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Abstract. The handling of user preferences is becoming an increasingly
important issue in present-day information systems. Among others, pref-
erences are used for information filtering and extraction to reduce the
volume of data presented to the user. They are also used to keep track
of user profiles and formulate policies to improve and automate decision
making. We propose a logical framework for formulating preferences and
its embedding into relational query languages. The framework is sim-
ple, and entirely neutral with respect to the properties of preferences. It
makes it possible to formulate different kinds of preferences and to use
preferences in querying databases. We demonstrate the usefulness of the
framework through numerous examples.

1 Introduction

The handling of user preferences is becoming an increasingly important issue in
present-day information systems. Among others, preferences are used for infor-
mation filtering and extraction to reduce the volume of data presented to the
user. They are also used to keep track of user profiles and formulate policies to
improve and automate decision making.

The research literature on preferences is extensive. It encompasses prefer-
ence logics [23,19,13], preference reasoning [24,22,4], prioritized nonmonotonic
reasoning and logic programming [5,6,21] and decision theory [7,8] (the list is
by no means exhaustive). However, only a few papers [18,3,11,2,14,17] address
the issue of user preferences in the context of database queries. Two different
approaches are pursued: qualitative and quantitative. In the qualitative approach
[18,3,11,17], the preferences between tuples in the answer to a query are specified
directly, typically using binary preference relations.

Ezample 1. We introduce here one of the examples used throughout the paper.
Consider the relation Book(ISBN,Vendor, Price) and the following preference
relation >; between Book tuples:

if two tuples have the same ISBN and different Price, prefer the one with
the lower Price.
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Consider the following instance r1 of Book

ISBN Vendor Price
0679726691 |BooksForLess|$14.75
0679726691 |LowestPrices [$13.50
0679726691 |QualityBooks|$18.80
0062059041 |BooksForLess|$7.30
0374164770|LowestPrices |$21.88

Then clearly the second tuple is preferred to the first one which in turn is
preferred to the third one. There is no preference defined between any of those
three tuples and the remaining tuples.

In the quantitative approach [2,14], preferences are specified indirectly using
scoring functions that associate a numeric score with every tuple of the query
answer. Then a tuple ¢; is preferred to a tuple #, iff the score of #; is higher
than the score of 3. The qualitative approach is strictly more general than the
quantitative one, since one can define preference relations in terms of scoring
functions (if the latter are explicitly given), while not every intuitively plausible
preference relation can be captured by scoring functions.

Ezxample 2. There is no scoring function that captures the preference relation
described in Example 1. Since there is no preference defined between any of the
first three tuples and the fourth one, the score of the fourth tuple should be
equal to all of the scores of the first three tuples. But this implies that the scores
of the first three tuples are the same, which is not possible since the second tuple
is preferred to the first one which in turn is preferred to the third one.

This lack of expressiveness of the quantitative approach is well known in utility
theory [7,8].

In the present paper, we contribute to the qualitative approach by defining a
logical framework for formulating preferences and its embedding into relational
query languages.

We believe that combining preferences with queries is very natural and use-
ful. The applications in which user preferences are prominent will benefit from
applying the modern database technology. For example, in decision-making ap-
plications databases may be used to store the space of possible configurations.
Also, the use of a full-fledged query language makes it possible to formulate
complex decision problems, a feature missing from most previous, non-database,
approaches to preferences. For example, the formulation of the problem may
now involve quantifiers, grouping, or aggregation. At the same time by explicitly
addressing the technical issues involved in querying with preferences present-day
DBMS may expand their scope.

The framework presented in this paper consists of two parts: a formal first-
order logic notation for specifying preferences and an embedding of preferences
into relational query languages. In this way both abstract properties of prefer-
ences (like asymmetry or transitivity) and evaluation of preference queries can
be studied to a large degree separately.



Preferences are defined using binary preference relations between tuples. Pref-
erence relations are specified using first-order formulas. We focus mostly on in-
trinsic preference formulas. Such formulas can refer only to built-in predicates.
In that way we capture preferences that are based only on the values occuring
in tuples, not on other properties like membership of tuples in database rela-
tions. We show how the latter kind of preferences, called eztrinsic, can also be
simulated in our framework in some cases.

