CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

Consistent Query Answering: Five Easy Pieces

Jan Chomicki

University at Buffalo and Warsaw University

11th International Conference on Database Theory Barcelona, January 11, 2007

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexit

Variants c CQA

Conclusions

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

1951 (Renée Miller, SIGMOD Record 2005)

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

1951 (Renée Miller, SIGMOD Record 2005)

1953 (Leonid Libkin, ICDT 2007)

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

1951 (Renée Miller, SIGMOD Record 2005)

1953 (Leonid Libkin, ICDT 2007)

Inconsistencies cannot both be right; but, imputed to man, they may both be true.

Samuel Johnson

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

CQA

Jan Chomicki

Motivation

- Outline
- Research Goals
- Basics
- Computing CQA Methods Complexity
- Variants of CQA
- Conclusions

Database instance D:

- a finite first-order structure
- the information about the world

CQA

Jan Chomicki

Motivation

- Outline
- Research Goals
- Basics
- Computing CQA Methods Complexity
- Variants of CQA
- Conclusions

Database instance D:

- a finite first-order structure
- the information about the world

Integrity constraints IC:

- first-order logic formulas
- the properties of the world

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

Database instance D:

- a finite first-order structure
- the information about the world

Integrity constraints IC:

- first-order logic formulas
- the properties of the world

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Satisfaction of constraints: $D \models IC$

Formula satisfaction in a first-order structure.

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

CQA

Conclusions

Database instance D:

- a finite first-order structure
- the information about the world

Integrity constraints IC:

- first-order logic formulas
- the properties of the world

Satisfaction of constraints: $D \models IC$

Formula satisfaction in a first-order structure.

Inconsistent database: $D \not\models IC$

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

CQA

Conclusions

Database instance D:

- a finite first-order structure
- the information about the world

Integrity constraints IC:

- first-order logic formulas
- the properties of the world

Satisfaction of constraints: $D \models IC$

Formula satisfaction in a first-order structure.

Inconsistent database: $D \not\models IC$

Name	City	Salary
Gates	Redmond	20M
Gates	Redmond	30M
Grove	Santa Clara	10M
Name \rightarrow City Salary		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Whence Inconsistency?

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

Sources of inconsistency:

• integration of independent data sources with overlapping data

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- time lag of updates (eventual consistency)
- unenforced integrity constraints
- dataspace systems,...

Whence Inconsistency?

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

Sources of inconsistency:

- integration of independent data sources with overlapping data
- time lag of updates (eventual consistency)
- unenforced integrity constraints
- dataspace systems,...

Eliminating inconsistency?

- not enough information, time, or money
- difficult, impossible or undesirable
- unnecessary: queries may be insensitive to inconsistency

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

Query results not reliable.

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

Query results not reliable.

Name	City	Salary
Gates	Redmond	20M
Gates	Redmond	30M
Grove	Santa Clara	10M
Name \rightarrow City Salary		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

Query results not reliable.

Name	City	Salary
Gates	Redmond	20M
Gates	Redmond	30M
Grove	Santa Clara	10M
Name \rightarrow City Salary		

SELECT Name FROM Employee WHERE Salary $\leq 25M$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 = ∽ 9 < (~)

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

Query results not reliable.

Name	City	Salary
Gates	Redmond	20M
Gates	Redmond	30M
Grove	Santa Clara	10M
Name \rightarrow City Salary		

Horizontal Decomposition

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

Decomposition into two relations:

violators

• the rest

[Paredaens, De Bra: 1981-83]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Horizontal Decomposition

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

Decomposition into two relations:

- violators
- the rest

[Paredaens, De Bra: 1981-83]

Name	City	Salary
Gates	Redmond	20M
Gates	Redmond	30M
Grove	Santa Clara	10M
Name \rightarrow City Salary		

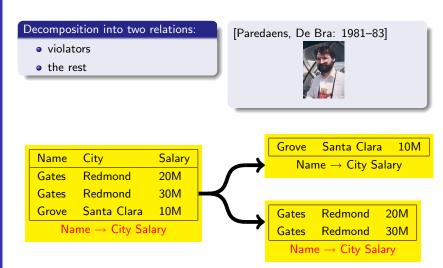
Horizontal Decomposition

CQA

Jan Chomicki

Motivation

Outline


Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Exceptions to Constraints

CQA

Jan Chomicki

Motivation

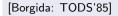
- Outline
- Research Goals
- Basics
- Computing CQA Methods Complexity
- Variants of CQA
- Conclusions

Weakening the contraints:

• functional dependencies \rightarrow denial constraints

Exceptions to Constraints

CQA


Jan Chomicki

Motivation

- Outline
- Research Goals
- Basics
- Computing CQA Methods Complexity
- Variants o CQA
- Conclusions

Weakening the contraints:

• functional dependencies \rightarrow denial constraints

Name	City	Salary
Gates	Redmond	20M
Gates	Redmond	30M
Grove	Santa Clara	10M
$Name \to City \ Salary$		

Exceptions to Constraints

CQA

Jan Chomicki

Motivation

- Outline
- Research Goals
- Basics
- Computing CQA Methods Complexity
- Variants of CQA
- Conclusions

Weakening the contraints:

● functional dependencies → denial constraints

Name	City	Salary
Gates	Redmond	20M
Gates	Redmond	30M
Grove	Santa Clara	10M
Na	me ightarrow City Sal	lary

Name	City	Salary
Gates	Redmond	20M
Gates	Redmond	30M
Grove	Santa Clara	10M
Name \rightarrow City Salary		
except Name='Gates'		

The Impact of Inconsistency on Queries

CQA

Jan Chomicki

Motivation

- Outline
- Research Goals
- Basics
- Computing CQA Methods Complexity
- Variants of CQA
- Conclusions

Traditional view

- query results defined irrespective of integrity constraints
- query evaluation may be optimized in the presence of integrity constraints (semantic query optimization)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Impact of Inconsistency on Queries

CQA

Jan Chomicki

Motivation

- Outline
- Research Goals
- Basics
- Computing CQA Methods Complexity
- Variants of CQA
- Conclusions

Traditional view

- query results defined irrespective of integrity constraints
- query evaluation may be optimized in the presence of integrity constraints (semantic query optimization)

"Post-modernist" view

- inconsistency reflects uncertainty
- query results may depend on integrity constraint satisfaction
- inconsistency may be eliminated or tolerated

Database Repairing

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

Restoring consistency:

• insertion, deletion, update

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- minimal change?
- Information loss?

