for every i ∈ {1, . . . , n}

∃Ri(ti) ∈ Di.∀y ∈ Ci \ Di.y 
� Ri(ti).

Therefore, Algorithm 4 can perform the first n iterations with a choice sequence
beginning with Ri(t1), . . . , Rn(tn). Because n(Ri(ti)) = Ci \ Di and elements of Di

conflict only with elements of Ci \ Di, the remaining choices can consist of any
ordering of (D1 \ {Ri(t1)}) ∪ . . . ∪ (Dn \ {Ri(tn)}). Consequently, I′ is a result of
Algorithm 4. ��

We note that the conditions are sufficient but not necessary e.g., the hierarchy
trivially collapses for any set of denial constraints and an empty priority relation.
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7 Tractable case

The intractability proofs for consistent query answering use at least 2 FDs. Next, we
investigate the case when only one FD is present. We begin by considering queries
that are conjunctions of ground literals, and next, we generalize this approach to
arbitrary ground queries.

We observe that if only functional dependencies are considered, facts can create
conflicts only with facts of the same relation, and therefore, we can limit our
consideration to a schema consisting of one relation name only. Consequently, we
assume a single relation name R with the FD R : X → Y and use the notions of X-
cluster and (X, Y)-cluster (Section 2.3). We fix an instance I and a priority �. For
every fact R(t) ∈ I, by CR(t) we denote the X-cluster to which the fact R(t) belongs
to and by DR(t) we denote its (X, Y)-cluster. We also fix the query

� = R(t1) ∧ . . . ∧ R(tk) ∧ ¬R(tk+1) ∧ . . . ∧ ¬R(tm).

We assume that the facts R(t1), . . . , R(tk) belong to I; otherwise there is no repair
satisfying �. We assume that also the facts R(tk+1), . . . , R(tn) belong to I; otherwise
we can remove any negative literal from � if it is not in I. We also recall that in
the presence of one FD only, the family of globally-optimal and completion-optimal
repairs coincide (Proposition 10).

Lemma 5 A (completion-) globally-optimal repair I′ satisfying � exists if and only if
the following conditions are satisf ied:

(i) {R(t1), . . . , R(tk)} is conf lict-free;
(ii) {DR(t1), . . . , DR(tk)} ∩ {DR(tk+1), . . . , DR(tm)} = ∅;

(iii) DR(t j) ∩ ω�(CR(t j)) 
= ∅ for every j ∈ {1, . . . , k}.
(iv) ω�(CR(t j)) \ (DR(tk+1) ∪ . . . ∪ DR(tn)) 
= ∅ for every j ∈ {k + 1, . . . , m}.

Proof For the only if part, we take any globally-optimal repair I′ satisfying �. (i) and
(ii) are trivially satisfied. Assume that I′ is the result of Algorithm 4 with a choice
sequence R(s1), . . . , R(s	). Take any j ∈ {1, . . . , k} and let j′ be the smallest index
of a fact from CR(t j) in the sequence. Clearly, R(s j′) ∈ I′. Since R(t j) also belongs
to I′, both R(s j′) and R(t j) belong to the same (X, Y)-cluster i.e., R(s j′) ∈ DR(t j).
Also prior to selecting R(s j′) the temporary instance Io contains CR(t j). Therefore
R(s j′) ∈ ω�(CR(t j)) which proves (iii).

We show (iv) similarly. For any j ∈ {k + 1, . . . , m} let j′ be the smallest index of a
fact from CR(t j) in the sequence of choices used to construct I′. Prior to making the
choice R(s j′) the temporary instance Io contains CR(t j), R(s j′) ∈ ω�(CR(t j)), and R(s j′)

does not belong to any of DR(tk+1), . . . , DR(tn).
For the if part, we construct I′ using Algorithm 4 with a choice sequence

R(s1), . . . , R(s	) defined as follows. By (i) and (iii), for j ∈ {1, . . . , k} the choice
R(s j) is any fact from DR(t j) ∩ ω�(CR(t j)). By (ii) and (iv), for any j ∈ {k + 1, . . . , m}
the choice R(s j) is any fact from ω�(CR(t j)) \ (DR(tk+1) ∪ . . . ∪ DR(tn)). The remaining
choices R(t j) for j ∈ {m + 1, . . . , 	} are selected in an arbitrary way. We observe that
the first k steps guarantees that the facts R(t1), . . . , R(tk) belong to the repair instance
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I′ (possibly placed there in later consecutive steps) and that I′ does not contain any
of the facts R(tk+1), . . . , R(tm). ��

Lemma 6 A Pareto-optimal repair I′ satisfying � exists if and only if the following
conditions are satisf ied:

(i) {R(t1), . . . , R(tk)} is conf lict-free;
(ii) {DR(t1), . . . , DR(tk)} ∩ {DR(tk+1), . . . , DR(tm)} = ∅;

(iii) for every j ∈ {1, . . . , k}, for every fact R(t) ∈ CR(t j) \ DR(t j) there exists R(t′) ∈
DR(t j) such that R(t) 
� R(t′).

