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Abstract We summarize here recent research on obtaining consistent informa-
tion from inconsistent databases. We describe the underlying semantic
model and a number of approaches to computing consistent query an-
swers. We conclude by outlining further research directions in this area.
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Background

We are concerned here with relational databases and knowledgebases.
A database consists thus of facts and integrity constraints. A knowledge-
base can additionally contain rules (not necessarily Horn).

A knowledgebase is inconsistent if it implies, in the classical sense,
every formula, leading to the trivialization of reasoning. An inconsis-
tent knowledgebase has no model and thus can hardly be viewed as a
representation of the real world. However, inconsistency is a common
phenomenon in knowledgebases and databases. This apparent paradox
can be explained by observing that the stored information is not neces-
sarily correct and complete.

Inconsistency is often viewed as a defect, to be avoided at all costs.
Knowledgebases are assumed to be consistent, with their consistency
preserved by updates. Moreover, different forms of nonmonotonic rea-
soning or truth maintenance make sure that inconsistencies do not occur
during reasoning.
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Example 1 The Closed World Assumption (CWA) [49] is a form of
nonmonotonic reasoning that infers ¬L for every atom L not implied by
the knowledgebase. CWA preserves the consistency of the knowledgebase
if the latter contains only atomic facts and Horn rules. In the presence
of disjunction, however, it is well known that CWA can lead to incon-
sistencies. Consider the knowledgebase p ∨ q. It does not imply p or q
separately, and therefore CWA derives ¬p and ¬q. But {p∨q,¬p,¬q} is
an inconsistent set of formulas. Consequently, weaker versions of CWA
were studied [45].

In relational databases, inconsistencies appear as violations of in-
tegrity constraints by the current database instance (a set of facts).
This can be viewed as an instance of the more general logical notion of
inconsistency, under the Closed World Assumption. Database systems
typically prevent such violations by cancelling the offending updates to
the database. Another possibility is to revise the database by resolving
inconsistencies.

Example 2 Assume a database contains a fact p and an integrity con-
straint ¬p ∨ ¬q. Inserting q leads to an integrity violation. A typical
DBMS would reject the insertion. Another option is to replace p by p∨q
but that requires moving to a richer representational framework in the
form of disjunctive databases [53], which is beyond the capabilities of
real DBMS today.

However, present-day database applications have to consider a variety
of scenarios in which data is not necessarily consistent. Integrity viola-
tions may be due to the presence of multiple autonomous data sources.
The sources may separately satisfy the constraints, but when they are
integrated the constraints may not hold. Moreover, because the sources
are autonomous, the violations cannot be simply fixed by removing the
data involved in the violations. Integrity constraints may also fail to be
enforced for efficiency (e.g., denormalization) or other reasons. Finally,
it may often be the case that the consistency of a database is only tem-
porarily violated and further updates or transactions are expected to
restore it. In all such cases, traditional approaches to deal with integrity
violations fail, and a new approach is required.

Consistent query answers

Bry’s approach

Bry [13]was the first to note that the standard notion of query an-
swer needs to be modified in the context of inconsistent databases1. He
proposed the notion of a consistent query answer – a query answer that
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is unaffected by integrity violations present in the database. The set
of such answers forms a conservative estimate of the reliable informa-
tion content of a database. Bry’s proposal does not require that the
database be modified to remove the inconsistencies and thus is suitable
to the scenarios, outlined above, in which the removal of inconsistencies
is impossible or undesirable.

Bry’s definition of consistent query answer is based on provability in
minimal logic and expresses the intuition that the part of the database
instance involved in an integrity violation should not be involved in the
derivation of consistent query answers. This is not quite satisfactory, as
one would like to have a semantic, model-theoretic notion of consistent
query answer that parallels that of the standard notion of query answer
in relational databases. Moreover, the data involved in an integrity
violation is not entirely useless and some reliable partial information
can be extracted from it.