Database Repairing

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

Restoring consistency:

- insertion, deletion, update
- minimal change?
- Information loss?

Name	City	Salary
Gates	Redmond	20M
Gates	Redmond	30M
Grove	Santa Clara	10M
Name \rightarrow City Salary		

Database Repairing

CQA

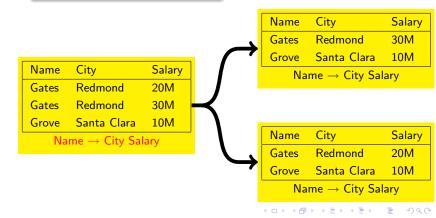
Jan Chomicki

Motivation

Outline

Research Goals

Basics


Computing CQA Methods Complexity

Variants o CQA

Conclusions

Restoring consistency:

- insertion, deletion, update
- minimal change?
- Information loss?

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

Consistent query answer:

Query answer obtained in every repair.

[Arenas, Bertossi, Ch.: PODS'99]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

Consistent query answer:

Query answer obtained in every repair.

[Arenas, Bertossi, Ch.: PODS'99]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Name	City	Salary
Gates	Redmond	20M
Gates	Redmond	30M
Grove	Santa Clara	10M
Name \rightarrow City Salary		

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

Consistent query answer:

Query answer obtained in every repair.

[Arenas,Bertossi,Ch.: PODS'99]

Grove

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Name	City	Salary
Gates	Redmond	20M
Gates	Redmond	30M
Grove	Santa Clara	10M
Name \rightarrow City Salary		

SELECT Name FROM Employee WHERE Salary $\leq 25M$

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

Consistent query answer:

Query answer obtained in every repair.

[Arenas, Bertossi, Ch.: PODS'99]

Name	City	Salary
Gates	Redmond	20M
Gates	Redmond	30M
Grove	Santa Clara	10M
Name \rightarrow City Salary		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

2 Outline

3 Basics

4 Computing CQA

- Methods
- Complexity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

6 Conclusions

CQA

Jan Chomicki

Motivation

Outlin

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

Formal definition

What constitutes reliable (consistent) information in an inconsistent database.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

Formal definition

What constitutes reliable (consistent) information in an inconsistent database.

Algorithms

How to compute consistent information.

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

Formal definition

What constitutes reliable (consistent) information in an inconsistent database.

Algorithms

How to compute consistent information.

Computational complexity analysis

• tractable vs. intractable classes of queries and integrity constraints

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• tradeoffs: complexity vs. expressiveness.

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

Formal definition

What constitutes reliable (consistent) information in an inconsistent database.

Algorithms

How to compute consistent information.

Computational complexity analysis

• tractable vs. intractable classes of queries and integrity constraints

• tradeoffs: complexity vs. expressiveness.

Implementation

• preferably using DBMS technology.

Research Goals

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

Formal definition

What constitutes reliable (consistent) information in an inconsistent database.

Algorithms

How to compute consistent information.

Computational complexity analysis

• tractable vs. intractable classes of queries and integrity constraints

イロト イポト イヨト イヨト

• tradeoffs: complexity vs. expressiveness.

Implementation

• preferably using DBMS technology.

Applications

???

Basic Notions

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

Repair D' of a database D w.r.t. the integrity constraints IC:

- D': over the same schema as D
- $D' \models IC$
- symmetric difference between D and D' is minimal.

Basic Notions

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

Repair D' of a database D w.r.t. the integrity constraints IC:

- D': over the same schema as D
- $D' \models IC$
- symmetric difference between D and D' is minimal.

Consistent query answer to a query Q in D w.r.t. IC:

• an element of the result of Q in every repair of D w.r.t. IC.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Basic Notions

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

Repair D' of a database D w.r.t. the integrity constraints IC:

- D': over the same schema as D
- $D' \models IC$
- symmetric difference between D and D' is minimal.

Consistent query answer to a query Q in D w.r.t. IC:

• an element of the result of Q in every repair of D w.r.t. IC.

Another incarnation of the idea of sure query answers [Lipski: TODS'79].

A Logical Aside

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

Belief revision

- semantically: repairing \equiv revising the database with integrity constraints
- consistent query answers \equiv counterfactual inference.

Logical inconsistency

• inconsistent database: database facts together with integrity constraints form an inconsistent set of formulas

• trivialization of reasoning does not occur because constraints are not used in relational query evaluation.

Exponentially many repairs

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

Example relation R(A, B)

- violates the dependency $A \rightarrow B$
- has 2ⁿ repairs.

Α	В
a 1	b_1
a 1	c_1
a 2	b 2
a 2	c ₂
an	b _n
an	Cn
$A \rightarrow B$	

Exponentially many repairs

CQA

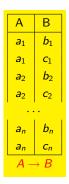
Jan Chomicki

Motivation

Outline

Research Goals

Basics


Computing CQA Methods Complexity

Variants c CQA

Conclusions

Example relation R(A, B)

- violates the dependency $A \rightarrow B$
- has 2ⁿ repairs.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

It is impractical to apply the definition of CQA directly.

Computing Consistent Query Answers

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computin CQA

Methods Complexity

Variants (CQA

Conclusions

Query Rewriting

Given a query Q and a set of integrity constraints IC, build a query Q^{IC} such that for every database instance D

the set of answers to Q^{IC} in D = the set of consistent answers to Q in D w.r.t. IC.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Computing Consistent Query Answers

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants c CQA

Conclusions

Query Rewriting

Given a query Q and a set of integrity constraints IC, build a query Q^{IC} such that for every database instance D

the set of answers to Q^{IC} in D = the set of consistent answers to Q in D w.r.t. IC.

Representing all repairs

Given *IC* and *D*:

() build a space-efficient representation of all repairs of D w.r.t. IC

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

use this representation to answer (many) queries.

