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Abstract Name Address  Salary
John Brown Amherst 100K
This paper briefly reviews the recent literature@msis- John Brown Amherst 80K
tent query answeringan approach to handle database in- Bob Green  Clarence 80K

con.S|stency|n.asysftemat|c and logical manner based ontheand the functional dependend§ume — Address Salary.
notion ofrepair. It discusses some computational and se-

o . : Note that for both employees the database contains a single,
mantic limitations of consistent query answering, and sum- . . :
. S N correct address, while two different salaries are recorded
marizes selected research directions in this area.

for John Brown, violating the functional dependency.
There are two (minimal) repairs: one is obtained by re-
moving the first tuple, the other by removing the second tu-
1. Introduction ple. (Removing more tuples violates repair minimality.Th
query@:
Nowaday_s more and more database applications havg 'S ECT * FROM Enpl oyee
rely on multiple, often autonomous sources of data. While
the sources may be separately consistent, inconsistency mahas one consistent answé@ob Green,Clarence,80Kbe-
arise when they are integrated together. For examplerdiffe cause neither of the first two tuples appears in the result of
ent data sources may record different salaries or addressethe query in both repairs. On the other hand, the qugsy
of the same employee. At the same time, the application
may require that the integrated, global database contain aSELECT Name, Address FROM Enpl oyee
single, correct salary or address. WHERE Salary > 70K

In consistent query answering, inconsistency is viewed has two consistent answergJohn Brown,Amherstand
as a logical phenomenon. A databaseonsistentf it vi- (Bob Green,Clarencehecause), returns those two tuples

olates integrity constraints. Since it is assumed that¢ae r  jn hoth repairs. Using)- the user extracts correct address
world is consistent, an inconsistent database does na-corr information for John Brown, despite the fact that the infor-

spond to any state of the real world, and thus is not a sourcemation about Brown’s salary is inconsistent.
of reliable information. It needs to be repaired before it ca
be queried. However, there may be many different ways of The approach outlined and illustrated above was first pro-

repairing a database, even if we limit ourselves torttiei- posed in [1]. That paper was followed by numerous further
malones. So itis natural to consider the information present papers that explored several different dimensions of sensi
in every repaired databasé& his leads to the notion afon- tent query answering:

sistent query answdiCQA): an element of query result in
every repaired database. Consistent query answers provide
a conservative “lower bound” on the information contained o gifferent classes of queries and integrity constraints;
in the database.

o different notions of repair minimality;

o different methods of computing consistent query an-
Example 1.1 Consider the following relation Employee SWers.

*This material is based upon work supported by the Nationire m this paper, we first define the bf':lSiC notions and sum-
Foundation under Grant No. 11S-0119186. marize the main approaches to consistent query answering.



(For more complete surveys of the area, see [5, 8, 17].)Example 3.1 Consider the FDA — B and the following
We show when it is practical to compute CQAs and when family of relationsr,,, n > 0, each of which ha&n tuples
this task runs into inherent computational obstacles. Sub-(represented as columns) aPd repairs:

sequently, we examine the assumptions on which the CQA
framework is based and its semantical adequacy. We deter-
mine in what circumstances consistent query answering is
applicable and where it needs to be supplemented by other
techniques. We conclude by outlining selected current re-  Therefore, various methods for computing CQWish-
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search directions in the area. out explicitly computing all repairhiave been developed.
Such methods can be grouped into a number of categories
2. Basic notions (only the main approaches are discussed).

Query rewriting. Given a query@ and a set of in-
tegrity constraints, construct a quepy such that for every

We are working in the context of the relational model
database

of data, assuming the standard notions of relation, tuple,
attribute, key, foreign key, functional dependency (Fd a qa® (r) = cqa®(r).
inclusion dependency (IND). In addition, we also consider
universalintegrity constraints of the foriiz.¢(z), where

® is quantifier-free, and more restrictddnial constraints,

in which ¢ is a disjunction of negative literals. We assume

that we are dealing with satisfiable sets of constraints. We
do not consider nulls.

A database isonsistentf it satisfies the given integrity
constraintsjnconsistentotherwise. We consider the com-
mon query languages for the relational model: relational al
gebra, relational calculus, and SQL. Each of them has a well
defined notion of theet of query answerg? () whereQ
is the query and is a database.

A repair ' of a database is a database over the same Example 3.2 In Example 1.1, the query
schema, which is consistent amihimally differentfrom r.

We denote the set of repairsioby Rep(r). Several notions \?\Eéggee.sgﬁgf, S' '?gﬂr ess FROM Enpl oyee e
of repair minimality have been proposed in the literature: ' y

This approach was first proposed in [1] for limited first-
order queries (no quantification or disjunction, binary
acyclic universal constraints). It was further extended in
[24, 23] to a subsef;,... of conjunctive queries with ex-
istential quantification, under key constraints. The advan
tage of query rewriting is that the rewritten query is also
first-order, so it has polynomial data complexity and can be
evaluated by any relational database engine. Note that the
construction of all repairs is entirely avoided. [23] shows
that the rewriting approach is practical for medium-sized
databases.