We propose a new relational algebra operator called winnow that selects from
its argument relation the most preferred tuples according to the given preference
relation. Although the winnow operator can be expressed using other operators
of relational algebra, by considering it on its own we can on one hand focus on the
abstract properties of preference relations (e.g., transitivity) and on the other,
study special evaluation and optimization techniques for the winnow operator
itself. The winnow operator can also be expressed in SQL.

We want to capture many different varieties of preference and related no-
tions: unconditional vs. conditional preferences, nested and hierarchical prefer-
ences, groupwise preferences, indifference, iterated preferences and ranking, and
integrity constraints and vetoes.

In Section 2, we define the basic concepts of preference relation, preference
formula, and the winnow operator. In Section 3, we study the basic properties
of the above concepts. In Section 4, we explore the composition of preferences.
In Section 5, we show how the winnow operator together with other operators of
relational algebra makes it possible to express integrity constraints and extrinsic
preferences. In Section 6, we show how iterating the winnow operator provides
a ranking of tuples and introduce a weak version of the winnow operator that
is helpful for non-asymmetric preference relations. We discuss related work in
Section 7 and conclude with a brief discussion of further work in Section 8.

2 Basic notions

We are working in the context of the relational model of data. We assume two
infinite domains: D (uninterpreted constants) and N (numbers). We do not
distinguish between different numeric domains, since it is not necessary for the
present paper. We assume that database instances are finite (this is important).
Additionally, we have the standard built-in predicates. In the paper, we will
move freely between relational algebra and SQL.

2.1 Basic definitions
Preference formulas are used to define binary preference relations.

Definition 1. Given U = (Uy,...,Uy) such that U;, 1 <1i < k, is either D or
N, a relation = is a preference relation over U if it is a subset of (Uy X -+- X
Ug) x (Uy x -+ x Ug).



Intuitively, > will be a binary relation between pairs of tuples from the same
(database) relation. We say that a tuple #; dominates a tuple tg in = if t; = t5.
Typical properties of the relation > include:

— drreflexivity: Vae.x  x,
— asymmetry: Vo, y.x =y = y ¥ x,
— transitivity: Vx,y, z.(x = y Ay = 2) = x = 2.

The relation > is a strict partial order if it is irreflexive, asymmetric and
transitive. At this point, we do not assume any properties of >, although in
most applications it will be at least a strict partial order.

Definition 2. A preference formula (pf) C(#1,t2) is a first-order formula defin-
ing a preference relation = in the standard sense, namely

2?1 - 2?2 iff C(El,ﬁ_g).

An intrinsic preference formula (ipf) is a preference formula that uses only built-
in predicates.

Ipfs can refer to equality (=) and inequality (#) when comparing values that
are uninterpreted constants, and to the standard set of built-in arithmetic com-
parison operators when referring to numeric values (there no function symbols).
We will call an ipf that references only arithmetic comparisons (=, #, <, >, <, >)
arithmetical. Without loss of generality, we will assume that ipfs are in DNF
(Disjunctive Normal Form) and quantifier-free (the theories involving the above
predicates admit quantifier elimination).

In this paper, we mostly restrict ourselves to ipfs and preference relations
defined by such formulas. The main reason is that ipfs define fized, although
possibly, infinite relations. As a result, they are computationally easier and more
amenable to syntactic manipulation that general pfs. For instance, transitively
closing an ipf results in a finite formula (Theorem 4), which is typically not the
case for pfs. However, we formulate in full generality the results that hold for
arbitrary pfs.

We define now an algebraic operator that picks from a given relation the set
of the most preferred tuples, according to a given preference formula.

Definition 3. If R is a relation schema and C a preference formula defining
a preference relation = over R, then the winnow operator is written as wco(R),
and for every instance r of R:

we(r)={ter~3# cr. t' -t}

A preference query is a relational algebra query containing at least one oc-
currence of the winnow operator.



2.2 Examples

The first example illustrates how preference queries are applied to information
extraction: here obtaining the best price of a given book.

Ezample 3. Consider the relation Book(ISBN,Vendor, Price) from Example 1.
The preference relation =7 from this example can be defined using the formula
Cli

(i,v,p) =1 (", pY=i=i Ap<p.
The answer to the preference query wc, (Book) provides for every book the
information about the vendors offering the lowest price for that book. For the
given instance r; of Book, applying the winnow operator w¢, returns the tuples

ISBN Vendor Price
0679726691 |LowestPrices [$13.50
0062059041 |BooksForLess|$7.30
0374164770|LowestPrices |$21.88

Note that in the above example, the preferences are applied groupwise: sep-
arately for each book. Note also that due to the properties of <, the preference
relation > is irreflexive, asymmetric and transitive.