Computing Consistent Query Answers

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants c CQA

Conclusions

Query Rewriting

Given a query Q and a set of integrity constraints IC, build a query Q^{IC} such that for every database instance D

the set of answers to Q^{IC} in D = the set of consistent answers to Q in D w.r.t. IC.

Representing all repairs

Given IC and D:

- **()** build a space-efficient representation of all repairs of D w.r.t. IC
- use this representation to answer (many) queries.

Logic programs

Given IC, D and Q:

- **(**) build a logic program $P_{IC,D}$ whose models are the repairs of D w.r.t. IC
- 2 build a logic program P_Q expressing Q
- **③** use a logic programming system that computes the query atoms present in all models of $P_{IC,D} \cup P_Q$.

CQA

Jan Chomicki

Motivation

Outlin

Research Goals

Basics

Computin CQA

Methods Complexity

Variants (CQA

Conclusions

Universal constraints

$$\forall . \neg A_1 \lor \cdots \lor \neg A_n \lor B_1 \lor \cdots \lor B_m$$

CQA

Jan Chomicki

Motivation

Outlin

Research Goals

Basics

Computin CQA

Methods Complexity

Variants (CQA

Conclusions

Universal constraints

$$\forall. \neg A_1 \lor \cdots \lor \neg A_n \lor B_1 \lor \cdots \lor B_m$$

Example

$$\forall$$
. \neg *Par*(*x*) \lor *Ma*(*x*) \lor *Fa*(*x*)

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computin CQA

Methods Complexity

Variants c CQA

Conclusions

Universal constraints

$$\forall . \neg A_1 \lor \cdots \lor \neg A_n \lor B_1 \lor \cdots \lor B_m$$

Denial constraints

 $\forall . \neg A_1 \lor \cdots \lor \neg A_n$

Example

$$\forall$$
. \neg *Par*(*x*) \lor *Ma*(*x*) \lor *Fa*(*x*)

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computin CQA

Methods Complexity

Variants c CQA

Conclusions

Universal constraints

$$\forall. \neg A_1 \lor \cdots \lor \neg A_n \lor B_1 \lor \cdots \lor B_m$$

Denial constraints

 $\forall . \neg A_1 \lor \cdots \lor \neg A_n$

Example

$$\forall$$
. \neg *Par*(*x*) \lor *Ma*(*x*) \lor *Fa*(*x*)

Example

$$\forall . \neg M(n, s, m) \lor \neg M(m, t, w) \lor s \leq t$$

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods

Variants c CQA

Conclusions

Universal constraints

$$\forall . \neg A_1 \lor \cdots \lor \neg A_n \lor B_1 \lor \cdots \lor B_m$$

Denial constraints

 $\forall. \neg A_1 \lor \cdots \lor \neg A_n$

Example

$$\forall$$
. \neg *Par*(*x*) \lor *Ma*(*x*) \lor *Fa*(*x*)

Example

$$\forall . \neg M(n, s, m) \lor \neg M(m, t, w) \lor s \leq t$$

Functional dependencies

 $X \rightarrow Y$:

- a key dependency in F if X is a key
- a primary-key dependency: only one key exists

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods

Variants c CQA

Conclusion

Universal constraints

$$\forall . \neg A_1 \lor \cdots \lor \neg A_n \lor B_1 \lor \cdots \lor B_m$$

Denial constraints

 $\forall. \neg A_1 \lor \cdots \lor \neg A_n$

Example

$$\forall$$
. \neg *Par*(*x*) \lor *Ma*(*x*) \lor *Fa*(*x*)

Example

$$\forall . \neg M(n, s, m) \lor \neg M(m, t, w) \lor s \leq t$$

Functional dependencies

 $X \rightarrow Y$:

- a key dependency in F if X is a key
- a primary-key dependency: only one key exists

Example primary-key dependency

Name \rightarrow Address Salary

・ロト・4回ト・4回ト・4回ト・4回ト

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods

Variants o CQA

Conclusions

Universal constraints

$$\forall. \neg A_1 \lor \cdots \lor \neg A_n \lor B_1 \lor \cdots \lor B_m$$

Denial constraints

 $\forall. \neg A_1 \lor \cdots \lor \neg A_n$

Functional dependencies

 $X \rightarrow Y$:

- a key dependency in F if X is a key
- a primary-key dependency: only one key exists

Inclusion dependencies

 $R[X] \subseteq S[Y]$:

• a foreign key constraint if Y is a key of S

Example

$$\forall. \neg Par(x) \lor Ma(x) \lor Fa(x)$$

Example

$$\forall . \neg M(n, s, m) \lor \neg M(m, t, w) \lor s \leq t$$

Example primary-key dependency

Name \rightarrow Address Salary

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods

Variants o CQA

Conclusions

Universal constraints

$$\forall. \neg A_1 \lor \cdots \lor \neg A_n \lor B_1 \lor \cdots \lor B_m$$

Denial constraints

 $\forall. \neg A_1 \lor \cdots \lor \neg A_n$

Example

$$\forall$$
. \neg *Par*(*x*) \lor *Ma*(*x*) \lor *Fa*(*x*)

Example

$$\forall . \neg M(n, s, m) \lor \neg M(m, t, w) \lor s \leq t$$

Functional dependencies

 $X \rightarrow Y$:

- a key dependency in F if X is a key
- a primary-key dependency: only one key exists

Example primary-key dependency

Name \rightarrow Address Salary

Inclusion dependencies

 $R[X] \subseteq S[Y]$:

• a foreign key constraint if Y is a key of S

Example foreign key constraint

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 $M[Manager] \subseteq M[Name]$

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computin CQA

Methods Complexity

Variants c CQA

Conclusions

Building queries that compute CQAs

• relational calculus (algebra) ---> relational calculus (algebra)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- SQL → SQL
- leads to PTIME data complexity

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods

Complexity

Variants o CQA

Conclusions

Building queries that compute CQAs

• relational calculus (algebra) ---> relational calculus (algebra)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- SQL → SQL
- leads to PTIME data complexity

