
Database Consistency: Logic-Based Approaches

Jan Chomicki
University at Buffalo and Warsaw University

June 25-29, 2007

Jan Chomicki () Database Consistency June 25-29, 2007 1 / 85

Plan of the course

1 Integrity constraints

2 Consistent query answers

3 XML

Jan Chomicki () Database Consistency June 25-29, 2007 2 / 85

Part I

Integrity constraints

Jan Chomicki () Database Consistency June 25-29, 2007 3 / 85

Outline of Part I

1 Basic notions

2 Implication of dependencies

3 Axiomatization

4 Applications
Database design
Data exchange
Semantic query optimization

Jan Chomicki () Database Consistency June 25-29, 2007 4 / 85

Integrity constraints (dependencies)

Database instance D:

a finite first-order structure

the information about the world

Integrity constraints Σ:

first-order logic formulas

the properties of the world

Satisfaction of constraints: D |= Σ

Formula satisfaction in a first-order structure.

Consistent database: D |= Σ

Name City Salary

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Inconsistent database: D 6|= Σ

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Jan Chomicki () Database Consistency June 25-29, 2007 5 / 85

Integrity constraints (dependencies)

Database instance D:

a finite first-order structure

the information about the world

Integrity constraints Σ:

first-order logic formulas

the properties of the world

Satisfaction of constraints: D |= Σ

Formula satisfaction in a first-order structure.

Consistent database: D |= Σ

Name City Salary

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Inconsistent database: D 6|= Σ

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Jan Chomicki () Database Consistency June 25-29, 2007 5 / 85

Integrity constraints (dependencies)

Database instance D:

a finite first-order structure

the information about the world

Integrity constraints Σ:

first-order logic formulas

the properties of the world

Satisfaction of constraints: D |= Σ

Formula satisfaction in a first-order structure.

Consistent database: D |= Σ

Name City Salary

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Inconsistent database: D 6|= Σ

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Jan Chomicki () Database Consistency June 25-29, 2007 5 / 85

Integrity constraints (dependencies)

Database instance D:

a finite first-order structure

the information about the world

Integrity constraints Σ:

first-order logic formulas

the properties of the world

Satisfaction of constraints: D |= Σ

Formula satisfaction in a first-order structure.

Consistent database: D |= Σ

Name City Salary

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Inconsistent database: D 6|= Σ

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Jan Chomicki () Database Consistency June 25-29, 2007 5 / 85

Integrity constraints (dependencies)

Database instance D:

a finite first-order structure

the information about the world

Integrity constraints Σ:

first-order logic formulas

the properties of the world

Satisfaction of constraints: D |= Σ

Formula satisfaction in a first-order structure.

Consistent database: D |= Σ

Name City Salary

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Inconsistent database: D 6|= Σ

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Jan Chomicki () Database Consistency June 25-29, 2007 5 / 85

The need for integrity constraints

Roles of integrity constraints

capture the semantics of data:
legal values of attributes
object identity
relationships, associations

reduce data errors ⇒ data quality

help in database design

help in query formulation

(usually) no effect on query semantics but ...

query evaluation and analysis are affected:
indexes, access paths
query containment and equivalence
semantic query optimization (SQO)

Examples

key functional dependency: “every employee has a single address and salary”

denial constraint: “no employee can earn more than her manager”

foreign key constraint: “every manager is an employee”

Jan Chomicki () Database Consistency June 25-29, 2007 6 / 85

Constraint enforcement

Enforced by application programs

constraint checks inserted into code

code duplication and increased application complexity

error-prone: different applications can make different assumptions

prevent system-level optimizations

Enforced by DBMS

constraint checks performed by DBMS (“factored out”)

violating updates rolled back

leads to application simplification and reduces errors

enables query optimizations

but ... integrity checks are expensive and inflexible

Not enforced

data comes from multiple, independent sources

long transactions with inconsistent intermediate states

enforcement too expensive

Jan Chomicki () Database Consistency June 25-29, 2007 7 / 85

Constraint enforcement

Enforced by application programs

constraint checks inserted into code

code duplication and increased application complexity

error-prone: different applications can make different assumptions

prevent system-level optimizations

Enforced by DBMS

constraint checks performed by DBMS (“factored out”)

violating updates rolled back

leads to application simplification and reduces errors

enables query optimizations

but ... integrity checks are expensive and inflexible

Not enforced

data comes from multiple, independent sources

long transactions with inconsistent intermediate states

enforcement too expensive

Jan Chomicki () Database Consistency June 25-29, 2007 7 / 85

Constraint enforcement

Enforced by application programs

constraint checks inserted into code

code duplication and increased application complexity

error-prone: different applications can make different assumptions

prevent system-level optimizations

Enforced by DBMS

constraint checks performed by DBMS (“factored out”)

violating updates rolled back

leads to application simplification and reduces errors

enables query optimizations

but ... integrity checks are expensive and inflexible

Not enforced

data comes from multiple, independent sources

long transactions with inconsistent intermediate states

enforcement too expensive

Jan Chomicki () Database Consistency June 25-29, 2007 7 / 85

Constraint enforcement

Enforced by application programs

constraint checks inserted into code

code duplication and increased application complexity

error-prone: different applications can make different assumptions

prevent system-level optimizations

Enforced by DBMS

constraint checks performed by DBMS (“factored out”)

violating updates rolled back

leads to application simplification and reduces errors

enables query optimizations

but ... integrity checks are expensive and inflexible

Not enforced

data comes from multiple, independent sources

long transactions with inconsistent intermediate states

enforcement too expensive
Jan Chomicki () Database Consistency June 25-29, 2007 7 / 85

Basic issues

Implication

Given a set of ICs Σ and an IC σ, does D |= Σ imply D |= σ for every database D?

Axiomatization

Can the notion of implication be “axiomatized”?