Example 3 Assume that an instance of the relation Student is as fol-
lows:

Name Address

Smith Los Angeles
Smith New York

Assume also that functional dependency Name → Address is given.
In Bry’s approach, no positive information can be derived from this in-
consistent database, although such information is clearly present, for
example, we know that there is a student named Smith, and that Smith
lives in Los Angeles or New York.

The crucial observation to address the shortcomings of Bry’s approach
is as follows: even in the above simple example there is more than one
minimal way to restore the consistency of the database. Therefore, all
such ways should be considered. This brings us to the realm of belief
revision [29] where minimal change has been extensively studied. Choos-
ing model-theoretic revision operators can also yield the desired semantic
definition of consistent query answers. These insights form the basis of
the approach of Arenas, Bertossi and Chomicki [2], discussed below. The
paper [2] provided a framework on which most of the subsequent work
in this area is based. We discuss it in detail next.

Repairs and query answers

We assume a fixed relational database schema and a set of integrity
constraints IC over this schema. We say that a database instance r is
consistent if r ² IC in the standard model-theoretic sense (i.e., IC is
true in r), and inconsistent otherwise.
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Definition 4 Given a database instance r, we denote by Σ(r) the set
of formulas {P (ā)|r ² P (ā)}, where the P is a relation name and ā a
ground tuple. Σ(r) is a set of facts corresponding to the instance r. The
distance ∆(r, r′) between instances r and r′ is the symmetric difference:

∆(r, r′) = (Σ(r)− Σ(r′)) ∪ (Σ(r′)− Σ(r)).

For the instances r, r′, r′′, r′ ≤r r′′ if ∆(r, r′) ⊆ ∆(r, r′′), i.e., if the
distance between r and r′ is less than or equal to the distance between r

and r′′.

Definition 5 Given database instances r and r′, we say that r′ is a
repair of r if r′ is consistent (r′ ² IC ) and r′ is ≤r-minimal in the class
of consistent database instances.

Example 6 Suppose the results of an election in which two candidates,
Brown and Green are running, are kept in two relations: BrownVotes
and GreenVotes.

BrownVotes
County Date Tally

A 11/07 541
A 11/11 560
B 11/07 302

GreenVotes
County Date Tally

A 11/07 653
A 11/11 780
B 11/07 101

Vote tallies in every county should be unique: thus the functional de-
pendency County → Tally should hold in both relations. On the other
hand, we may want to keep multiple tallies corresponding to different
counts (and recounts). Clearly, both relations will have two repairs, de-
pending on whether the first or the second count for county A is picked.
So overall there are 4 repairs of the entire database.

To define consistent answers to queries defined in some query lan-
guage, we assume that this language has already a well-defined notion of
query answer in a database instance. For example, a k-tuple (a1, . . . , ak)
is an answer to a relational calculus query φ(x1, . . . , xk) in an instance
r if r |= φ(a1, . . . , ak). SQL2 has also a well-defined notion of when a
tuple is a query answer. We define by ansQ(r) the set of all answers to
a query Q in an instance r.

Definition 7 [2] Assume the set of all answers to a query Q is a k-ary
relation. A k-tuple t̄ is a consistent query answer to Q in an instance r
(in symbols: t̄ ∈ cnsQ(r)) if for every repair r

′ of r, t̄ ∈ ansQ(r
′).
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Example 8 Returning to Example 6, we can see that the only consistent
answer to the query:

SELECT *

FROM BrownVotes

is the tuple

B 11/07 302

since the remaining two tuples are in conflict and will not appear in
every repair.
Similarly, the only consistent answer to the query

SELECT County

FROM BrownVotes

WHERE Tally > 400

is A. Note also that the latter answer is not obtained if the conflicting
tuples are blocked in the derivation of consistent answers (as in Bry’s
approach).

From the belief revision point of view, the problem addressed here is
that of revising the database with the integrity constraints. The def-
inition of repair (Definition 5) follows Winslett’s semantics [57]. The
notion of consistent query answer (Definition 7) corresponds to the no-
tion of counterfactual inference in that semantics. We note, however,
that research in belief revision has addressed mostly revising arbitrary
propositional theories with propositional formulas and focused on the se-
mantics of revised theories. On the other hand, the relational database
context requires a first-order approach but assumes a restricted form of
the revised theory which is just a set of facts. The latter restriction
makes possible an efficient derivation of consistent query answers even
for large databases.