L L is rewritten to
e set minimality of the symmetric differenc&(r, ') [1]

(the most commonly used); SELECT e. Nane, e. Address FROM Enpl oyee e
WHERE e. Sal ary > 70K
e set minimality of the asymmetric difference -/, with AND NOT EXI STS
the assumption that C r [18] or without it [15]; SELECT * FROM Enpl oyee el
VWHERE el. Nane = e. Nane

e several different notions of minimality defined AND el.Sal ary <= 70K

attribute-wise [7, 11, 35].
_ Compact representation of repairélthough there may be
Each of them may lead to a different set of repdig(r). exponentially many repairs, in some cases one can still con-
However, the set ofonsistent query answerga®(r) s sgruct a polynomial representation of all of them. For ex-
always defined as the intersection of the query answers ingmple, for denial constraints [18] defines tbenflict hy-

individual repairs: pergraphwhose nodes are database tuples and whose edges
O/ Q. are sets of tuples participating in a violation of a given de-
cqa™(r) = ﬂ ga=(r'). nial constraint. Then repairs correspond to maximal inde-
'€ fep(r) pendent sets. CQAs are computed on the hypergraph, us-
i ing specialized algorithms. This approach has been applied
3. Computing CQAs in [19, 18] to quantifier-free first-order queries, yieldiag

practical polynomial algorithm, and in [3] to aggregation
Retrieving CQAs viathe computationall repairsisnot  queries. Anucleug35] is a single database that “summa-
feasible. Even for FDs, the number of repairs may be toorizes” all repairs, and over which queries are evaluated to
large. yield CQAs.



Logic programs. Repairs can be specified using logic key dependencyWame — Address Salary. Our starting
programs with disjunction and classical negation [2, 4, 26] assumption is that the data from multiple sources have been
and correspond to answer sets [25] of such programs. Thenntegrated into a single database, over which the integrity
CQAs are obtained by skeptical reasoning (computing factsconstraints are defined.
true in every answer set) which is usually available as a Semantic inadequacy.he most basic form of inconsis-
primitive in contemporary logic programming systems like tency at this level is due to semantic inadequacyf the
dl v [29]. This is a very general approach that can han- schema. The integrity constraints may fail to be satisfied in
dle arbitrary first-order queries and universal integrim¢  the real world. For example, an employee may have more
straints. The price to be paid is the computational com- than one address or salary. The proper response in such a
plexity, as skeptical reasoning Ig;-data-complete. Thus case is to modify the schema either by relaxing the violated
only very small databases can be directly handled by thisconstraints or by horizontally decomposing the relatida in
approach, However, various optimization techniques haveseparate parts that satisfy different integrity constsaifor
been developed in [20], which have the potential to make example, theEmployeerelation could be decomposed into
this approach practical. Employeelin which Nameis still a key, andEmployee?
in which this is no longer the case [30]. Or, the functional
dependency could be replaced by a weaker form that ac-
commodates exceptions [12]. A fundamental assumption
—~Emp’'(n,a,s)V -Emp'(n,d’,s") underlying CQA is that the integrity constraints are cotrec

— Emp(n,a,s), Emp(n,a’,s'),s # 5. while the data may be incorrect. Thus, CQA is overly cau-
tious in the case of semantic inadequacy and tries to repair
possibly correct information present in the database, lwhic
leads to information loss.

Another instance of the semantic inadequacy is when the
specified key is not sufficient for distinguishing objects in

Example 3.3 For the Example 1.1, one of the rules ob-
tained using the approach of [2] would be of the form

Its reading is as follows: If the functional dependency
Name — Salary is violated (right-hand side), then one
of the violating tuples has to be dropped (left-hand side).

4. Computational complexity the real world. For instance, if the first two tuples in the
Employeerelation correspond to two different employees
We assume here the notiondsita complexity34], i.e., named “John Brown,” it is not surprising that the non-key

the complexity defined in terms of the number of tuples in attributes in those tuples conflict! The solution is to come
the database. [3, 18] show that computing CQAs for con- up with a right key. Trying to repair the relation loses infor
junctive queries in the presence of FDs is co-NP-complete.mation.
[18] shows that addlng inclusion dependenCieS (Under re-  Schema misa"gmem more subtle schema-level prob_
pair minimality defined in terms of asymmetric difference) |em occurs if the database combines data whose semantics
makes the problerfi}-complete. [15] show that under dif- s not fully aligned. For example, one source may store the
ferentrepair minimality notions the complexity of this pro  employee’s work address, while another, her home address.
lem can range from co-NP-complete to undecidable. [35] 5o in the integrated database the employee would appear
demonstrates that the complexity of CQA under a notion of 35 having two different addresses and violating the func-
attribute-wise repair minimality closely tracks the compl  tional dependency. The proper response here is to revise
ity of the same problem under set-based repair minimality. the integrated schema so it contains two different address
attributes. Again, the CQA approach tries to repair correct