Inconsistent databases

1 How to construct a consistent database on the basis of an inconsistent one?

2 How to obtain information unaffected by inconsistency?

Jan Chomicki () Database Consistency June 25-29, 2007 8 / 85

Basic issues

Implication

Given a set of ICs Σ and an IC σ, does D |= Σ imply D |= σ for every database D?

Axiomatization

Can the notion of implication be “axiomatized”?

Inconsistent databases

1 How to construct a consistent database on the basis of an inconsistent one?

2 How to obtain information unaffected by inconsistency?

Jan Chomicki () Database Consistency June 25-29, 2007 8 / 85

Basic issues

Implication

Given a set of ICs Σ and an IC σ, does D |= Σ imply D |= σ for every database D?

Axiomatization

Can the notion of implication be “axiomatized”?

Inconsistent databases

1 How to construct a consistent database on the basis of an inconsistent one?

2 How to obtain information unaffected by inconsistency?

Jan Chomicki () Database Consistency June 25-29, 2007 8 / 85

Basic issues

Implication

Given a set of ICs Σ and an IC σ, does D |= Σ imply D |= σ for every database D?

Axiomatization

Can the notion of implication be “axiomatized”?

Inconsistent databases

1 How to construct a consistent database on the basis of an inconsistent one?

2 How to obtain information unaffected by inconsistency?

Jan Chomicki () Database Consistency June 25-29, 2007 8 / 85

ICs in logical form

Atomic formulas

relational (database) atoms P(x1, . . . , xk)

equality atoms x1 = x2

no constants

General form

∀x1, . . . xk . A1 ∧ · · · ∧ An ⇒ ∃y1, . . . , yl . B1 ∧ · · · ∧ Bm.

Subclasses

full dependencies: no existential variables (l = 0)

tuple-generating dependencies (TGDs): no equality atoms

equality-generating dependencies (EGDs): m = 1, B1 is an equality atom

functional dependencies (FDs): typed binary unirelational EGDs

join dependencies (JDs): TGDs with LHS a multiway join

denial constraints: l = 0, m = 0

inclusion dependencies (INDs): n = m = 1, no equality atoms

Jan Chomicki () Database Consistency June 25-29, 2007 9 / 85

ICs in logical form

Atomic formulas

relational (database) atoms P(x1, . . . , xk)

equality atoms x1 = x2

no constants

General form

∀x1, . . . xk . A1 ∧ · · · ∧ An ⇒ ∃y1, . . . , yl . B1 ∧ · · · ∧ Bm.

Subclasses

full dependencies: no existential variables (l = 0)

tuple-generating dependencies (TGDs): no equality atoms

equality-generating dependencies (EGDs): m = 1, B1 is an equality atom

functional dependencies (FDs): typed binary unirelational EGDs

join dependencies (JDs): TGDs with LHS a multiway join

denial constraints: l = 0, m = 0

inclusion dependencies (INDs): n = m = 1, no equality atoms

Jan Chomicki () Database Consistency June 25-29, 2007 9 / 85

ICs in logical form

Atomic formulas

relational (database) atoms P(x1, . . . , xk)

equality atoms x1 = x2

no constants

General form

∀x1, . . . xk . A1 ∧ · · · ∧ An ⇒ ∃y1, . . . , yl . B1 ∧ · · · ∧ Bm.

Subclasses

full dependencies: no existential variables (l = 0)

tuple-generating dependencies (TGDs): no equality atoms

equality-generating dependencies (EGDs): m = 1, B1 is an equality atom

functional dependencies (FDs): typed binary unirelational EGDs

join dependencies (JDs): TGDs with LHS a multiway join

denial constraints: l = 0, m = 0

inclusion dependencies (INDs): n = m = 1, no equality atoms

Jan Chomicki () Database Consistency June 25-29, 2007 9 / 85

ICs in logical form

Atomic formulas

relational (database) atoms P(x1, . . . , xk)

equality atoms x1 = x2

no constants

General form

∀x1, . . . xk . A1 ∧ · · · ∧ An ⇒ ∃y1, . . . , yl . B1 ∧ · · · ∧ Bm.

Subclasses

full dependencies: no existential variables (l = 0)

tuple-generating dependencies (TGDs): no equality atoms

equality-generating dependencies (EGDs): m = 1, B1 is an equality atom

functional dependencies (FDs): typed binary unirelational EGDs

join dependencies (JDs): TGDs with LHS a multiway join

denial constraints: l = 0, m = 0

inclusion dependencies (INDs): n = m = 1, no equality atoms

Jan Chomicki () Database Consistency June 25-29, 2007 9 / 85

Examples

Database schema NAM(Name,Address,Manager), NAS(Name,Address,Salary),
NM(Name,Manager).

Full TGD

∀n, a,m, s. NAS(n, a, s) ∧ NM(n,m)⇒ NAM(n, a,m)

Non-full TGD

∀n, a,m. NAM(n, a,m)⇒ ∃s. NAS(n, a, s)

Inclusion dependency
(IND)

NAM[Name,Address] ⊆
NAS [Name,Address]

EGD

∀n, a,m, a′,m′. NAM(n, a,m) ∧ NAM(n, a′,m′)⇒
a = a′

Functional dependency
(FD)

Name → Address

Jan Chomicki () Database Consistency June 25-29, 2007 10 / 85

Examples

Database schema NAM(Name,Address,Manager), NAS(Name,Address,Salary),
NM(Name,Manager).

Full TGD

∀n, a,m, s. NAS(n, a, s) ∧ NM(n,m)⇒ NAM(n, a,m)

Non-full TGD

∀n, a,m. NAM(n, a,m)⇒ ∃s. NAS(n, a, s)

Inclusion dependency
(IND)

NAM[Name,Address] ⊆
NAS [Name,Address]

EGD

∀n, a,m, a′,m′. NAM(n, a,m) ∧ NAM(n, a′,m′)⇒
a = a′

Functional dependency
(FD)

Name → Address

Jan Chomicki () Database Consistency June 25-29, 2007 10 / 85

Examples

Database schema NAM(Name,Address,Manager), NAS(Name,Address,Salary),
NM(Name,Manager).