Note. A literal is of the form P (x1, . . . , xk) (a positive literal) or
¬P (x1, . . . , xk) (a negative literal), where P is a database relation. We
will denote by Li literals and by φ a quantifier-free formula containing
only built-in predicates. We consider the following classes of integrity
constraints:

universal constraints: ∀ (L1 ∨ · · · ∨ Ln ∨ φ) (binary if n = 2);

denial constraints: universal constraints with only negative liter-
als;

inclusion dependencies: ∀ (L1 ∨ ∃ L2), where L1 is a negative and
L2 a positive literal.
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Functional dependencies (FDs) are a special case of denial constraints.

Example 9 Consider a relation Student with two attributes Name and
Address. The (key) functional dependency Name → Address can be
written as the following denial constraint:

(∀x)(∀y)(∀z)(¬Student(x, y) ∨ ¬Student(x, z) ∨ y = z).

Computing consistent query answers

We discuss here a number of different mechanisms for computing con-
sistent query answers. Note that Definition 7 suggests that consistent
query answers can be computed by evaluating the given query in every
repair of the given database. However, this approach is not practical
because there may be exponentially many repairs even in very simple
cases.

Example 10 Consider the functional dependency A → B over R and
the following family of instances of R, each of which has 2n tuples (rep-
resented as columns):

A a1 a1 a2 a2 · · · an an

B b0 b1 b0 b1 · · · b0 b1

Each instance has 2n repairs.

Query rewriting

Query rewriting is based on the following idea: Given a query Q and
a set of integrity constraints, construct a query Q′ such that for every
database instance r the set of answers to Q′ in r is equal to the set of
consistent answers to Q in r.

Query rewriting was first proposed in [2] in the context of the domain
relational calculus. The approach presented there was based on concepts
from semantic query optimization [15], in particular the notion of a
residue.

Residues are associated with literals of the form P (x̄) or ¬P (x̄) (where
x̄ is a vector of different variables of appropriate arity). For each literal
P (x̄) and each constraint containing ¬P (x̄) in its clausal form (possibly
after variable renaming), a local residue is obtained by removing ¬P (x̄)
and the quantifiers for x̄ from the (renamed) constraint. For each literal
¬P (x̄) and each constraint containing P (x̄) in its clausal form (possibly
after variable renaming), a local residue is obtained by removing P (x̄)
and the quantifiers for x̄ from the (renamed) constraint. Finally, for
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each literal the global residue is computed as the conjunction of all local
residues (possibly after normalizing variables).

Example 11 The functional dependency

(∀x)(∀y)(∀z)(¬Student(x, y) ∨ ¬Student(x, z) ∨ y = z)

produces for Student(x, y) the following local and global residue

(∀z)(¬Student(x, z) ∨ y = z)

The rewritten query is obtained in several steps. First, for every
literal, an expanded version is constructed as the conjunction of this
literal and its global residue. Second, the expansion step is iterated by
replacing the literals in the residue by their expanded versions, until no
changes occur. Finally, the literals in the query are replaced by their
final expanded versions.

Example 12 Under the functional dependency

(∀x)(∀y)(∀z)(¬Student(x, y) ∨ ¬Student(x, z) ∨ y = z)

the query Student(x, y) is rewritten into

Student(x, y) ∧ (∀z)(¬Student(x, z) ∨ y = z).

In this case, the expansion step is iterated only once.

The above approach is applicable to binary integrity constraints and
queries that are conjunctions of literals [2]. For more general queries
it is incomplete: The rewritten query does not necessarily produce all
consistent answers. For some non-binary constraints, the rewriting may
fail to terminate.
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A 11/07 541

B 11/07 302

A 11/11 560

Figure 1. Conflict graph

Clearly, the query-rewriting approach is applicable to SQL queries
corresponding to the above class of relational calculus queries.