The second example illustrates how preference queries are used in automated
decision making to obtain the most desirable solution to a (very simple) config-
uration problem.

Ezample 4. Consider two relations Wine(Name, Type) and Dish(Name, Type)
and a view Meal that contains possible meal configurations

CREATE VIEW Meal(Dish,DishType,Wine,WineType) AS
SELECT * FROM Wine, Dish;

Now the preference for white wine in the presence of fish and for red wine in the
presence of meat can be expressed as the following preference formula Cs over
Meal:

(d,dt, w,wt) o (d',dt ,w',wt') = (d = d A dt ="fish’ A wt ="white’
Adt' ="fish’ A wt’ = "red’)
V(d =d' Adt ="meat’ A wt ="red’
Adt' ='meat’ A wt’ ='white’)

Notice that this will force any white wine to be preferred over any red wine for
fish, and just the opposite for meat. For other kinds of dishes, no preference is
indicated. Consider now the preference query we, (Meal). It will pick the most
preferred meals, according to the above-stated preferences. Notice that in the
absence of any white wine, red wine (or some other kind of wine, e.g., rosé) can
be selected for fish.

The above preferences are conditional, since they depend on the type of the
dish being considered. Note that the relation =5 in this example is irreflexive



and asymmetric. Transitivity is obtained trivially because the chains of >9 are
of length at most 2. Note also that the preference relation is defined without
referring to any domain order.

The unconditional preference for red wine for any kind of meal can also be
defined as a first-order formula Cs:

(d,dt,w,wt) =3 (d',dt',w' wt') =d=d Nwt ="red’ ANwt’ # 'red’.

3 Properties of preference queries

3.1 Preference relations

Since pfs can be essentially arbitrary formulas, no properties of preference rela-
tions can be assumed. So our framework is entirely neutral in this respect.

In the examples above, the preference relations were strict partial orders.
This is likely to be the case for most applications of preference queries. However,
there are cases where such relations fail to satisfy one of the properties of partial
orders. We will see in Section 5 when irreflexivity fails. For asymmetry: We may
have two tuples #; and ¢y such that ¢; = t5 and #5 = ¢; simply because we may
have one reason to prefer #; over t, and another reason to prefer ¢, over 7.
Similarly, transitivity is not always guaranteed [15,19,7,13]. For example, {; may
be preferred over 5 and #5 over 3, but the gap between #; and t3 with respect to
some heretofore ignored property may be so large as to prevent preferring #; over
t3. Or, transitivity may have to be abandoned to prevent cycles in preferences.

However, it is not difficult to check the properties of a preference relation
defined using an ipf.

Theorem 1. If a preference relation is defined using an arithmetical ipf, it can
be checked for irreflexivity, asymmetry and transitivity in PTIME.

Proof: We discuss asymmetry, the remaining properties can be handled in a
similar way. If £; = t is defined as D1 V...V D,, and t3 > t; as D} V...V D, .
we can write down the negation of asymmetry as (D1V...VD,,)A(D{V...VD]).
The satisfiability of this formula can be checked in PTIME using the methods

Theorem 2. If a preference relation over R defined using a pf C is a strict
partial order, then for every finite, nonempty instance r of R, we(r) is nonempty.

If the properties of strict partial orders are not satisfied, then Theorem 2
may fail to hold and the winnow operator may return an empty set, even though
the relation to which it is applied is nonempty. For instance, if ro = {to} and
to = to (violation of irreflexivity), then the winnow operator applied to ro returns
an empty set. Similarly, if two tuples are involved in a violation of asymmetry,
they may block each other from appearing in the result of the winnow operator.
Also, if the relation r is infinite, it may happen that we(r) = 0, for example if r



contains all natural numbers and the preference relation is the standard ordering
>.

We conclude this subsection by noting that there is a natural notion of in-
difference associated with our approach: two tuples #; and t, are indifferent
(t1 ~ t2) if neither is preferred to the other one, i.e., {1 ¥ t2 and ta ¥ 1.

Proposition 1. For every pf C, every relation r and every tuple t1,t2 € we(r),
we have t; =ty orty ~ ts.