(iv) for every j ∈ {k + 1, . . . , m} there exists an (X, Y)-cluster D of CR(t j) dif ferent
from DR(tk+1), . . . , DR(tm) such that for every t ∈ DR(tk+1) ∪ . . . ∪ DR(tm), there
exists R(t′) ∈ D such that R(t) 
� R(t′).

Proof For the only if part, (i) and (ii) are trivially implied by I′ |= �. To show (iii)
and (iv) we observe that a Pareto-optimal repair contains exactly one Pareto-optimal
(X, Y)-cluster for every X-cluster. For clusters CR(t1), . . . , CR(tk) this together with
the fact that {R(t1), . . . , R(tk)} ⊆ I′ implies (iii). For clusters CR(tk+1), . . . , CR(tm) this
together with the fact that {R(tk+1), . . . , R(tm)} ∩ I′ = ∅ implies (iv).

For the if part, we construct the repair I′ by selecting an (X, Y)-cluster from every
X-cluster. Because Pareto optimality is defined in terms of neighboring facts and for
one FD conflicts can be present only inside an X-cluster, to show that the repair I′
is Pareto optimal it is enough to show that for every X-cluster the selected (X, Y)-
cluster is Pareto optimal (among all (X, Y)-clusters in the X-cluster).

For X-clusters CR(t1), . . . , CR(tk) we select DR(t1), . . . , DR(tk) resp. We note that by
(i) the (X, Y)-clusters belong to different X-clusters and by (ii) we do not include any
of the facts R(tk+1), . . . , R(tm). Pareto optimality is implied by (iii). For X-clusters
CR(tk+1), . . . , CR(tm) we select the (X, Y)-clusters as described in (iv). Pareto optimality
of those clusters is also implied by (iv). For an X-cluster other than C1, . . . , Cm we
select any (X, Y)-cluster that is Pareto optimal (for the X-cluster). Since all selected
(X, Y)-clusters are Pareto optimal, the instance I′ is a Pareto-optimal repair such
that I′ |= �. ��

Theorem 5 If the set of integrity constraints contains at most one functional depen-
dency per relation name and no other constraints, then computing preferred consistent
answers to quantif ier-free queries is in PTIME for PRep, GRep, and CRep.

Proof We adopt the algorithm from [13]. We assume that the query � is in CNF i.e.,
� = �1 ∧ . . . ∧ �n. By definition true is not a preferred consistent query answer to
� if and only if there exists a preferred repair I′ and i ∈ {1, . . . , n} such that I′ 
|= �i

i.e., I′ |= ¬�i. Note that the negation of �i is a conjunction of literals. Consequently,
the algorithm attempts to verify for every i ∈ {1, . . . , n} whether a preferred repair
satisfying ¬�i exists using tests from Lemma 5 or 6 (depending on the class of
preferred repairs considered) If this condition is satisfied for some i ∈ {1, . . . , n},
then true is not the preferred consistent answer to �. On the other hand, true is
the preferred consistent answer if the test fails for every i ∈ {1, . . . , n}. Finally, we
remark that the test can be performed in time polynomial in the size of the instance
I (the size of the query is assumed to be a constant) ��
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8 Related work

We limit our discussion to the work on using priorities to maintain consistency and
facilitate resolution of conflicts.

The first article to notice the importance of priorities in information systems
is [16]. There, the problem of conflicting updates in (propositional) databases is
solved in a manner similar to CRep. The considered priorities are transitive, which
is more restrictive than acyclicity and does not bring any computational benefits
in our framework: our reductions can be modified to use only transitive priorities.
Brewka [9] is another example of CRep-like prioritized conflict resolution of first-
order theories. The basic framework is defined for priorities which are weak orders.
A partial order is handled by considering every extension to weak order. This
approach also assumes transitivity of the priority.

In the context of logic programs, priorities among rules can be used to handle
inconsistent logic programs (where rules imply contradictory facts). More important
rules are satisfied, possibly at the cost of violating less important ones. In a manner
analogous to Proposition 3, [30] lifts a total order on rules to a preference on (ex-
tended) answers sets. When computing answers only maximally preferred answers
sets are considered.

In [22], Grosof presents a simpler approach to handling of inconsistent logic
programs with user priorities. Conflicting facts are removed from the model unless
the priority specifies how to resolve the conflict. Because only programs without dis-
junction are considered, this approach always returns exactly one model of the input
program. Constructing preferred repairs in a corresponding fashion (by removing all
conflicts unless the priority indicates a resolution) would similarly return exactly one
database instance (fulfillment of P1 and P4). However, if the priority is not total, the
returned instance is not a repair and therefore P5 is not satisfied. Such an approach
leads to a loss of (disjunctive) information and does not satisfy P2 and P3.

In [10], Caroprese et al. propose the framework of conditioned active integrity
constraints, which allows the user to specify the way some of the conflicts created
with a constraint can be resolved. This framework satisfies properties P1 and P2
but not P3 and P4. The authors also describe how to translate conditioned active
integrity constraints into a prioritized logic program [27], whose preferred models
correspond to maximally preferred repairs.