Example 13 In the database of Example 6, the query

SELECT *

FROM BrownVotes

is transformed to:

SELECT *

FROM BrownVotes B1

WHERE NOT EXISTS

SELECT *

FROM BrownVotes B2

WHERE B1.County = B2.County

AND B1.Tally <> B2.Tally.

This opens the possibility of using SQL engines for computing consistent
query answers. In that way, very large databases can be handled.

Conflict graphs

Although the set of repairs of a database instance may be of exponen-
tial size, it can often be compactly represented. For functional dependen-
cies, it is very natural to define the conflict graph of the given instance,
whose vertices are the tuples in the instance and the edges represent
conflicts between tuples. Repairs correspond to maximal independent
sets in the conflict graph.

Example 14 The conflict graph of the instance of the relation BrownVotes
from Example 6 is represented in Figure 1.

We show here a nondeterministic algorithm [17, 16] for checking whether
true is a consistent answer to a ground query Φ in an instance r of a
relation P . We assume that the sentence Φ is in CNF, i.e. of the form
Φ = Φ1 ∧ Φ2 ∧ . . .Φl, where each Φi is a disjunction of ground literals.
Φ is true in every repair of r if and only if each of the clauses Φi is true
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in every repair. So it is enough to provide an algorithm that will check
if for a given ground clause true is a consistent answer.

It is easier to think that we are checking if true is not a consistent
answer. This means that we are checking whether there exists a repair
in which ¬Φi is true for some i. But ¬Φi is of the form

P (t̄1) ∧ P (t̄2) ∧ . . . ∧ P (t̄m) ∧ ¬P (t̄m+1) ∧ . . . ∧ ¬P (t̄n),

where the t̄i’s are tuples of constants. (We assume that all facts in the
set {P (t̄1), . . . , P (t̄n)} are mutually distinct.)

The nonderministic algorithm selects an edge Ej in the conflict graph
for every j, such that m+1 ≤ j ≤ n, t̄j ∈ r, and t̄j ∈ Ej , and constructs
a set of tuples S, such that

S = {t̄1, . . . , t̄m} ∪
⋃

m+1≤j≤n,t̄j∈r

(Ej − {t̄j})

and there is no edge E ∈ GF,r such that E ⊆ S. If the construction of S
succeeds, then a repair in which ¬Φi is true can be built by adding to S
new tuples from r until the set is maximal independent.

The algorithm is also applicable to denial constraints that generalize
functional dependencies. In this case the notion of conflict graph is re-
placed by that of conflict hypergraph. The algorithm can be extended to
deal with nonground queries, too [18]. However, it is still not applicable
to queries with quantifiers or general universal constraints.

Typically, the number of conflicts in a database is not large, and thus
the conflict graph does not require much space and fits in main memory.
In such a case, the above approach is practical even for large databases.

Logic programs

Another approach to computing consistent query answers relies on
logical specification of repairs [3, 5]. A logic program (with disjunction
and classical negation) Π1 is constructed on the basis of the given in-
tegrity constraints and database instance. Repairs correspond to answer
sets [30] of this program. A query is also represented using a logic pro-
gram Π2 with a distinguished query predicate. The query atoms that
belong to every answer set of the program Π1 ∪ Π2 provide consistent
query answers. We demonstrate this construction through an example.

Example 15 Consider Example 3 In this case, the logic program Π1

contains the facts

Student(′Smith′, ′Los Angeles′).
Student(′Smith′, ′New York′).
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as well as the following rules:

¬Student′(x, y) ∨ ¬Student′(x, z)← Student(x, y), Student(x, z), y 6= z.

Student′(x, y)← Student(x, y), not ¬Student′(x, y).
¬Student′(x, y)← not Student(x, y), not Student′(x, y).

Here Student′ refers to the repaired version of Student. The first rule
is responsible for repairing integrity violations. The second and third
rules guarantee persistence. The first rule should override the remaining
ones. This can be accomplished, for example, using logic programs with
exceptions [38]. The first rule will then be a higher-priority exception,
and the remaining rules – lower-priority defaults. A logic program with
exceptions can be converted into a logic program with disjunction and
classical negation [38]. Consider now any relational calculus query Q.
Such a query can be converted to a stratified logic program in a standard
way.