It is a well-known result in decision theory [7,8] that in order for a preference
relation to be representable using scoring functions the corresponding indiffer-
ence relation (defined as above) has to be transitive. This is not the case for the
preference relation >~; defined in Example 1.

3.2 The winnow operator

The winnow operator wc(R) such that C = Dy V...V Dy is an ipf can be
expressed in relational algebra, and thus does not add any expressive power to
it. To see that notice that each D;, i = 1,...,k, is a formula over free variables
t; and t5. It can be viewed as a conjunction D; = ¢; A; Avy; where ¢; refers only
to the variables of #;, 1; to the variables of #,, and 7; to the variables of both
t1 and #5. The formula ¢; has an obvious translation to a selection condition ®;
over R, and the formula v; a similar translation to a selection condition ¥; over
o(R), where p is a renaming of R. The formula 7; can similarly be translated to
a join condition I'; over R and o(R). Then

k
we(R) = 0 (o(R) — 7o) (| (00, (R) > oy, (0(R)))))
i=1 ’

where o~ ! is the inverse of the renaming .

However, the use of the winnow operator makes possible a clean separation of
preference formulas from other aspects of the query. This has several advantages.
First, the properties of preference relations can be studied in an abstract way, as
demonstrated in this section and the next. Second, specialized query evaluation
methods for the winnow operator can be developed. Third, algebraic properties
of that operator can be formulated, in order to be used in query optimization.

To see the importance of the second point, note that a simple nested loops
strategy is sufficient for evaluating the winnow operator. This is not at all obvious
from considering the equivalent relational algebra expression. For restricted cases
of the winnow operator, e.g., skylines [3], even more efficient evaluation strategies
may be available. For the third point, we identify in Theorem 3 below a condition
under which the winnow operator and a relational algebra selection commute.
This is helpful for pushing selections past winnow operators in preference queries.

Theorem 3. If the formula V(Ci(t2) A Co(t1,12)) = Ci(t1) (where Cy is a
selection condition and Cq is a preference formula) is valid, then

e (WC‘2 (R)) = We, (JCI (R))



If the preference formula C5 in the above theorem is an arithmetical ipf and
the selection condition C; refers only to the arithmetic comparison predicates,
then checking the validity of the formula

V(Cl(fg) AN 02(2?1,2?2)) = 01(2?1)

can be done in PTIME.

Finally, we note that the winnow operator we (R) such that C' is an arbitrary
preference formula (not necessarily an ipf) is still first-order definable. However,
since the preference formula can now reference database relations, the relational
algebra formulation may be considerably more complicated.

4 Composition of preferences

In this section, we study several ways of composing preference relations. Since
in our approach such relations are defined using preference formulas, composing
them will amount to generating a formula defining the result of the composi-
tion. We will consider Boolean composition, transitive closure and prioritized
composition.

4.1 Boolean composition

Union, intersection and difference of preference relations are obviously captured
by the Boolean operations on the corresponding preference formulas. The fol-
lowing table summarizes the preservation of properties of relations by the ap-
propriate boolean composition operator.

Union|Intersection|Difference
Irreflexivity|Yes |Yes Yes
Asymmetry|No  |Yes Yes
Transitivity|No  |Yes No

4.2 Transitive closure

We have seen an example (Example 1) of a preference relation that is already
transitive. However, there are cases when we expect the preference relation to
be the transitive closure of another preference relation which is not transitive.

Ezxample 5. Consider the following relation:
r-y=x=aANy=bVaex=bAy=c

In this relation, a and ¢ are not related though there are contexts in which this
might be natural. (Assume I prefer to walk than to drive, and to drive than to
ride a bus. Thus, I also prefer to walk than to ride a bus.)



In our framework, we can specify the preference relation >=* to be the transi-
tive closure of another preference relation > defined using a first-order formula.
This is similar to transitive closure queries in relational databases. However,
there is an important difference. In databases, we are computing the transi-
tive closure of a finite relation, while here we are transitively closing an infinite
relation defined using a first-order formula.

Formally, assuming that the underlying preference relation is >, the prefer-
ence relation >* is now defined as

t1 =%ty iff 1 =" t5 for some n > 0,

where: B -
tq >—1 to =11 > to
El =ntl 7?2 = E|t73 7?1 - 1?3 /\{3 - {2.
Clearly, in general such an approach leads to infinite formulas. However, in
many important cases this does not happen.