Query

Emp(x, y, z)

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods

Variants o CQA

Conclusions

Building queries that compute CQAs

- relational calculus (algebra) ---> relational calculus (algebra)
- SQL → SQL
- leads to PTIME data complexity

Query Emp(x, y, z)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Integrity constraint

$$\forall x, y, z, y', z'. \neg \textit{Emp}(x, y, z) \lor \neg \textit{Emp}(x, y', z') \lor z = z'$$

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods

Variants o CQA

Conclusions

Building queries that compute CQAs

- relational calculus (algebra) ---> relational calculus (algebra)
- SQL → SQL
- leads to PTIME data complexity

Query Emp(x, y, z)

Integrity constraint

$$\forall x, y, z, y', z'. \neg Emp(x, y, z) \lor \neg Emp(x, y', z') \lor z = z'$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods

Variants o CQA

Conclusions

Building queries that compute CQAs

- relational calculus (algebra) ---> relational calculus (algebra)
- SQL → SQL
- leads to PTIME data complexity

Query Emp(x, y, z)

Integrity constraint

$$\forall x, y, z, y', z'. \neg \textit{Emp}(x, y, z) \lor \neg \textit{Emp}(x, y', z') \lor z = z'$$

Rewritten query

 $Emp(x, y, z) \land \forall y', z'. \neg Emp(x, y', z') \lor z = z'$

The Scope of Query Rewriting

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computin CQA

Methods Complexity

Variants o CQA

Conclusions

[Arenas, Bertossi, Ch.: PODS'99]

• Queries: conjunctions of literals (relational algebra: $\sigma, \times, -$)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Integrity constraints: binary universal

The Scope of Query Rewriting

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computin CQA

Methods Complexity

Variants of CQA

Conclusions

[Arenas, Bertossi, Ch.: PODS'99]

- Queries: conjunctions of literals (relational algebra: $\sigma, \times, -$)
- Integrity constraints: binary universal

[Fuxman, Miller: ICDT'05]

- Queries: C_{forest}
 - a class of conjunctive queries (π, σ, \times)
 - no non-key or non-full joins
 - no repeated relation symbols
 - no built-ins
- Integrity constraints: primary key functional dependencies

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

SQL Rewriting

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computin CQA

Methods Complexity

Variants o CQA

Conclusions

SQL query

SELECT Name FROM Emp WHERE Salary \geq 10K

SQL Rewriting

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods

Complexity

Variants o CQA

Conclusions

SQL query

SELECT Name FROM Emp WHERE Salary \geq 10K

SQL rewritten query

SELECT e1.Name FROM Emp e1
WHERE e1.Salary ≥ 10K AND NOT EXISTS
 (SELECT * FROM EMPLOYEE e2
 WHERE e2.Name = e1.Name AND e2.Salary < 10K)</pre>

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

SQL Rewriting

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods

Complexity

Variants o CQA

Conclusions

SQL query

SELECT Name FROM Emp WHERE Salary \geq 10K

SQL rewritten query

SELECT e1.Name FROM Emp e1
WHERE e1.Salary ≥ 10K AND NOT EXISTS
 (SELECT * FROM EMPLOYEE e2
 WHERE e2.Name = e1.Name AND e2.Salary < 10K)</pre>

[Fuxman, Fazli, Miller: SIGMOD'05]

- ConQuer: a system for computing CQAs
- conjunctive (C_{forest}) and aggregation SQL queries
- databases can be annotated with consistency indicators
- tested on TPC-H queries and medium-size databases

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computin CQA

Methods Complexity

Variants o CQA

Conclusions

Vertices

Tuples in the database.

(Gates, Redmond, 20M)

(Grove, Santa Clara, 10M)

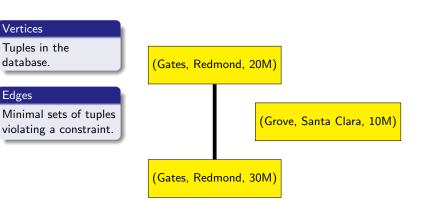
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(Gates, Redmond, 30M)

Jan Chomicki

Motivation

Outline


Research Goals

Basics

Computing CQA Methods

Variants o CQA

Conclusions

Jan Chomicki

Motivation

Outline

Research Goals

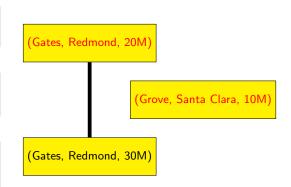
Basics

Computing CQA Methods

Variants of

Conclusions

Vertices


Tuples in the database.

Edges

Minimal sets of tuples violating a constraint.

Repairs

Maximal independent sets in the conflict graph.

Jan Chomicki

Motivation

Outline

Research Goals

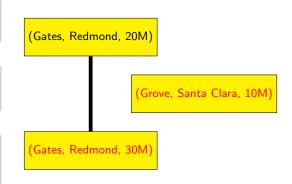
Basics

Computing CQA Methods

Variants o CQA

Conclusions

Vertices


Tuples in the database.

Edges

Minimal sets of tuples violating a constraint.

Repairs

Maximal independent sets in the conflict graph.

Computing CQAs Using Conflict Hypergraphs

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computin CQA

Methods Complexity

Variants (CQA

Conclusions

Algorithm HProver

INPUT: query Φ a disjunction of ground atoms, conflict hypergraph G OUTPUT: is Φ false in some repair of D w.r.t. IC? ALGORITHM:

- ② find a consistent set of facts S such that
 - $S \supseteq \{P_1(t_1), \ldots, P_m(t_m)\}$
 - for every fact $A \in \{P_{m+1}(t_{m+1}), \ldots, P_n(t_n)\}$: $A \notin D$ or there is an edge $E = \{A, B_1, \ldots, B_m\}$ in G and $S \supseteq \{B_1, \ldots, B_m\}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Computing CQAs Using Conflict Hypergraphs

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computin CQA

Methods Complexity

Variants c CQA

Conclusions

Algorithm HProver

INPUT: query Φ a disjunction of ground atoms, conflict hypergraph G OUTPUT: is Φ false in some repair of D w.r.t. IC? ALGORITHM:

② find a consistent set of facts S such that

•
$$S \supseteq \{P_1(t_1), \ldots, P_m(t_m)\}$$

• for every fact $A \in \{P_{m+1}(t_{m+1}), \ldots, P_n(t_n)\}$: $A \notin D$ or there is an edge $E = \{A, B_1, \ldots, B_m\}$ in G and $S \supseteq \{B_1, \ldots, B_m\}$.