The approach outlined above is very general as it can handle arbi-
trary relational calculus queries and binary universal constraints. It
has been extended to handle inclusion dependencies under the assump-
tion that null values are allowed in repairs (which slightly changes the
semantics of consistent query answers). A similar approach was inde-
pendently proposed by Greco et al. [34, 33]. That approach can handle
arbitrary universal constraints. In [8], another encoding of repairs by
logic programs was proposed. That encoding uses additional predicate
arguments to represent annotations, along the lines of [7]. The resulting
program is somewhat simpler because it does not require classical nega-
tion (but still uses disjunction). In [54], specification of repairs using
ordered logic programs is proposed. In that formulation, disjunctions
and multiple versions of the same predicate are not necessary.

Answer sets of logic programs with disjunction and classical negation
can be computed using any of the number of systems proposed in the
logic programming community: DLV [22] or smodels [51]. These im-
plementations can handle only relatively small databases because they
work by grounding a logic program and use only main memory.

The paper [23] proposes several optimizations that are applicable to
logic programming approaches. One is localization of conflict resolution,
another - encoding tuple membership in individual repairs using bitvec-
tors, which makes possible efficient computation of consistent query an-
swers using bitwise operators. However, we have seen in Example 10
even in the presence of one functional dependency there may be expo-
nentially many repairs [6]. With only 80 tuples involved in conflicts, the
number of repairs may exceed 1012! It is clearly impractical to efficiently
manipulate bitvectors of that size.
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Aggregation

Aggregation is common in data warehousing applications where incon-
sistencies are likely to occur. However, in the presence of aggregation
operators, the notion of consistent query answer needs to be slightly
adjusted.

Example 16 Consider Example 6. The aggregation query

SELECT SUM(Tally)

FROM BrownVotes

returns a different answer in every repair. Therefore, it has no consistent
answer in the sense of Definition 7. However, it is clear that from the
information present in the database we can draw the inference that the
returned sum of tallies is not completely unknown but rather falls between
843 and 862.

The definition below reflects this intuition.

Definition 17 [4, 6](a) A consistent answer to an aggregation query
Q in a database instance r is the minimal closed interval I = [a, b] such
that for every repair r′ of r, the scalar value Q(r′) of the query Q in r′

belongs to I.
(b) The left and right end-points of the interval I are the greatest lower
bound (glb) and least upper bound (lub), respectively, answers to Q in
r.

So in Example 16, the consistent answer is the closed interval [843, 862].
In some cases, consistent answers to aggregation queries can be effi-

ciently computed [4, 6].

Example 18 The consistent answer to the aggregation query

SELECT SUM(Tally)

FROM BrownVotes

ic computed by the following query (in the syntax of SQL:1999):

WITH Partial(County,MinS,MaxS) AS

(SELECT County,MIN(Tally),MAX(Tally)

FROM BrownVotes

GROUP BY County)

SELECT SUM(MinS),SUM(MaxS)

FROM Partial;

The computational complexity of consistent answers to first-order and
aggregation queries is further discussed below.
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Computational complexity

We summarize here the results about the computational complexity
of consistent query answers [2, 6, 16, 17]. We adopt the data complexity
assumption [1, 37, 55] that measures the complexity of the problem as
a function of the number of tuples in a given database instance. The
given query and integrity constraints are considered fixed.

The query rewriting approach [2] – when it terminates – provides a di-
rect way to establish PTIME-computability of consistent query answers.
If the original query is first-order, so is the transformed version. In this
way, we obtain a PTIME procedure for computing CQAs: transform
the query and evaluate it in the original database. Note that the trans-
formation of the query is done independently of the database instance
and therefore, does not affect the data complexity. For example, in Ex-
ample 10 the query R(x, y) will be transformed (similarly to the query
in Example 12) to another first-order query and evaluated in PTIME,
despite the presence of an exponential number of repairs. The logic
programming approaches described earlier do not have good asymptotic
complexity properties because they are all based on Πp

2-complete classes
of logic programs [20].