In [26], Motro et al. use ranking functions on facts to resolve conflicts by taking
only the fact with highest rank and removing others. This approach constructs a
unique repair under the assumption that no two different facts are of equal rank
(satisfaction of P4). If this assumption is not satisfied and the facts contain numeric
values, a new value, called the fusion, can be calculated from the conflicting facts
(then, however, the constructed instance is not necessarily a repair in the sense of
Definition 3 which means a possible loss of information).

In [21], Greco et al. study a different approach based on ranking is studied.
The authors consider polynomial functions that are used to rank repairs. When
computing preferred consistent query answers, only repairs with the highest rank are
considered. The properties P2 and P5 are trivially satisfied, but because this form of
preference information does not have natural notions of extensions and maximality,
it is hard to discuss postulates P3 and P4. Also, the preference among repairs in this
method is not based on the way in which the conflicts are resolved.
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In [20], Greco and Lenbo study an approach where the user has a certain degree of
control over the way the conflicts are resolved. Using repair constraints the user can
restrict considered repairs to those where facts from one relation have been removed
only if similar facts have been removed from some other relation. This approach
satisfies P3 but not P1. A method of weakening the repair constraints is proposed to
get P1, however this comes at the price of losing P3.

In [3], Andritsos et al. extend the framework of consistent query answers with
techniques of probabilistic databases. Essentially, only one key dependency per
relation is considered and user preference is expressed by assigning a probability
value to each of mutually conflicting facts. The probability values must sum to 1
over every clique in the conflict graphs. This framework generalizes the standard
framework of consistent query answers: the repairs correspond to possible worlds
and have an associated probability. We also note that no repairs are removed from
consideration (unless the probability of the world is 0). The query is evaluated over
all repairs and the probability assigned to an answer is the sum of probabilities
of worlds in which the answer is present. Although the considered databases are
repairs, the use of the associated probability values makes it difficult to compare this
framework with ours.

In [19], Gatterbauer and Suciu study the problem of conflict resolution in the
setting of community databases, where a group of users, each having their own
database over the same schema, consolidate their knowledge of facts using mappings.
This is essentially a simplified peer-to-peer data exchange setting [18]: the schema
consists of one relation with a key dependency and mappings permit to import facts
not present in the database of one user from the databases of other users. Facts
imported from different users may be conflicting and the authors propose to use a
total trust ordering on the mappings to resolve the conflicts. If the mapping network
is acyclic, then there exists a unique solution (for every user), and in fact, this solution
can be obtained using for instance Algorithm 4 with a specially precomputed, total
priority and an instance containing the union of all (accessible) facts. The main
challenge addressed by the paper is the setting where the mapping network is cyclic,
which may yield several solutions. Furthermore the users are allowed to specify
negative facts i.e., facts that are not believed to be true. These two features render
the setting incomparable with our approach: cyclic mappings may possibly lead to a
cyclic priority relation and conflicts between negative and positive facts cannot be
captured with denial constraints.

In [25], Martinez et al. present an interesting framework of inconsistency manage-
ment policies (IMPs) incorporating several complementary approaches to handling
inconsistencies in relational databases. An IMP permits to resolve a group of
applicable conflicts using general actions: deleting all but one tuple from a culprit,
a set of tuples forming a connected component in the conflict graph, or fusing their
values with an aggregate functions. Additionally, user priorities can be incorporated
into IMPs allowing to chose the appropriate actions depending on the source of the
tuples, their values etc. IMPs need not, however, specify the resolution of all conflicts
and the result of their application is a database that might continue to be inconsistent
but on a smaller scale. This framework is much different form the framework of
repairs: because the resolution is focused on culprits and not individual conflicts, the
produced instances, even if consistent, need not be repairs of the original database
instance. On the other hand, the mechanisms allowing to express user priorities are
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Fig. 9 Summary of complexity
results

powerful enough to capture, in specific settings, the Pareto-optimal semantics of
priorities.

9 Conclusions and future work

In this paper we have proposed a general framework of preferred repairs and
preferred consistent query answers. We have also proposed a set of desirable
properties of a family of preferred repairs. We have presented three families of
preferred repairs: PRep, GRep, and CRep based on different notions of optimality
of compliance with the priority. For every repair family we have presented a sound
and complete database repairing algorithm. Figure 9 summarizes the computational
complexity results; its first row is taken from [13].

We envision several directions for further work. We plan to investigate other
interesting ways of selecting preferred repairs with priorities. Also, extending our
approach to cyclic priorities is an intriguing and challenging issue. Including priorities
in similar frameworks of preferences [20] leads to losing monotonicity i.e., the
property P5 of the resulting family of preferred repairs. A modified, conditional,
version of monotonicity may be necessary to capture non-trivial families of repairs.

Along the lines of [5], the computational complexity results could be further
studied, by assuming the conformance of functional dependencies with BCNF.
Finally, the class of constraints can be extended to universal constraints [28]. This
class of constraints allows to express conflicts caused not only by the presence of
some facts but also by simultaneous absence of other facts. Conflict hypergraphs can
be generalized to extended conflict hypergraphs which include negative facts.
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