Theorem 4. If a preference relation > is defined using an arithmetical ipf, the
transitive closure >=* of = is also defined using an arithmetical ipf and that
definition can be effectively obtained.

Proof: The computation of the transitive closure can in this case be formulated
as the evaluation of Datalog with order or gap-order (for integers) constraints.
Such an evaluation terminates [16,20] and its result represents the desired for-
mula. 0

An analogous result holds if instead of arithmetic comparisons we consider
equality constraints over an infinite domain [16].

Ezample 6. Continuing Example 5, we obtain the following preference relation
>=* by transitively closing >:

r="y=x=aANy=bVr=bAy=cVz=aAhy=c

Theorem 4 is not in conflict with the well-known non-first order definability of
transitive closure on finite structures. In the latter case it is shown that there is no
finite first-order formula expressing transitive closure for arbitrary (finite) binary
relations. In Theorem 4 the relation to be closed, although possibly infinite, is
fixed (since it is defined using the given ipf). In particular, given an encoding of
a fixed finite binary relation using an ipf, the transitive closure of this relation
is defined using another ipf.

The transitive closure of a irreflexive (resp. asymmetric) preference relation
may fail to be irreflexive (resp. asymmetric).

4.3 Preference hierarchies

It is often the case that preferences form hierarchies. For instance, I may have
a general preference for red wine but in specific cases, e.g., when eating fish,
this preference is overridden by the one for white wine. Also a preference for
less expensive books (Example 1) can be overridden by a preference for certain
vendors.



Definition 4. Consider two preference relations =1 and =5 defined over the
same schema U. The prioritized composition =1 ,=>1 > >3 of =1 and >3 is
defined as:

{1 1,2 {2 = fl 1 t_g \Y (t_g ¥1 {1 /\1?1 i) t_g)

Ezample 7. Continuing Example 1, instead of the preference relation >, defined
there we consider the relation > > >; where >q is defined by the following
formula Cjy:

(i,v,p) =o (i',v",p") =i =4’ ANv ="BooksForLess’ A v' = 'LowestPrices’.

Assume the relation >q1=>¢ > > is defined by a formula Cj; (this formula
is easily obtained from the formulas Cy and C by substitution). Then wc, , (1)
returns the following tuples

ISBN Vendor Price
0679726691 | BooksForLess|$14.75
0062059041 |BooksForLess|$7.30
0374164770 LowestPrices [$21.88

Note that now a more expensive copy of the first book is preferred, due to
the preference for 'BooksForLess’ over 'LowestPrices’. However, 'BooksForLess’
does not offer the last book, and that’s why the copy offered by 'LowestPrices’
is preferred.

Theorem 5. If =1 and =2 are defined using intrinsic preference formulas, so
s >=12. If =1 and =2 are both irreflexive or asymmetric, so is =1 2.

However, a relation defined as the prioritized composition of two transitive
preference relations does not have to be transitive.

Ezxample 8. Consider the following preference relations:
a>1bb>5c.
Both =7 and >4 are trivially transitive. However, »1 > > is not.
Theorem 6. Prioritized composition is associative:
(1 > =2)> =3=>1 >(=9 > =3).

Thanks to the associativity of >, the above construction can be generalized
to an arbitrary finite partial order between preference relations. Such an order
can be viewed as a graph in which the nodes consist of preference relations and
the edges represent relative priorities (there would be an edge (>1,>2) in the
situation described above). To encode this graph as a single preference relation,
one would construct first the definitions corresponding to individual paths from
roots to leaves, and then take a disjunction of all such definitions.

There may be other ways of combining preferences. For instance, preference
relations defined on individual database relations may induce other preferences



defined on the Cartesian product of the database relations. In general, any first-
order definable way of composing preference relations leads to first-order prefer-
ence formulas, which in turn can be used as parameters of the winnow operator.
The composition does not even have to be first-order definable, as long as it
produces a (first-order) preference formula.

5 More expressive preferences

We show here that the winnow operator when used together with other op-
erators of the relational algebra can express more complex decision problems
involving preferences. We consider the following: integrity constraints, extrinsic
preferences, and aggregation.