The paper [16]([17] is an earlier version containing only some of the
results) identifies several new tractable classes of queries and constraints.
This paper contains the conflict-graph-based algorithm presented earlier,
which can easily be shown to work in PTIME. Another tractable class
consists of conjunctive queries where all the conjuncts do not share vari-
ables and integrity constraints that are functional dependencies, with at
most one dependency per relation. The paper [16] also shows that relax-
ing any of those restrictions leads to co-NP-completeness. Recently, [27]
has identified a class of conjunctive queries with relation arity at most 2,
for which data complexity of computing consistent query answers is in
PTIME, although the answers cannot be computed by query rewriting.

The paper [6] contains a complete classification of tractable and in-
tractable cases of the problem of computing consistent query answers
(in the sense of Definition 17) to aggregation queries w.r.t. a set of FDs
F . Its results can be summarized as follows:

For all SQL2 aggregate operators except COUNT(A), the problem is
in PTIME iff the set of FDs F contains at most one nontrivial FD
(|F | ≤ 1).

For COUNT(A), the problem is NP-complete, even for one nontrivial
FD.



Consistent Query Answering 13

If F is in BCNF and |F | ≤ 2, then the lub-answer to COUNT(*)

queries can be computed in PTIME.

Relaxing any of the above restrictions leads to NP-completeness.

Alternative repair semantics

The definition of repair (Definition 5), while intuitive, is not the only
possibly one. It postulates that repairs be obtained by deleting and
inserting facts, with deletion and insertion treated symmetrically. If
denial constraints are the only constraints present, then only deletions
can lead to repairs. However, in the presence of inclusion or tuple-
generating dependencies, insertions can also be used to bring about the
satisfaction of the constraints.

Several options have been explored in the literature in this context.
First, one can ignore insertions and work with deletions only [16]. That
is valid if we can assume that the information in the database is not
necessarily correct (thus there may be inconsistencies) but it is complete.
In fact, referential integrity actions in the SQL:1999 standard are limited
to deletions. Second, one can allow deletions only for repairing denial
constraints (there is no other way to do it) and use insertions to fix all
the other constraints. This is the approach adopted in [14]. It seems
suitable to data integration applications where the data is necessarily
incomplete. Finally, in some cases it is natural to consider updates of
individual attributes, instead of inserting/deleting whole tuples [56].

Example 19 Consider the relation Emp with attributes Name, Salary,
and Manager, where Name is the primary key. The constraint that no
employee can have a salary greater than that of her manager is a denial
constraint:

∀n, s,m, s′,m′. [¬Emp(n, s,m) ∨ ¬Emp(m, s′,m′) ∨ s ≤ s′].

Consider the following instance of Emp that violates the constraint:

Name Salary Manager

Jones 120K Black
Black 100K Black

Under Definition 5, this instance has two repairs: one obtained by
deleting the first tuple and the other – by deleting the second tuple. It
might be more natural to consider the repairs obtained by adjusting the
individual salary values in such a way that the constraint is satisfied.

The first approach leads to finitely many repairs, which guarantees
decidability for arbitrary queries and constraints. Some tractable cases
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are identified in [16]. In the second approach, there may be infinitely
many repairs (in the presence of inclusion dependencies). Some decidable
cases and more detailed complexity analysis are presented in [14]. In the
third approach, Wijsen proposes to represent all repairs of an instance
by a single trustable tableau. From this tableau, answers to conjunctive
queries can be efficiently obtained. It is not clear, however, what is the
computational complexity of constructing the tableau, or even whether
the tableau is always of polynomial size.

The minimality criterion constitutes another dimension of the repair
definition. The approaches discussed so far minimize the set of changes
but it is also possible to minimize the cardinality of this set. The latter
approach has been pursued in the context of belief revision [19]. The
paper [5] contains some discussion of how the modified definition of
repair can be implemented using a logic-program-based approach.