Full TGD

∀n, a,m, s. NAS(n, a, s) ∧ NM(n,m)⇒ NAM(n, a,m)

Non-full TGD

∀n, a,m. NAM(n, a,m)⇒ ∃s. NAS(n, a, s)

Inclusion dependency
(IND)

NAM[Name,Address] ⊆
NAS [Name,Address]

EGD

∀n, a,m, a′,m′. NAM(n, a,m) ∧ NAM(n, a′,m′)⇒
a = a′

Functional dependency
(FD)

Name → Address

Jan Chomicki () Database Consistency June 25-29, 2007 10 / 85

Examples

Database schema NAM(Name,Address,Manager), NAS(Name,Address,Salary),
NM(Name,Manager).

Full TGD

∀n, a,m, s. NAS(n, a, s) ∧ NM(n,m)⇒ NAM(n, a,m)

Non-full TGD

∀n, a,m. NAM(n, a,m)⇒ ∃s. NAS(n, a, s)

Inclusion dependency
(IND)

NAM[Name,Address] ⊆
NAS [Name,Address]

EGD

∀n, a,m, a′,m′. NAM(n, a,m) ∧ NAM(n, a′,m′)⇒
a = a′

Functional dependency
(FD)

Name → Address

Jan Chomicki () Database Consistency June 25-29, 2007 10 / 85

Implication: from linear-time to undecidable

Functional dependencies

1 view each attribute as a propositional variable

2 view each dependency A1 . . .Ak → B ∈ Σ as a Horn clause A1 ∧ · · · ∧ Ak ⇒ B

3 if σ = C1 ∧ · · · ∧ Cd ⇒ D, then ¬σ = C1 ∧ · · · ∧ Cd ∧ ¬D consists of Horn clauses

4 thus Σ ∪ ¬σ is a set of Horn clauses whose (un)satisfiability can be tested in linear
time (Dowling, Gallier [DG84])

Theorem (Chandra, Vardi [CV85])

The implication problem for functional dependencies together with inclusion
dependencies is undecidable.

Jan Chomicki () Database Consistency June 25-29, 2007 11 / 85

Implication: from linear-time to undecidable

Functional dependencies

1 view each attribute as a propositional variable

2 view each dependency A1 . . .Ak → B ∈ Σ as a Horn clause A1 ∧ · · · ∧ Ak ⇒ B

3 if σ = C1 ∧ · · · ∧ Cd ⇒ D, then ¬σ = C1 ∧ · · · ∧ Cd ∧ ¬D consists of Horn clauses

4 thus Σ ∪ ¬σ is a set of Horn clauses whose (un)satisfiability can be tested in linear
time (Dowling, Gallier [DG84])

Theorem (Chandra, Vardi [CV85])

The implication problem for functional dependencies together with inclusion
dependencies is undecidable.

Jan Chomicki () Database Consistency June 25-29, 2007 11 / 85

Implication: from linear-time to undecidable

Functional dependencies

1 view each attribute as a propositional variable

2 view each dependency A1 . . .Ak → B ∈ Σ as a Horn clause A1 ∧ · · · ∧ Ak ⇒ B

3 if σ = C1 ∧ · · · ∧ Cd ⇒ D, then ¬σ = C1 ∧ · · · ∧ Cd ∧ ¬D consists of Horn clauses

4 thus Σ ∪ ¬σ is a set of Horn clauses whose (un)satisfiability can be tested in linear
time (Dowling, Gallier [DG84])

Theorem (Chandra, Vardi [CV85])

The implication problem for functional dependencies together with inclusion
dependencies is undecidable.

Jan Chomicki () Database Consistency June 25-29, 2007 11 / 85

Implication in logic

No restriction to finite structures.

Finite and unrestricted implication

coincide for full dependencies

if they coincide, then they are decidable

but not vice versa (FDs and unary INDs)

Counterexample

Σ = {A→ B,R[A] ⊆ R[B]}
σ = R[B] ⊆ R[A]

A B

1 0

2 1

3 2

4 3

· · ·

Finite and unrestricted implication do not have to coincide.

Jan Chomicki () Database Consistency June 25-29, 2007 12 / 85

Implication in logic

No restriction to finite structures.

Finite and unrestricted implication

coincide for full dependencies

if they coincide, then they are decidable

but not vice versa (FDs and unary INDs)

Counterexample

Σ = {A→ B,R[A] ⊆ R[B]}
σ = R[B] ⊆ R[A]

A B

1 0

2 1

3 2

4 3

· · ·

Finite and unrestricted implication do not have to coincide.

Jan Chomicki () Database Consistency June 25-29, 2007 12 / 85

Implication in logic

No restriction to finite structures.

Finite and unrestricted implication

coincide for full dependencies

if they coincide, then they are decidable

but not vice versa (FDs and unary INDs)

Counterexample

Σ = {A→ B,R[A] ⊆ R[B]}
σ = R[B] ⊆ R[A]

A B

1 0

2 1

3 2

4 3

· · ·

Finite and unrestricted implication do not have to coincide.

Jan Chomicki () Database Consistency June 25-29, 2007 12 / 85

Implication in logic

No restriction to finite structures.

Finite and unrestricted implication

coincide for full dependencies

if they coincide, then they are decidable

but not vice versa (FDs and unary INDs)

Counterexample

Σ = {A→ B,R[A] ⊆ R[B]}
σ = R[B] ⊆ R[A]

A B

1 0

2 1

3 2

4 3

· · ·

Finite and unrestricted implication do not have to coincide.

Jan Chomicki () Database Consistency June 25-29, 2007 12 / 85

Implication in logic

No restriction to finite structures.