[Ch., Marcinkowski, Staworko: CIKM'04]

- Hippo: a system for computing CQAs in PTIME
- quantifier-free queries and denial constraints
- only edges of the conflict hypergraph are kept in main memory
- optimization can eliminate many (sometimes all) database accesses in HProver
- tested for medium-size synthetic databases

Logic programs

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computin CQA

Methods Complexity

Variants c CQA

Conclusions

Specifying repairs as answer sets of logic programs

- [Arenas, Bertossi, Ch.: FQAS'00, TPLP'03]
- [Greco, Greco, Zumpano: LPAR'00, TKDE'03]

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• [Calì, Lembo, Rosati: IJCAI'03]

Logic programs

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants c CQA

Conclusions

Specifying repairs as answer sets of logic programs

- [Arenas, Bertossi, Ch.: FQAS'00, TPLP'03]
- [Greco, Greco, Zumpano: LPAR'00, TKDE'03]
- [Calì, Lembo, Rosati: IJCAI'03]

Example

 $emp(x, y, z) \leftarrow emp_D(x, y, z), \text{ not } dubious_emp(x, y, z).$ $dubious_emp(x, y, z) \leftarrow emp_D(x, y, z), emp(x, y', z'), y \neq y'.$ $dubious_emp(x, y, z) \leftarrow emp_D(x, y, z), emp(x, y', z'), z \neq z'.$

Logic programs

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA **Methods** Complexity

Variants c CQA

Conclusions

Specifying repairs as answer sets of logic programs

- [Arenas, Bertossi, Ch.: FQAS'00, TPLP'03]
- [Greco, Greco, Zumpano: LPAR'00, TKDE'03]
- [Calì, Lembo, Rosati: IJCAI'03]

Example

 $emp(x, y, z) \leftarrow emp_D(x, y, z), not \ dubious_emp(x, y, z).$ $dubious_emp(x, y, z) \leftarrow emp_D(x, y, z), emp(x, y', z'), y \neq y'.$ $dubious_emp(x, y, z) \leftarrow emp_D(x, y, z), emp(x, y', z'), z \neq z'.$

Answer sets

- {*emp*(*Gates*, *Redmond*, 20*M*), *emp*(*Grove*, *SantaClara*, 10*M*),...}
- {*emp*(*Gates*, *Redmond*, 30*M*), *emp*(*Grove*, *SantaClara*, 10*M*),...}

Logic Programs for computing CQAs

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computin CQA

Methods Complexity

Variants c CQA

Conclusions

Logic Programs

- disjunction and classical negation
- checking whether an atom is in all answer sets is Π_2^p -complete

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• dlv, smodels, ...

Logic Programs for computing CQAs

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods

Complexity

Variants o CQA

Conclusions

Logic Programs

- disjunction and classical negation
- checking whether an atom is in all answer sets is Π_2^p -complete

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• dlv, smodels, ...

Scope

- arbitrary first-order queries
- universal constraints
- approach unlikely to yield tractable cases

Logic Programs for computing CQAs

CQA

Jan Chomicki

- Motivation
- Outline
- Research Goals
- Basics
- Computing CQA Methods
- Complexity
- Variants o CQA
- Conclusions

Logic Programs

- disjunction and classical negation
- checking whether an atom is in all answer sets is Π_2^p -complete
- dlv, smodels, ...

Scope

- arbitrary first-order queries
- universal constraints
- approach unlikely to yield tractable cases

INFOMIX [Eiter et al.: ICLP'03]

- combines CQA with data integration (GAV)
- uses dlv for repair computations
- optimization techniques: localization, factorization
- tested on small-to-medium-size legacy databases

Co-NP-completeness of CQA

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

Theorem (Ch., Marcinkowski: Inf. Comp.'05)

For primary-key functional dependencies and conjunctive queries, consistent query answering is data-complete for co-NP.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Co-NP-completeness of CQA

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants (CQA

Conclusions

Theorem (Ch., Marcinkowski: Inf. Comp.'05)

For primary-key functional dependencies and conjunctive queries, consistent query answering is data-complete for co-NP.

Proof.

Membership: S is a repair iff $S \models IC$ and $W \not\models IC$ if $W = S \cup A$. Co-NP-hardness: reduction from MONOTONE 3-SAT.

- Positive clauses $\beta_1 = \phi_1 \wedge \ldots \phi_m$, negative clauses $\beta_2 = \psi_{m+1} \ldots \wedge \psi_l$.
- **2** Database D contains two binary relations R(A, B) and S(A, B):
 - R(i, p) if variable p occurs in ϕ_i , i = 1, ..., m.
 - S(i, p) if variable p occurs in ψ_i , i = m + 1, ..., l.
- **(a)** A is the primary key of both R and S.
- Query $Q \equiv \exists x, y, z. (R(x, y) \land S(z, y)).$
- O There is an assignment which satisfies β₁ ∧ β₂ iff there exists a repair in which Q is false.

Co-NP-completeness of CQA

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants CQA

Conclusions

Theorem (Ch., Marcinkowski: Inf. Comp.'05)

For primary-key functional dependencies and conjunctive queries, consistent query answering is data-complete for co-NP.

Proof.

Membership: S is a repair iff $S \models IC$ and $W \not\models IC$ if $W = S \cup A$. Co-NP-hardness: reduction from MONOTONE 3-SAT.