Future directions

Conflict resolution

The notion of repair can be useful not only in the context of consistent
query answering. In some cases, it is necessary to compute a single
repair, removing all the integrity violations. For denial constraints, this
task can be accomplished in PTIME. However, if inclusion dependencies
are added, the task may become co-NP-complete [16].

In general, one would like to use some form of priority or preference to
influence repairing. For example, some piece of information may be more
reliable or more up-to-date than another. The issue of computing repairs
and consistent query answers in the presence of priorities or preferences
is largely open. The work on prioritized logic programming [12, 50] may
be relevant in this context.

Data integration and exchange

Assume that we have a collection of (materialized) data sources and a
global, virtual database that integrates data from the sources. According
to the local-as-view approach [42, 46, 52], we can look at the data sources
as views over the global schema. Now, given a query to the global
database, one can generate a query plan that extracts the information
from the sources [31, 42, 43, 44]. In the global-as-view approach [41],
the global database is defined as a view over the data sources.

Sometimes one assumes that certain integrity constraints hold in the
global system, and those integrity constraints are used in generating the
query plan; actually, there are situations where without integrity con-
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straints, no query plan can be generated [21, 32, 35]. The problem is that
we can rarely be sure that such global integrity constraints hold. Even
in the presence of consistent data sources, a global database that inte-
grates them may become inconsistent. The global integrity constraints
are not maintained and could easily be violated. In consequence, data
integration is a natural scenario to apply the methodologies presented
before. What we have to do is to retrieve consistent information from
the global database.

Several new interesting issues appear, among them are: (a) What is a
consistent answer in this context? (b) If we are going to base this notion
on a notion of repair, what is a repair? Notice that we do not have global
instances to repair. (c) How can the consistent answers be retrieved from
the global systems? What kind of query plans do we need? These and
other issues are addressed in [10–11] for the local-as-view approach and
in [40] for the global-as-view approach.

Recently, a new kind of scenario for data integration, called data ex-
change [47, 24], has been identified. In this scenario, one considers source
and target databases, and the mappings between them are described us-
ing source-to-target dependencies that generalize inclusion dependencies.
The distinctive feature of this scenario is that an instance of the target
database is materialized, using an instance of the source database and
the source-to-target dependencies. However, the issue of what to do if,
for the given contents of the data sources, there is no target database sat-
isfying the target constraints has not been addressed so far. Such a sce-
nario would clearly require that the construction of the target database
be augmented with some form of repairing the inconsistencies.

Data cleaning

The task of data cleaning [36, 48, 28] is to remove errors and incon-
sistencies in the data submitted to a data warehouse. Clearly, repairing
integrity violations is a part of this task. However, there is much more
to data cleaning. One has to resolve schematic discrepancies, combine
different records describing the same entity, normalize the data etc. Do-
main knowledge and heuristics play a significant role in data cleaning.
Declarative, high-level descriptions of the data cleaning process have
been proposed [28]. However, the semantics of the databases resulting
from the cleaning process has not been formally characterized so far in
the literature.
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Other applications

In spatial or spatiotemporal databases inconsistencies arise quite of-
ten. For example, there may be inconsistent readings of an object’s
location or the extent of a forest fire. Spatial or spatiotemporal objects
correspond to infinite sets of points. However, those sets are usually
finitely representable, e.g., using constraint databases [39]. Fortunately,
the notion of repair is applicable not only to finite databases but also
to infinite ones. Queries to constraint databases can be rewritten in
the same way as those to relational databases, opening the possibil-
ity of computing consistent query answers in spatial or spatiotemporal
databases.

Relational integrity constraints have been adapted to XML databases
[25–26]. However, as XML updates are more complex than relational
ones, it is not quite clear how to define repairs and consistent query
answers in that context.

Conclusions

We have presented a survey of recent work on consistent query an-
swering. This work has identified relevant expressiveness vs. tractability
tradeoffs and proposed a variety of computational approaches. Many se-
mantic and computational issues in this area remain to be explored. New
application scenarios promise also to bring a variety of new problems.

A more detailed survey of consistent query answering that contains
also an extensive discussion of related work is [9].
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