Finite and unrestricted implication

coincide for full dependencies

if they coincide, then they are decidable

but not vice versa (FDs and unary INDs)

Counterexample

Σ = {A→ B,R[A] ⊆ R[B]}
σ = R[B] ⊆ R[A]

A B

1 0

2 1

3 2

4 3

· · ·

Finite and unrestricted implication do not have to coincide.

Jan Chomicki () Database Consistency June 25-29, 2007 12 / 85

Chase

Deciding the implication of full dependencies using chase

1 apply chase steps using the dependencies in Σ nondeterministically, obtaining a
sequence of dependencies τ0 = σ, τ1, . . . , τn

2 stop when no chase steps can be applied to τn (a terminal chase sequence)

3 if τn is trivial, then Σ implies σ

4 otherwise, Σ does not imply σ

Trivial dependencies

tgd: LHS contains RHS

egd: RHS ≡ x = x

Fundamental properties of the chase

Terminal chase sequence τ0 = σ, τ1, . . . , τn:

the LHS of τn, viewed as a database Dn, satisfies Σ

if τn is nontrivial, then Dn violates σ

the order of chase steps does not matter

Jan Chomicki () Database Consistency June 25-29, 2007 13 / 85

Chase

Deciding the implication of full dependencies using chase

1 apply chase steps using the dependencies in Σ nondeterministically, obtaining a
sequence of dependencies τ0 = σ, τ1, . . . , τn

2 stop when no chase steps can be applied to τn (a terminal chase sequence)

3 if τn is trivial, then Σ implies σ

4 otherwise, Σ does not imply σ

Trivial dependencies

tgd: LHS contains RHS

egd: RHS ≡ x = x

Fundamental properties of the chase

Terminal chase sequence τ0 = σ, τ1, . . . , τn:

the LHS of τn, viewed as a database Dn, satisfies Σ

if τn is nontrivial, then Dn violates σ

the order of chase steps does not matter

Jan Chomicki () Database Consistency June 25-29, 2007 13 / 85

Chase

Deciding the implication of full dependencies using chase

1 apply chase steps using the dependencies in Σ nondeterministically, obtaining a
sequence of dependencies τ0 = σ, τ1, . . . , τn

2 stop when no chase steps can be applied to τn (a terminal chase sequence)

3 if τn is trivial, then Σ implies σ

4 otherwise, Σ does not imply σ

Trivial dependencies

tgd: LHS contains RHS

egd: RHS ≡ x = x

Fundamental properties of the chase

Terminal chase sequence τ0 = σ, τ1, . . . , τn:

the LHS of τn, viewed as a database Dn, satisfies Σ

if τn is nontrivial, then Dn violates σ

the order of chase steps does not matter

Jan Chomicki () Database Consistency June 25-29, 2007 13 / 85

Chase

Deciding the implication of full dependencies using chase

1 apply chase steps using the dependencies in Σ nondeterministically, obtaining a
sequence of dependencies τ0 = σ, τ1, . . . , τn

2 stop when no chase steps can be applied to τn (a terminal chase sequence)

3 if τn is trivial, then Σ implies σ

4 otherwise, Σ does not imply σ

Trivial dependencies

tgd: LHS contains RHS

egd: RHS ≡ x = x

Fundamental properties of the chase

Terminal chase sequence τ0 = σ, τ1, . . . , τn:

the LHS of τn, viewed as a database Dn, satisfies Σ

if τn is nontrivial, then Dn violates σ

the order of chase steps does not matter

Jan Chomicki () Database Consistency June 25-29, 2007 13 / 85

Chase steps

A chase sequence τ0 = σ, τ1,

Applying a chase step using a tgd C

1 view the LHS of τj as a database Dj

2 find a substitution h that (1) h makes the LHS of C true in Dj , and (2) h cannot be
extended to a substitution that makes the RHS of C true in that instance

3 apply h to the RHS of C

4 add the resulting facts to the LHS of τj , obtaining τj+1

Applying a chase step using an egd C

1 view the LHS of τj as a database Dj

2 RHS of C ≡ x1 = x2

3 find a substitution h such that makes the LHS of C true in Dj and h(x1) 6= h(x2)

4 replace all the occurrences of h(x2) in τj by h(x1), obtaining τj+1

Jan Chomicki () Database Consistency June 25-29, 2007 14 / 85

Chase steps

A chase sequence τ0 = σ, τ1,

Applying a chase step using a tgd C

1 view the LHS of τj as a database Dj

2 find a substitution h that (1) h makes the LHS of C true in Dj , and (2) h cannot be
extended to a substitution that makes the RHS of C true in that instance

3 apply h to the RHS of C

4 add the resulting facts to the LHS of τj , obtaining τj+1

Applying a chase step using an egd C

1 view the LHS of τj as a database Dj

2 RHS of C ≡ x1 = x2

3 find a substitution h such that makes the LHS of C true in Dj and h(x1) 6= h(x2)

4 replace all the occurrences of h(x2) in τj by h(x1), obtaining τj+1

Jan Chomicki () Database Consistency June 25-29, 2007 14 / 85

Chase steps

A chase sequence τ0 = σ, τ1,

Applying a chase step using a tgd C

1 view the LHS of τj as a database Dj

2 find a substitution h that (1) h makes the LHS of C true in Dj , and (2) h cannot be
extended to a substitution that makes the RHS of C true in that instance

3 apply h to the RHS of C

4 add the resulting facts to the LHS of τj , obtaining τj+1

Applying a chase step using an egd C

1 view the LHS of τj as a database Dj

2 RHS of C ≡ x1 = x2

3 find a substitution h such that makes the LHS of C true in Dj and h(x1) 6= h(x2)

4 replace all the occurrences of h(x2) in τj by h(x1), obtaining τj+1

Jan Chomicki () Database Consistency June 25-29, 2007 14 / 85

Chase in action

Integrity constraints

C1 = ∀x , y . P(x , y)⇒ R(x , y)
C2 = ∀x , y , z . R(x , y) ∧ R(x , z)⇒ y = z
C3 = ∀x , y , z . P(x , y) ∧ P(x , z)⇒ y = z

Goal

Show that {C1,C2} implies C3.