- **9** Positive clauses $\beta_1 = \phi_1 \wedge \ldots \phi_m$, negative clauses $\beta_2 = \psi_{m+1} \ldots \wedge \psi_l$.
- ② Database D contains two binary relations R(A, B) and S(A, B):
 - R(i, p) if variable p occurs in ϕ_i , i = 1, ..., m.
 - S(i, p) if variable p occurs in ψ_i , i = m + 1, ..., l.
- **(a)** A is the primary key of both R and S.
- Query $Q \equiv \exists x, y, z. (R(x, y) \land S(z, y)).$
- **•** There is an assignment which satisfies $\beta_1 \wedge \beta_2$ iff there exists a repair in which Q is false.

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

	Primary keys	Arbitrary keys	Denial	Universal
$\sigma, \times, -$				
$\sigma,\times,-,\cup$				
σ,π				
σ, π, \times				
$\sigma,\pi,\times,-,\cup$				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

	Primary keys	Arbitrary keys	Denial	Universal
$\sigma, \times, -$	PTIME	PTIME		PTIME: binary
$\sigma,\times,-,\cup$				
σ,π				
σ, π, \times				
$\sigma,\pi,\times,-,\cup$				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• [Arenas, Bertossi, Ch.: PODS'99]

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

	Primary keys	Arbitrary keys	Denial	Universal
$\sigma, \times, -$	PTIME	PTIME	PTIME	PTIME: binary
$\sigma,\times,-,\cup$	PTIME	PTIME	PTIME	
σ, π	PTIME	co-NPC	co-NPC	
σ, π, \times	co-NPC	co-NPC	co-NPC	
$\sigma,\pi,\times,-,\cup$	co-NPC	co-NPC	co-NPC	

- [Arenas, Bertossi, Ch.: PODS'99]
- [Ch., Marcinkowski: Inf.Comp.'05]

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

	Primary keys	Arbitrary keys	Denial	Universal
$\sigma, \times, -$	PTIME	PTIME	PTIME	PTIME: binary
$\sigma,\times,-,\cup$	PTIME	PTIME	PTIME	
σ, π	PTIME	co-NPC	co-NPC	
σ, π, \times	co-NPC	co-NPC	co-NPC	
	PTIME: Cforest			
$\sigma,\pi,\times,-,\cup$	co-NPC	co-NPC	co-NPC	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- [Arenas, Bertossi, Ch.: PODS'99]
- [Ch., Marcinkowski: Inf.Comp.'05]
- [Fuxman, Miller: ICDT'05]

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

	Primary keys	Arbitrary keys	Denial	Universal
$\sigma, \times, -$	PTIME	PTIME	PTIME	PTIME: binary
				Π_2^p -complete
$\sigma,\times,-,\cup$	PTIME	PTIME	PTIME	Π_2^p -complete
σ, π	PTIME	co-NPC	co-NPC	Π_2^p -complete
σ, π, \times	co-NPC	co-NPC	co-NPC	Π_2^p -complete
	PTIME: Cforest			
$\sigma,\pi,\times,-,\cup$	co-NPC	co-NPC	co-NPC	Π_2^p -complete

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- [Arenas, Bertossi, Ch.: PODS'99]
- [Ch., Marcinkowski: Inf.Comp.'05]
- [Fuxman, Miller: ICDT'05]
- [Staworko, Ch.: unpublished]

The Semantic Explosion

CQA

Jan Chomicki

Motivation

Outlin

Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

Tuple-based repairs

- asymmetric treatment of insertion and deletion:
 - repairs by minimal deletions only [Ch., Marcinkowski: Inf.Comp.'05]: data possibly incorrect but complete
 - repairs by minimal deletions and arbitrary insertions [Calì, Lembo, Rosati: PODS'03]: data possibly incorrect and incomplete

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• minimal cardinality changes [Lopatenko, Bertossi: ICDT'07]

The Semantic Explosion

CQA

Jan Chomicki

- Motivation
- Outlin
- Research Goals
- Basics
- Computing CQA Methods Complexity
- Variants of CQA
- Conclusions

Tuple-based repairs

- asymmetric treatment of insertion and deletion:
 - repairs by minimal deletions only [Ch., Marcinkowski: Inf.Comp.'05]: data possibly incorrect but complete
 - repairs by minimal deletions and arbitrary insertions [Calì, Lembo, Rosati: PODS'03]: data possibly incorrect and incomplete

• minimal cardinality changes [Lopatenko, Bertossi: ICDT'07]

Attribute-based repairs

- (A) ground and non-ground repairs [Wijsen: TODS'05]
- (B) project-join repairs [Wijsen: FQAS'06]
- (C) repairs minimizing Euclidean distance [Bertossi et al.: DBPL'05]
- (D) repairs of minimum cost [Bohannon et al.: SIGMOD'05].

The Semantic Explosion

CQA

Jan Chomicki

- Motivation
- Outlin
- Research Goals
- Basics
- Computing CQA Methods Complexity
- Variants of CQA
- Conclusions

Tuple-based repairs

- asymmetric treatment of insertion and deletion:
 - repairs by minimal deletions only [Ch., Marcinkowski: Inf.Comp.'05]: data possibly incorrect but complete
 - repairs by minimal deletions and arbitrary insertions [Calì, Lembo, Rosati: PODS'03]: data possibly incorrect and incomplete
- minimal cardinality changes [Lopatenko, Bertossi: ICDT'07]

Attribute-based repairs

- (A) ground and non-ground repairs [Wijsen: TODS'05]
- (B) project-join repairs [Wijsen: FQAS'06]
- (C) repairs minimizing Euclidean distance [Bertossi et al.: DBPL'05]
- (D) repairs of minimum cost [Bohannon et al.: SIGMOD'05].

Computational complexity

- (A) and (B): similar to tuple based repairs
- (C) and (D): checking existence of a repair of cost < K NP-complete.

The Need for Attribute-based Repairing

CQA

Jan Chomicki

Motivation

Outlin

Research Goals

Basics

Computing CQA Methods Complexit

Variants of CQA

Conclusions

Tuple-based repairing leads to information loss.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

The Need for Attribute-based Repairing

CQA

Jan Chomicki

Motivation

Outlin

Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

Tuple-based repairing leads to information loss.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

EmpDept		
Name	Dept	Location
John	Sales	Buffalo
Mary	Sales	Toronto
$Name \to Dept$		
$Dept \to City$		

The Need for Attribute-based Repairing

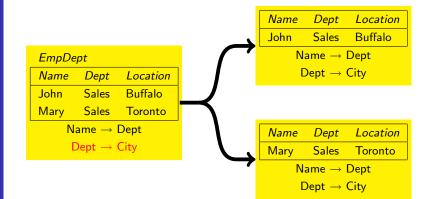
CQA

Jan Chomicki

Motivation

Outlin

Research Goals


Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

Tuple-based repairing leads to information loss.