5.1 Integrity constraints

There are cases when we wish to impose a constraint on the result of the winnow
operator. In Example 1, we may say that we are interested only in the books
under $20. In Example 4, we may restrict our attention only to the meat or fish
dishes (note that currently the dishes that are not meat or fish do not have a
preferred kind of wine). In the same example, we may ask for a specific number
of meal recommendations.

In general, we need to distinguish between local and global constraints. A
local constraint imposes a condition on the components of a single tuple, for
instance Book.Price<$20. A global constraint imposes a condition on a set of
tuples. The first two examples above are local constraints; the third is global. To
satisfy a global constraint on the result of the winnow operator, one would have
to construct a maximal subset of this answer that satisfies the constraint. Since
in general there may be more than one such subset, the required construction
cannot be described using a single relational algebra query. On the other hand,
local constraints are easily handled, since they can be expressed using selection.

FEzample 9. Consider Example 1. The preference formula C; captures the pref-
erence for getting the same book cheaper. If we want to limit ourselves to books
that cost less than $20, we can use the following relational algebra query:

O price<s20(wo, (Book)).

According to Theorem 3, this query is equivalent to the query

we, (O price<s2o(Book))

which may be easier to evaluate, since the selection is applied directly to a
database table. On the other hand, if we ask for books that cost at least $20, the
corresponding selection will not commute with the winnow operator. Intuitively,
such a selection can eliminate some of the best deals on books. So in general it
matters whether the integrity constraints are imposed before or after applying
the winnow operator.



A wveto expresses a prohibition on the presence of a specific set of values in
the elements of the answer to a preference query and thus can be viewed as a
local constraint. To veto a specific tuple w = (ay, ..., ay) in a relation S (which
can be defined by a preference query) of arity n, we write the selection:

O Ay a1V A, £a, (S)-

5.2 Intrinsic vs. extrinsic preferences

So far we have talked only about intrinsic preference formulas. Such formulas
establish the preference relation between two tuples purely on the basis of the
values occurring in those tuples. Fxtrinsic preference formulas may refer not
only to built-in predicates but also to other constructs, e.g., database relations.
In general, extrinsic preferences can use a variety of criteria: properties of the
relations from which the tuples were selected, properties of other relations, or
comparisons of aggregate values, and do not even have to be defined using first-
order formulas.

It is possible to express some extrinsic preferences using the winnow operator
together with other relational algebra operators using the following multi-step
strategy:

1. using a relational query, combine all the information relevant for the prefer-
ence in a single relation,

2. apply the appropriate winnow operator to this relation,

3. project out the extra columns introduced in the first step.

The following example demonstrates the above strategy, as well as the use of
aggregation for the formulation of preferences.

Ezample 10. Consider again the relation Book(ISBN,Vendor, Price). Suppose
for each part a preferred vendor (there may be more than one) is a vendor that
sells the mazimum total number of books. Clearly, this is an extrinsic preference
since it cannot be established solely by comparing pairs of tuples from this
relation. However, we can provide the required aggregate values and connect
them with individual parts through new, separate views:

CREATE VIEW BookNum(Vendor,Num) AS
SELECT B1.Vendor, COUNT(DISTINCT B1.ISBN)
FROM Book B1
GROUP BY B1.Vendor;

CREATE VIEW ExtBook(ISBN,Vendor,Num) AS
SELECT B1.ISBN, Bl.Vendor, BN.Num
FROM Book B1, BookNum BN
WHERE B1.Vendor=BN.Vendor;

Now the extrinsic preference is captured by the query

TISBN,Vendor (WCS (EItBOOk))



where the preference formula C5 is defined as follows:
(i,v,n) =5 (i',0',n')=i=iAn>n'

Ezxzample 11. To see another example of extrinsic preference, consider the situa-
tion in which we prefer any tuple from a relation R over any tuple from a relation
S. Notice that this is truly an extrinsic preference, since it is based on where the
tuples come from and not on their values. It can be handled in our approach by
tagging the tuples with the appropriate relation names (easily done in relational
algebra or SQL) and then defining the preference relation using the tags. If there
is a tuple which belongs both to R and S, then the above preference relation
will fail to be irreflexive. Note also that an approach similar to tagging was used
in Example 4.

6 Iterated preferences and ranking

A natural notion of ranking is implicit in our approach. A ranking is defined
using iterated preference.