Terminal chase sequence

τ0 = {P(x , y) ∧ P(x , z)⇒ y = z}
τ1 = {P(x , y) ∧ P(x , z) ∧ R(x , y)⇒ y = z}
τ2 = {P(x , y) ∧ P(x , z) ∧ R(x , y) ∧ R(x , z)⇒ y = z}
τ3 = {P(x , y) ∧ R(x , y)⇒ y = y}: a trivial dependency

Jan Chomicki () Database Consistency June 25-29, 2007 15 / 85

Chase in action

Integrity constraints

C1 = ∀x , y . P(x , y)⇒ R(x , y)
C2 = ∀x , y , z . R(x , y) ∧ R(x , z)⇒ y = z
C3 = ∀x , y , z . P(x , y) ∧ P(x , z)⇒ y = z

Goal

Show that {C1,C2} implies C3.

Terminal chase sequence

τ0 = {P(x , y) ∧ P(x , z)⇒ y = z}
τ1 = {P(x , y) ∧ P(x , z) ∧ R(x , y)⇒ y = z}
τ2 = {P(x , y) ∧ P(x , z) ∧ R(x , y) ∧ R(x , z)⇒ y = z}
τ3 = {P(x , y) ∧ R(x , y)⇒ y = y}: a trivial dependency

Jan Chomicki () Database Consistency June 25-29, 2007 15 / 85

Chase in action

Integrity constraints

C1 = ∀x , y . P(x , y)⇒ R(x , y)
C2 = ∀x , y , z . R(x , y) ∧ R(x , z)⇒ y = z
C3 = ∀x , y , z . P(x , y) ∧ P(x , z)⇒ y = z

Goal

Show that {C1,C2} implies C3.

Terminal chase sequence

τ0 = {P(x , y) ∧ P(x , z)⇒ y = z}
τ1 = {P(x , y) ∧ P(x , z) ∧ R(x , y)⇒ y = z}
τ2 = {P(x , y) ∧ P(x , z) ∧ R(x , y) ∧ R(x , z)⇒ y = z}
τ3 = {P(x , y) ∧ R(x , y)⇒ y = y}: a trivial dependency

Jan Chomicki () Database Consistency June 25-29, 2007 15 / 85

Chase in action

Integrity constraints

C1 = ∀x , y . P(x , y)⇒ R(x , y)
C2 = ∀x , y , z . R(x , y) ∧ R(x , z)⇒ y = z
C3 = ∀x , y , z . P(x , y) ∧ P(x , z)⇒ y = z

Goal

Show that {C1,C2} implies C3.

Terminal chase sequence

τ0 = {P(x , y) ∧ P(x , z)⇒ y = z}
τ1 = {P(x , y) ∧ P(x , z) ∧ R(x , y)⇒ y = z}
τ2 = {P(x , y) ∧ P(x , z) ∧ R(x , y) ∧ R(x , z)⇒ y = z}
τ3 = {P(x , y) ∧ R(x , y)⇒ y = y}: a trivial dependency

Jan Chomicki () Database Consistency June 25-29, 2007 15 / 85

Chase in action

Integrity constraints

C1 = ∀x , y . P(x , y)⇒ R(x , y)
C2 = ∀x , y , z . R(x , y) ∧ R(x , z)⇒ y = z
C3 = ∀x , y , z . P(x , y) ∧ P(x , z)⇒ y = z

Goal

Show that {C1,C2} implies C3.

Terminal chase sequence

τ0 = {P(x , y) ∧ P(x , z)⇒ y = z}

τ1 = {P(x , y) ∧ P(x , z) ∧ R(x , y)⇒ y = z}
τ2 = {P(x , y) ∧ P(x , z) ∧ R(x , y) ∧ R(x , z)⇒ y = z}
τ3 = {P(x , y) ∧ R(x , y)⇒ y = y}: a trivial dependency

Jan Chomicki () Database Consistency June 25-29, 2007 15 / 85

Chase in action

Integrity constraints

C1 = ∀x , y . P(x , y)⇒ R(x , y)
C2 = ∀x , y , z . R(x , y) ∧ R(x , z)⇒ y = z
C3 = ∀x , y , z . P(x , y) ∧ P(x , z)⇒ y = z

Goal

Show that {C1,C2} implies C3.

Terminal chase sequence

τ0 = {P(x , y) ∧ P(x , z)⇒ y = z}
τ1 = {P(x , y) ∧ P(x , z) ∧ R(x , y)⇒ y = z}

τ2 = {P(x , y) ∧ P(x , z) ∧ R(x , y) ∧ R(x , z)⇒ y = z}
τ3 = {P(x , y) ∧ R(x , y)⇒ y = y}: a trivial dependency

Jan Chomicki () Database Consistency June 25-29, 2007 15 / 85

Chase in action

Integrity constraints

C1 = ∀x , y . P(x , y)⇒ R(x , y)
C2 = ∀x , y , z . R(x , y) ∧ R(x , z)⇒ y = z
C3 = ∀x , y , z . P(x , y) ∧ P(x , z)⇒ y = z

Goal

Show that {C1,C2} implies C3.

Terminal chase sequence

τ0 = {P(x , y) ∧ P(x , z)⇒ y = z}
τ1 = {P(x , y) ∧ P(x , z) ∧ R(x , y)⇒ y = z}
τ2 = {P(x , y) ∧ P(x , z) ∧ R(x , y) ∧ R(x , z)⇒ y = z}

τ3 = {P(x , y) ∧ R(x , y)⇒ y = y}: a trivial dependency

Jan Chomicki () Database Consistency June 25-29, 2007 15 / 85

Chase in action

Integrity constraints

C1 = ∀x , y . P(x , y)⇒ R(x , y)
C2 = ∀x , y , z . R(x , y) ∧ R(x , z)⇒ y = z
C3 = ∀x , y , z . P(x , y) ∧ P(x , z)⇒ y = z

Goal

Show that {C1,C2} implies C3.