5. Semantical issues information, leading not only to information loss but also t
the confusion between semantically different data items.
We explore here thetiology of inconsistency. There Object misclassificationThe information about an ob-

may be many reasons for integrity violations to occur. We ject may be inserted into a wrong relation. For example,
examine such reasons in order to delineate the scope of apin the case of the relatiorBmployeelandEmployee2iis-
plicability of the CQA framework. We claim that applying cussed above, suppose that the information about an em-
it to raw data leads often to undesirable results and loss ofployee with more than one address is wrongly inserted into
information. We conclude that for CQA to return meaning- Employeelraising an integrity violation. The appropriate
ful and reliable information, the data needs to be appropri- response is to transfer this informationEmployee2not
ately prepared by making sure the schema is semanticallyto try to repairEmployeel Again, CQA leads to a loss of
adequate, detecting and eliminating duplicates, and apply information.
ing some data cleaning techniques. Data value obsolescencéf data values corresponding
We use Example 1.1 and its extensions to illustrate theto different time instants are simultaneously present & th
points made. We will primarily consider violations of the database, they may conflict. For example, having both old



and new values of the salary of an employee may resultin aSELECT Dept FROM Enpl oyee
y|olat|on of the funcnonal dependency. The PTOPETTESPONS .\ imsSalesas a consistent answer. On the other hand, the
is to clean the data using meta-data, for example in the form
of timestamps. However, if such meta-data is not available 94€"Y
and there is no way to tell which data is old and which is SELECT Dept, Locati on FROM Enpl oyee
new, the cautious approach of CQA is suitable. Another
approach is to incorporate priority information into CQA
[32]. One can defindisjunctiveCQAs in terms of OR-objects
Data value imprecision.There may be multiple read- [27]. In the above example, the query
ings of a sensor that need to be reconciled to produce a .
sirgl]gle value, e.g., for the temperature in a room? Again, SELECT Dept, Location FROM Enpl oyee
data cleaning is in order here because one may need to reeould, instead of returning no CQAs, return the tuple
move outliers, account for different reading granulasitie (Sales, OR(New York, Chicago)) as a disjunctive CQA. It
etc. However, in some cases it is not possible or desirable towould be natural for disjunctive LP systems likié v to
completely clean the data online (imagine several observer support the computation of disjunctive query answers.
gathering information about the size of a crowd or several
witnesses reporting on an accident), and in those cases CQA5 Salected current research
can provide a conservative lower bound on the information
in the database.
Hidden duplicates. The same value can often be rep-
resented in multiple ways, for example “East Amherst” and

has no consistent answer.

Data integration. In this paper we have assumed that
the data in the database has already been integrated at the
. y o i ) instance level. Recent research in data integration sudie
_Eﬁf\mherst. Stot|_f therfe are ml::t!gltettuplies th?:]only dT_rE different kinds of mappings between local sources and the
in the representation of some atfribute values, they aslyi global database [28], and investigates how their semantics

to be duplicates. The normalization step in data cIeaninginteracts with that of repairs [6, 13, 16]

reco_gnizes such dupl_icates. CQA 'Freats_hid(_jen _duplicates Aggregate constraints]22] studies CQA for integrity
as different valugs which lead to an Integrity violationisTh constraints that may contain linear arithmetic expression
prevents the retrieval of the affected attribute values. involving aggregate functions

Data errors. Erroneous data con often be caught using Null values.SQL nulls lack formal semantics, while ad-

CIHECK consgt'clunts, e'g‘fﬁl(tlry > 2.015‘ dBlt"t trf1ere are | equate formal approaches to incomplete information lead to
also more subtie errors that creep Into data, tor examp eintractability [33]. Nulls are useful in repairs under in€l

_throughhm|sst§)lell|ng_s, g_rfr;_lsslltcms, or trar;spgsttal\otns. tﬁlete sion dependencies, where a repair with nulls can stand for
mgtsucd prod ::'mts '5’ fmeutt n ger:era : ﬂ? rea? c?]r_— infinitely many repairs without nulls. [14] contains a pro-
rectand (undetected) erroneous values in the same fashio osal how to extend the CQA framework to handle nulls.

thus some repair; may pontain errors. However, if an erro-" s\ “For the CQA framework to be applicable to XML

neous value conflicts with another value, the error will not databases, the basic notions of repair and consistent query

be propagated to t.he CQA.S' . answer need to be redefined. This is done for DTDs only
Update anomaliesRelations are often denormalized for in [31] and DTDs with functional dependencies in [21].

efficiency purposes, which may lead to the violations of [31] proposes to base repair minimality wee edit distance

non-kgy functional dependencies which are not mamtalned[lo], while [21] uses an approach more akin to to that of [1].
for efficiency reasons. For example, considertEneployee

relation with two extra attribute®ept and Location to-
gether with a functional dependen®ept — Location.
It may happen that differerEmployeeuples contain dif- _ o )
ferent values for the location of a department. However, [1] "X'- Arenas, '-I- Berto_s?, "’t‘”g Jt l():homucl:@(;ﬂor;snstent Quer
as long as a query asks only about the department names ~ ~NSWErs In Inconsistent Databases. ymposium
and not about their locations, all the names are returned as on Principles of Database Systems (PODEges 68-79,
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