Definition 5. Given a preference relation > defined by a pf C, the n-th iteration
of the winnow operator we in r is defined as:

we(r) = we(r) }
WZ'H(T) =wc(r — U1§z§n we (1))

For example, the query w%(r) computes the set of “second-best” tuples.

Ezxample 12. Continuing Example 1, the query w%l (r1) returns

ISBN Vendor Price
0679726691 |BooksForLess|$14.75

and the query wgl (r1) returns

ISBN Vendor Price
0679726691 |QualityBooks|$18.80

Therefore, by iterating the winnow operator one can rank the tuples in the given
relation instance.

Theorem 7. If a preference relation > defined by a first-order formula C over
R is a strict partial order, then for every finite instance r of R and every tuple
t € r, there exists an i, i > 1, such that t € wi(r).

If a preference relation is not a strict partial order, then Theorem 7 may fail
to hold. A number of tuples can block one another from appearing in the result
of any iteration of the winnow operator. However, even in this case there may
be a weaker form of ranking available.



Exzample 13. Consider Examples 1 and 7. If the preference formula C’ is defined
as Cy V C1, then the first two tuples of the instance r; block each other from
appearing in the result of wer (1), since according to Cy the first tuple is preferred
to the second but just the opposite is true according to C7. Intuitively, both those
tuples should be preferred to (and ranked higher) than the third tuple. But since
neither the first not the second tuple is a member of wer(r1), none of the first
three tuples can be ranked.

We define now a weaker form of the winnow operator that will return all the
tuples that are dominated only by the tuples that they dominate themselves.
We relax the asymmetry requirement but preserve transitivity.

Definition 6. If R is a relation schema and C' a pf defining a transitive pref-
erence relation = over R, then the weak winnow operator is written as ¥ c(R)
and for every instance r of R

Yo(r)y={terVt ert =t Vit #t}

Ezample 14. Considering Example 13, we see that the query ¥/ (r1) returns
now

ISBN Vendor Price
0679726691 |BooksForLess|$14.75
0679726691 |LowestPrices [$13.50
0062059041 |BooksForLess|$7.30
0374164770|LowestPrices [$21.88

Below we formulate a few properties of the weak winnow operator.

Theorem 8. If R is a relation schema and C' a preference formula defining a
transitive preference relation = over R, then for every instance v of R, (1) is
uniquely defined and we(r) C Pe(r).

Theorem 9. For every finite, nonempty relation instance r of R, and a tran-
sitive preference relation = over R defined by a preference formula C, Yo (r) is
nonempty.

One can define the iteration of the weak winnow operator similarly to that
of the winnow operator (Definition 5).

Theorem 10. If a preference relation = over R defined by a first-order formula
C' is transitive, then for every finite instance v of R and for every tuple t € r,
there exists an i, i > 1, such that t € ¥ (r).

7 Related work

7.1 Preference queries

[18] originated the study of preference queries. It proposed an extension of the
relational calculus in which preferences for tuples satisfying given logical con-
ditions can be expressed. For instance, one could say: Among the tuples of R



satisfying Q, I prefer those satisfying Pi; among the latter I prefer those satisfy-
ing P5. Such a specification was to mean the following: Pick the tuples satisfying
Q N Py A\ Py if the result is empty, pick the tuples satisfying Q A Py A =Py if the
result is empty, pick the remaining tuples of R satisfying ). This can be simu-
lated in our framework as the relational algebra expression we+(og(R)) where
C* is an ipf defined in the following way:

1. obtain the formula C' defining a preference relation >
15_1 - t_Q = Pl(gl) A Pg(t_l) A Pl({g) A _|P2({2) V Pl(fl) A _|P2(t_1) A _|P1(Z2)7

2. transform C into DNF to obtain an ipf C’, and
3. close the result transitively to obtain an ipf C* defining a transitive prefer-
ence relation >* (as described in Section 4).

Other kinds of logical conditions from [18] can be similarly expressed in our
framework. Maximum /minimum value preferences (as in Example 1) are handled
in [18] through the explicit use of aggregate functions. The use of such functions
is implicit in the definition of our winnow operator.

Unfortunately, [18] does not contain a formal definition of the proposed lan-
guage, so a complete comparison with our approach is not possible. It should be
noted, however, that the framework of [18] seems unable to capture very simple
conditional preferences like the ones in Examples 4 and 5. Also, it can only han-
dle strict partial orders of bounded depth (except in the case where aggregate
functions can be used, as in Example 1). Hierarchical or iterated preferences are
not considered.