Terminal chase sequence

τ0 = {P(x , y) ∧ P(x , z)⇒ y = z}
τ1 = {P(x , y) ∧ P(x , z) ∧ R(x , y)⇒ y = z}
τ2 = {P(x , y) ∧ P(x , z) ∧ R(x , y) ∧ R(x , z)⇒ y = z}
τ3 = {P(x , y) ∧ R(x , y)⇒ y = y}

: a trivial dependency

Jan Chomicki () Database Consistency June 25-29, 2007 15 / 85

Chase in action

Integrity constraints

C1 = ∀x , y . P(x , y)⇒ R(x , y)
C2 = ∀x , y , z . R(x , y) ∧ R(x , z)⇒ y = z
C3 = ∀x , y , z . P(x , y) ∧ P(x , z)⇒ y = z

Goal

Show that {C1,C2} implies C3.

Terminal chase sequence

τ0 = {P(x , y) ∧ P(x , z)⇒ y = z}
τ1 = {P(x , y) ∧ P(x , z) ∧ R(x , y)⇒ y = z}
τ2 = {P(x , y) ∧ P(x , z) ∧ R(x , y) ∧ R(x , z)⇒ y = z}
τ3 = {P(x , y) ∧ R(x , y)⇒ y = y}: a trivial dependency

Jan Chomicki () Database Consistency June 25-29, 2007 15 / 85

A general perspective

Computational complexity

Testing implication of full dependencies is:

in EXPTIME (using chase)

EXPTIME-complete (Chandra et al. [CLM81])

First-order logic

implication of σ by Σ = {σ1, . . . , σk} is equivalent to the unsatisfiability of the
formula ΦΣ,σ ≡ σ1 ∧ · · · ∧ σk ∧ ¬σ
for full dependencies, the formulas ΦΣ,σ are of the form ∃∗∀∗φ where φ is
quantifier-free (Bernays-Schöfinkel class)

Bernays-Schöfinkel formulas have the finite-model property and their satisfiability is
in NEXPTIME

Theorem proving

Chase corresponds to a combination of hyperresolution and paramodulation.

Jan Chomicki () Database Consistency June 25-29, 2007 16 / 85

A general perspective

Computational complexity

Testing implication of full dependencies is:

in EXPTIME (using chase)

EXPTIME-complete (Chandra et al. [CLM81])

First-order logic

implication of σ by Σ = {σ1, . . . , σk} is equivalent to the unsatisfiability of the
formula ΦΣ,σ ≡ σ1 ∧ · · · ∧ σk ∧ ¬σ
for full dependencies, the formulas ΦΣ,σ are of the form ∃∗∀∗φ where φ is
quantifier-free (Bernays-Schöfinkel class)

Bernays-Schöfinkel formulas have the finite-model property and their satisfiability is
in NEXPTIME

Theorem proving

Chase corresponds to a combination of hyperresolution and paramodulation.

Jan Chomicki () Database Consistency June 25-29, 2007 16 / 85

A general perspective

Computational complexity

Testing implication of full dependencies is:

in EXPTIME (using chase)

EXPTIME-complete (Chandra et al. [CLM81])

First-order logic

implication of σ by Σ = {σ1, . . . , σk} is equivalent to the unsatisfiability of the
formula ΦΣ,σ ≡ σ1 ∧ · · · ∧ σk ∧ ¬σ
for full dependencies, the formulas ΦΣ,σ are of the form ∃∗∀∗φ where φ is
quantifier-free (Bernays-Schöfinkel class)

Bernays-Schöfinkel formulas have the finite-model property and their satisfiability is
in NEXPTIME

Theorem proving

Chase corresponds to a combination of hyperresolution and paramodulation.

Jan Chomicki () Database Consistency June 25-29, 2007 16 / 85

A general perspective

Computational complexity

Testing implication of full dependencies is:

in EXPTIME (using chase)

EXPTIME-complete (Chandra et al. [CLM81])

First-order logic

implication of σ by Σ = {σ1, . . . , σk} is equivalent to the unsatisfiability of the
formula ΦΣ,σ ≡ σ1 ∧ · · · ∧ σk ∧ ¬σ
for full dependencies, the formulas ΦΣ,σ are of the form ∃∗∀∗φ where φ is
quantifier-free (Bernays-Schöfinkel class)

Bernays-Schöfinkel formulas have the finite-model property and their satisfiability is
in NEXPTIME

Theorem proving

Chase corresponds to a combination of hyperresolution and paramodulation.

Jan Chomicki () Database Consistency June 25-29, 2007 16 / 85

Axiomatization

Inference rules

specific to classes of dependencies

guarantee closure: only dependencies from the same class are derived

bounded number of premises

Properties

Inference rules capture finite or unrestricted implication:

soundness: all the dependencies derived from a given set Σ are implied by Σ

completeness: all the dependencies implied by Σ can be derived from Σ

finite set of rules ⇒ implication decidable (but not vice versa)

Jan Chomicki () Database Consistency June 25-29, 2007 17 / 85

Axiomatization

Inference rules

specific to classes of dependencies

guarantee closure: only dependencies from the same class are derived

bounded number of premises

Properties

Inference rules capture finite or unrestricted implication:

soundness: all the dependencies derived from a given set Σ are implied by Σ

completeness: all the dependencies implied by Σ can be derived from Σ

finite set of rules ⇒ implication decidable (but not vice versa)

Jan Chomicki () Database Consistency June 25-29, 2007 17 / 85

Axiomatization

Inference rules

specific to classes of dependencies

guarantee closure: only dependencies from the same class are derived

bounded number of premises

Properties

Inference rules capture finite or unrestricted implication:

soundness: all the dependencies derived from a given set Σ are implied by Σ

completeness: all the dependencies implied by Σ can be derived from Σ

finite set of rules ⇒ implication decidable (but not vice versa)

Jan Chomicki () Database Consistency June 25-29, 2007 17 / 85

Example axiomatization

Axiomatizing INDs

1 Reflexivity: R[X] ⊆ R[X]

2 Projection and permutation: If R[A1, . . .Am] ⊆ S [B1, . . .Bm], then
R[Ai1 , . . . ,Aik] ⊆ S [Bi1 , . . . ,Bik] for every sequence i1, . . . , ik of distinct integers in
{1, . . . ,m}.