Attribute-based Repairs through Tuple-based Repairs

CQA

Jan Chomicki

Motivation

Outlin

Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

Repair a lossless join decomposition.

The decomposition:

 $\pi_{Name,Dept}(EmpDept) \bowtie \pi_{Dept,Location}(EmpDept)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Attribute-based Repairs through Tuple-based Repairs

CQA

Jan Chomicki

Motivation

Outlin

Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

Repair a lossless join decomposition.

The decomposition:

 $\pi_{Name,Dept}(EmpDept) \bowtie \pi_{Dept,Location}(EmpDept)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Name	Dept	Location
John	Sales	Buffalo
John	Sales	Toronto
Mary	Sales	Buffalo
Mary	Sales	Toronto
$Name \to Dept$		
0	$Dept \to 0$	City

Attribute-based Repairs through Tuple-based Repairs

CQA

Jan Chomicki

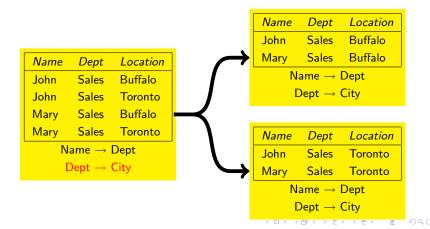
Motivation

Outlin

Research Goals

Basics

Computing CQA Methods Complexity


Variants of CQA

Conclusions

Repair a lossless join decomposition.

The decomposition:

 $\pi_{Name,Dept}(EmpDept) \bowtie \pi_{Dept,Location}(EmpDept)$

CQA

Jan Chomicki

Motivatior

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

[Andritsos, Fuxman, Miller: ICDE'06]

- potential duplicates identified and grouped into clusters
- \bullet worlds \approx repairs: one tuple from each cluster
- world probability: product of tuple probabilities
- clean answers: in the query result in some (supporting) world
- clean answer probability: sum of the probabilities of supporting worlds

• consistent answer: clean answer with probability 1

CQA

Jan Chomicki

Motivatior

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

[Andritsos, Fuxman, Miller: ICDE'06]

- potential duplicates identified and grouped into clusters
- \bullet worlds \approx repairs: one tuple from each cluster
- world probability: product of tuple probabilities
- clean answers: in the query result in some (supporting) world
- clean answer probability: sum of the probabilities of supporting worlds
 - consistent answer: clean answer with probability 1

Salaries with probabilities

EmpPro	ob	
Name	Salary	Prob
Gates	20M	0.7
Gates	30M	0.3
Grove	10M	0.5
Grove	20M	0.5
Nan	$ne \to Sal$	ary

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

SQL query

SELECT Name FROM EmpProb e WHERE e.Salary > 15M

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

SQL query

SELECT Name FROM EmpProb e WHERE e.Salary > 15M

SQL rewritten query

SELECT e.Name,SUM(e.Prob) FROM EmpProb e WHERE e.Salary > 15M GROUP BY e.Name

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

SQL query

SELECT Name FROM EmpProb e WHERE e.Salary > 15M

SQL rewritten query

SELECT e.Name,SUM(e.Prob) FROM EmpProb e WHERE e.Salary > 15M GROUP BY e.Name

EmpProb

Name	Salary	Prob
Gates	20M	0.7
Gates	30M	0.3
Grove	10M	0.5
Grove	20M	0.5
Name \rightarrow Salarv		

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

SQL query

SELECT Name FROM EmpProb e WHERE e.Salary > 15M

SQL rewritten query

SELECT e.Name,SUM(e.Prob) FROM EmpProb e WHERE e.Salary > 15M GROUP BY e.Name

EmpPro	ob	
Name	Salary	Prob
Gates	20M	0.7
Gates	30M	0.3
Grove	10M	0.5
Grove	20M	0.5
Nan	$ne \to Sal$	ary

SELECT e.Name,SUM(e.Prob) FROM EmpProb e WHERE e.Salary > 15M GROUP BY e.Name

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

CQA

Variants of

SQL query

SELECT Name FROM EmpProb e WHERE e.Salary > 15M

SQL rewritten query

SELECT e.Name,SUM(e.Prob) FROM EmpProb e WHERE e.Salary > 15M GROUP BY e.Name

Prob

0.5

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

EmpPro	ob	
Name	Salary	Prob
Gates	20M	0.7
Gates	30M	0.3
Grove	10M	0.5
Grove	20M	0.5
Nan	$ne \to Sal$	ary

SELECT e.Name,SUM(e.Prob) FROM EmpProb e WHERE e.Salary > 15M GROUP BY e.Name Name Gates 1 Grove

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexit

Variants o CQA

Conclusions

PODS'99, June 1999

• Arenas, Bertossi, Ch.: "Consistent Query Answers in Inconsistent Databases."

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

PODS'99, June 1999

• Arenas, Bertossi, Ch.: "Consistent Query Answers in Inconsistent Databases."

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Other concurrent events:

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants c CQA

Conclusions

PODS'99, June 1999

• Arenas, Bertossi, Ch.: "Consistent Query Answers in Inconsistent Databases."

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Other concurrent events:

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

PODS'99, June 1999

• Arenas, Bertossi, Ch.: "Consistent Query Answers in Inconsistent Databases."

Other concurrent events:

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

PODS'99, June 1999

• Arenas, Bertossi, Ch.: "Consistent Query Answers in Inconsistent Databases."