[11] was one of the sources of inspiration for the present paper. It defines
Preference Datalog: a combination of Datalog and clausally-defined preference
relations. Preference Datalog captures, among others, the class of preference
queries discussed in [18]. The declarative semantics of Preference Datalog is
based on the notion of preferential consequence, introduced earlier by the authors
in [10]. This semantics requires preferences to be reflexive and transitive. Also,
the operational semantics of Preference Datalog uses specialized versions of the
standard logic program evaluation methods: bottom-up [11] or top-down [10].
In the context of database queries, the approach proposed in the present paper
achieves similar goals to that of [10] and [11], remaining, however, entirely within
the relational data model and classical first-order logic. Finally, [10,11] do not
address some of the issues we deal with in the present paper like transitive closure
of preferences, prioritized composition or iterated preferences (a similar concept
to the last one is presented under the name of “relaxation”).

[17] discusses Preference SQL, a query language in which preferences between
atomic conditions can be stated. For example, I can say that I prefer the book
“ABC” with price under $20 over the same book with price over $20. However,
saying simply that I prefer a lower price on a book (as we do in Example 1)
does not seems possible in Preference SQL. The description of Preference SQL
in [17] is so brief that a detailed comparison with our proposal is not possible at
this point. [3] introduces the skyline operator and describes several evaluation



methods for this operator. The skyline is a special case of our winnow operator.
It is restricted to use an arithmetical ipf which is a conjunction of pairwise
comparisons of corresponding tuple components. So in particular Example 4
does not fit in that framework.

[2] uses quantitative preferences in queries and focuses on the issues aris-
ing in combining such preferences. [14] explores in this context the problems of
efficient query processing. Since the preferences in this approach are based on
comparing the scores of individual tuples under given scoring functions, they
have to be intrinsic. However, the simulation of extrinsic preferences using in-
trinsic ones (Section 5) is not readily available in this approach because the
scoring functions are not integrated with the query language. So, for instance,
Example 10 cannot be handled. In fact, even for preference relations that satisfy
the property of transitivity of the corresponding indifference relation, it is not
clear whether the scoring function capturing the preference relation can be de-
fined intrinsically (i.e., the function value be determined solely by the the values
of the tuple components). The general construction of a scoring function on the
basis of a preference relation [7,8] does not provide such a definition. So the ex-
act expressive power of the quantitative approach to preference queries remains
unclear.

7.2 Preferences in logic and artificial intelligence

The papers on preference logics [23,19,13] address the issue of capturing the
common-sense meaning of preference through appropriate axiomatizations. Pref-
erences are defined on formulas, not tuples, and with the exception of [19] limited
to the propositional case. The application of the results obtained in this area to
database queries is unclear.

The papers on preference reasoning [24,22,4] attempt to develop practical
mechanisms for making inferences about preferences and solving decision or con-
figuration problems similar to the one described in Example 4. A central notion
there is that of ceteris paribus preference: preferring one outcome to another, all
else being equal. Typically, the problems addressed in this work are propositional
(or finite-domain). Such problems can be encoded in the relational data model
and the inferences obtained by evaluating preference queries. A detailed study of
such an approach remains still to be done. We note that the use of a full-fledged
query language in this context makes it possible to formulate considerably more
complex decision and configuration problems than before.

The work on prioritized logic programming and nonmonotonic reasoning
[5,6,21] has potential applications to databases. However, like [11] it relies on
specialized evaluation mechanisms.

8 Conclusions and future work

We have presented a framework for specifying preferences using logical formulas
and its embedding into relational algebra. As the result, preference queries and



complex decision problems involving preferences can be formulated in a simple
and clean way.

Clearly, our framework is limited to applications that can be entirely modeled
within the relational model of data. Here are several examples that do not quite
fit in this paradigm:

— preferences defined between sets of elements;

— heterogenous preferences between tuples of different arity or type (how to
say I prefer a meal without a wine to a meal with one in Example 47);

— preferences requiring nondeterministic choice. We believe this is properly
handled using a nondeterministic choice [9] or witness [1] operator.

In addition to addressing the above limitations, future work directions in-
clude:

evaluation and optimization of preference queries;
— merging and propagation of preference relations;
extrinsic preferences;

defeasible and default preferences;

— preference elicitation.
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