3 Transitivity: If R[X] ⊆ S [Y] and S [Y] ⊆ T [Z], then R[X] ⊆ T [Z].

A derivation

Schemas R(ABC) and S(AB):

(1) S [AB] ⊆ R[AB] (given IND)

(2) R[C] ⊆ S [A] (given IND)

(3) S [A] ⊆ R[A] (from (1))

(4) R[C] ⊆ R[A] (from (2) and (3))

Jan Chomicki () Database Consistency June 25-29, 2007 18 / 85

Example axiomatization

Axiomatizing INDs

1 Reflexivity: R[X] ⊆ R[X]

2 Projection and permutation: If R[A1, . . .Am] ⊆ S [B1, . . .Bm], then
R[Ai1 , . . . ,Aik] ⊆ S [Bi1 , . . . ,Bik] for every sequence i1, . . . , ik of distinct integers in
{1, . . . ,m}.

3 Transitivity: If R[X] ⊆ S [Y] and S [Y] ⊆ T [Z], then R[X] ⊆ T [Z].

A derivation

Schemas R(ABC) and S(AB):

(1) S [AB] ⊆ R[AB] (given IND)

(2) R[C] ⊆ S [A] (given IND)

(3) S [A] ⊆ R[A] (from (1))

(4) R[C] ⊆ R[A] (from (2) and (3))

Jan Chomicki () Database Consistency June 25-29, 2007 18 / 85

Example axiomatization

Axiomatizing INDs

1 Reflexivity: R[X] ⊆ R[X]

2 Projection and permutation: If R[A1, . . .Am] ⊆ S [B1, . . .Bm], then
R[Ai1 , . . . ,Aik] ⊆ S [Bi1 , . . . ,Bik] for every sequence i1, . . . , ik of distinct integers in
{1, . . . ,m}.

3 Transitivity: If R[X] ⊆ S [Y] and S [Y] ⊆ T [Z], then R[X] ⊆ T [Z].

A derivation

Schemas R(ABC) and S(AB):

(1) S [AB] ⊆ R[AB] (given IND)

(2) R[C] ⊆ S [A] (given IND)

(3) S [A] ⊆ R[A] (from (1))

(4) R[C] ⊆ R[A] (from (2) and (3))

Jan Chomicki () Database Consistency June 25-29, 2007 18 / 85

Example axiomatization

Axiomatizing INDs

1 Reflexivity: R[X] ⊆ R[X]

2 Projection and permutation: If R[A1, . . .Am] ⊆ S [B1, . . .Bm], then
R[Ai1 , . . . ,Aik] ⊆ S [Bi1 , . . . ,Bik] for every sequence i1, . . . , ik of distinct integers in
{1, . . . ,m}.

3 Transitivity: If R[X] ⊆ S [Y] and S [Y] ⊆ T [Z], then R[X] ⊆ T [Z].

A derivation

Schemas R(ABC) and S(AB):

(1) S [AB] ⊆ R[AB] (given IND)

(2) R[C] ⊆ S [A] (given IND)

(3) S [A] ⊆ R[A] (from (1))

(4) R[C] ⊆ R[A] (from (2) and (3))

Jan Chomicki () Database Consistency June 25-29, 2007 18 / 85

Example axiomatization

Axiomatizing INDs

1 Reflexivity: R[X] ⊆ R[X]

2 Projection and permutation: If R[A1, . . .Am] ⊆ S [B1, . . .Bm], then
R[Ai1 , . . . ,Aik] ⊆ S [Bi1 , . . . ,Bik] for every sequence i1, . . . , ik of distinct integers in
{1, . . . ,m}.

3 Transitivity: If R[X] ⊆ S [Y] and S [Y] ⊆ T [Z], then R[X] ⊆ T [Z].

A derivation

Schemas R(ABC) and S(AB):

(1) S [AB] ⊆ R[AB] (given IND)

(2) R[C] ⊆ S [A] (given IND)

(3) S [A] ⊆ R[A] (from (1))

(4) R[C] ⊆ R[A] (from (2) and (3))

Jan Chomicki () Database Consistency June 25-29, 2007 18 / 85

Example axiomatization

Axiomatizing INDs

1 Reflexivity: R[X] ⊆ R[X]

2 Projection and permutation: If R[A1, . . .Am] ⊆ S [B1, . . .Bm], then
R[Ai1 , . . . ,Aik] ⊆ S [Bi1 , . . . ,Bik] for every sequence i1, . . . , ik of distinct integers in
{1, . . . ,m}.

3 Transitivity: If R[X] ⊆ S [Y] and S [Y] ⊆ T [Z], then R[X] ⊆ T [Z].

A derivation

Schemas R(ABC) and S(AB):

(1) S [AB] ⊆ R[AB] (given IND)

(2) R[C] ⊆ S [A] (given IND)

(3) S [A] ⊆ R[A] (from (1))

(4) R[C] ⊆ R[A] (from (2) and (3))

Jan Chomicki () Database Consistency June 25-29, 2007 18 / 85

Example axiomatization

Axiomatizing INDs

1 Reflexivity: R[X] ⊆ R[X]

2 Projection and permutation: If R[A1, . . .Am] ⊆ S [B1, . . .Bm], then
R[Ai1 , . . . ,Aik] ⊆ S [Bi1 , . . . ,Bik] for every sequence i1, . . . , ik of distinct integers in
{1, . . . ,m}.