Other concurrent events:

Taking Stock: Good News

CQA

Jan Chomicki

- Motivation
- Outline
- Research Goals
- Basics
- Computing CQA Methods Complexity
- Variants o CQA
- Conclusions

Technology

- practical methods for CQA for a subset of SQL:
 - restricted conjunctive/aggregation queries, primary/foreign-key constraints

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- quantifier-free queries/denial constraints
- LP-based approaches for expressive query/constraint languages
- implemented in prototype systems
- tested on medium-size databases

Taking Stock: Good News

CQA

Jan Chomicki

- Motivation
- Outline
- Research Goals
- Basics
- Computing CQA Methods Complexity
- Variants o CQA
- Conclusions

Technology

- practical methods for CQA for a subset of SQL:
 - restricted conjunctive/aggregation queries, primary/foreign-key constraints

- quantifier-free queries/denial constraints
- LP-based approaches for expressive query/constraint languages
- implemented in prototype systems
- tested on medium-size databases

The CQA Community

- over 30 active researchers
- up to 100 publications (since 1999)
- outreach to the AI community (qualified success)

Taking Stock: Initial Progress

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexit

Variants o CQA

Conclusions

Taking Stock: Initial Progress

CQA

Jan Chomicki

- Motivation
- Outline
- Research Goals
- Basics
- Computing CQA Methods Complexity
- Variants o CQA
- Conclusions

"Blending in" CQA

• data integration: tension between repairing and satisfying source-to-target dependencies

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• peer-to-peer: how to isolate an inconsistent peer?

Taking Stock: Initial Progress

CQA

Jan Chomicki

- Motivation
- Outline
- Research Goals
- Basics
- Computing CQA Methods Complexity
- Variants o CQA
- Conclusions

"Blending in" CQA

- data integration: tension between repairing and satisfying source-to-target dependencies
- peer-to-peer: how to isolate an inconsistent peer?

Extensions

• nulls:

- repairs with nulls?
- clean semantics vs. SQL conformance

• priorities:

- preferred repairs
- application: conflict resolution

• XML

- notions of integrity constraint and repair
- repair minimality based on tree edit distance?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Jan Chomicki

Motivatior

Outline

Research Goals

Basics

Computing CQA Methods Complexit

Variants o CQA

Conclusions

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants o CQA

Conclusions

Applications

- no deployed applications
- repairing vs. CQA: data and query characteristics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• heuristics for CQA and repairing

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

Applications

- no deployed applications
- repairing vs. CQA: data and query characteristics
- heuristics for CQA and repairing

Consolidation

- taming the semantic explosion
- general first-order definability of CQA
- CQA and data cleaning
- CQA and schema matching/mapping

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

Applications

- no deployed applications
- repairing vs. CQA: data and query characteristics
- heuristics for CQA and repairing

Consolidation

- taming the semantic explosion
- general first-order definability of CQA
- CQA and data cleaning
- CQA and schema matching/mapping

Foundations

- defining measures of consistency
- more refined complexity analysis

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

dynamic aspects

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

Variants of CQA

Conclusions

Applications

- no deployed applications
- repairing vs. CQA: data and query characteristics
- heuristics for CQA and repairing

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Consolidation

- taming the semantic explosion
- general first-order definability of CQA
- CQA and data cleaning
- CQA and schema matching/mapping

Foundations

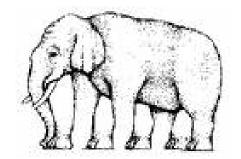
- defining measures of consistency
- more refined complexity analysis
- dynamic aspects

Inconsistent elephant (by Oscar Reutersvärd)

Jan Chomicki

Motivatior

Outlin


Researci Goals

Basics

Computing CQA Methods Complexit

Variants o CQA

Conclusions

・ロト ・聞ト ・ヨト ・ヨト

æ

Selected overview papers

CQA

Jan Chomicki

Motivation

Outline

Research Goals

Basics

Computing CQA Methods Complexity

CQA

Conclusions

L. Bertossi, J. Chomicki, Query Answering in Inconsistent Databases. In *Logics for Emerging Applications of Databases*, J. Chomicki, R. van der Meyden, G. Saake [eds.], Springer-Verlag, 2003.

J. Chomicki and J. Marcinkowski, On the Computational Complexity of Minimal-Change Integrity Maintenance in Relational Databases. In *Inconsistency Tolerance*, L. Bertossi, A. Hunter, T. Schaub, editors, Springer-Verlag, 2004.

L. Bertossi, Consistent Query Answering in Databases. SIGMOD Record, June 2006.

"Five Easy Pieces"

Conclus

CQA	Bobby: I'd like a plain omelet. No potatoes, tomatoes instead. A cup of coffee and
	wheat toast.
	Waitress: No substitutions.
	Bobby : What do you mean? You don't have any tomatoes?
	Waitress: Only what's on the menu. You can have a number two - a plain omelet. It
	comes with cottage, fries, and rolls.
	Bobby: Yea, I know what it comes with, but it's not what I want.
	Waitress: I'll come back when you make up your mind.
	Bobby: Wait a minute, I have made up my mind. I'd like a plain omelet, no potatoes
	on the plate. A cup of coffee and a side order of wheat toast.
	Waitress: I'm sorry, we don't have any side orders of toast. I'll give you a English
	muffin or a coffee roll.
	Bobby : What do you mean "you don't make side orders of toast"? You make
	sandwiches, don't you?
	Waitress: Would you like to talk to the manager?
onclusions	Bobby: You've got bread. And a toaster of some kind?
	Waitress: I don't make the rules.
	Bobby : OK, I'll make it as easy for you as I can. I'd like an omelet, plain, and a
	chicken salad sandwich on wheat toast, no mayonnaise, no butter, no lettuce. And a
	cup of coffee.
	Waitress : A number two, chicken sal san. Hold the butter, the lettuce, the
	mayonnaise, and a cup of coffee. Anything else?
	Bobby : Yeah, now all you have to do is hold the chicken, bring me the toast, give me
	a check for the chicken salad sandwich, and you haven't broken any rules.
	Waitress: You want me to hold the chicken, huh?
	Bohby: I want you to hold it between your knees $(\Box) (\Box) (\Box) (\Box) (\Box) (\Box) (\Box) (\Box) (\Box) (\Box) $

Bobby: I want you to hold it between your knees. 2 - E -