3 Transitivity: If R[X] ⊆ S [Y] and S [Y] ⊆ T [Z], then R[X] ⊆ T [Z].

A derivation

Schemas R(ABC) and S(AB):

(1) S [AB] ⊆ R[AB] (given IND)

(2) R[C] ⊆ S [A] (given IND)

(3) S [A] ⊆ R[A] (from (1))

(4) R[C] ⊆ R[A] (from (2) and (3))

Jan Chomicki () Database Consistency June 25-29, 2007 18 / 85

Review of results

Implication Axiomatization

FDs PTIME Finite

INDs PSPACE-complete Finite

FDs + INDs Undecidable No

Full (typed) dependencies EXPTIME-complete Yes

Join dependencies NP-complete No

First-order logic Undecidable Yes

Jan Chomicki () Database Consistency June 25-29, 2007 19 / 85

Application: database design

Keys

A set of attributes X ⊆ U is a key with respect to a set of FDs Σ if:

Σ implies X → U

for no proper subset Y of X , Σ implies Y → U

Decomposition

A decomposition R = (R1, . . . ,Rn) of a schema R has the lossless join property with
respect to a set of FDs Σ iff Σ implies the join dependency ./ [R].

Decomposition (R1,R2) of R(ABC)

Relation schemas: R1(AB) with FD A→ B, R2(AC).

Terminal chase sequence:

R(x , y , z ′) ∧ R(x , y ′, z)⇒ R(x , y , z) given JD

R(x , y , z ′) ∧ R(x , y , z)⇒ R(x , y , z) chase with A→ B

Jan Chomicki () Database Consistency June 25-29, 2007 20 / 85

Application: database design

Keys

A set of attributes X ⊆ U is a key with respect to a set of FDs Σ if:

Σ implies X → U

for no proper subset Y of X , Σ implies Y → U

Decomposition

A decomposition R = (R1, . . . ,Rn) of a schema R has the lossless join property with
respect to a set of FDs Σ iff Σ implies the join dependency ./ [R].

Decomposition (R1,R2) of R(ABC)

Relation schemas: R1(AB) with FD A→ B, R2(AC).

Terminal chase sequence:

R(x , y , z ′) ∧ R(x , y ′, z)⇒ R(x , y , z) given JD

R(x , y , z ′) ∧ R(x , y , z)⇒ R(x , y , z) chase with A→ B

Jan Chomicki () Database Consistency June 25-29, 2007 20 / 85

Application: database design

Keys

A set of attributes X ⊆ U is a key with respect to a set of FDs Σ if:

Σ implies X → U

for no proper subset Y of X , Σ implies Y → U

Decomposition

A decomposition R = (R1, . . . ,Rn) of a schema R has the lossless join property with
respect to a set of FDs Σ iff Σ implies the join dependency ./ [R].

Decomposition (R1,R2) of R(ABC)

Relation schemas: R1(AB) with FD A→ B, R2(AC).

Terminal chase sequence:

R(x , y , z ′) ∧ R(x , y ′, z)⇒ R(x , y , z) given JD

R(x , y , z ′) ∧ R(x , y , z)⇒ R(x , y , z) chase with A→ B

Jan Chomicki () Database Consistency June 25-29, 2007 20 / 85

Application: database design

Keys

A set of attributes X ⊆ U is a key with respect to a set of FDs Σ if:

Σ implies X → U

for no proper subset Y of X , Σ implies Y → U

Decomposition

A decomposition R = (R1, . . . ,Rn) of a schema R has the lossless join property with
respect to a set of FDs Σ iff Σ implies the join dependency ./ [R].

Decomposition (R1,R2) of R(ABC)

Relation schemas: R1(AB) with FD A→ B, R2(AC).

Terminal chase sequence:

R(x , y , z ′) ∧ R(x , y ′, z)⇒ R(x , y , z) given JD

R(x , y , z ′) ∧ R(x , y , z)⇒ R(x , y , z) chase with A→ B

Jan Chomicki () Database Consistency June 25-29, 2007 20 / 85

Application: database design

Keys

A set of attributes X ⊆ U is a key with respect to a set of FDs Σ if:

Σ implies X → U

for no proper subset Y of X , Σ implies Y → U

Decomposition

A decomposition R = (R1, . . . ,Rn) of a schema R has the lossless join property with
respect to a set of FDs Σ iff Σ implies the join dependency ./ [R].

Decomposition (R1,R2) of R(ABC)

Relation schemas: R1(AB) with FD A→ B, R2(AC).
Terminal chase sequence:

R(x , y , z ′) ∧ R(x , y ′, z)⇒ R(x , y , z) given JD

R(x , y , z ′) ∧ R(x , y , z)⇒ R(x , y , z) chase with A→ B

Jan Chomicki () Database Consistency June 25-29, 2007 20 / 85

Application: database design

Keys

A set of attributes X ⊆ U is a key with respect to a set of FDs Σ if:

Σ implies X → U

for no proper subset Y of X , Σ implies Y → U

Decomposition

A decomposition R = (R1, . . . ,Rn) of a schema R has the lossless join property with
respect to a set of FDs Σ iff Σ implies the join dependency ./ [R].

Decomposition (R1,R2) of R(ABC)

Relation schemas: R1(AB) with FD A→ B, R2(AC).
Terminal chase sequence:

R(x , y , z ′) ∧ R(x , y ′, z)⇒ R(x , y , z) given JD

R(x , y , z ′) ∧ R(x , y , z)⇒ R(x , y , z) chase with A→ B

Jan Chomicki () Database Consistency June 25-29, 2007 20 / 85

Application: database design

Keys

A set of attributes X ⊆ U is a key with respect to a set of FDs Σ if:

Σ implies X → U

for no proper subset Y of X , Σ implies Y → U

Decomposition

A decomposition R = (R1, . . . ,Rn) of a schema R has the lossless join property with
respect to a set of FDs Σ iff Σ implies the join dependency ./ [R].

Decomposition (R1,R2) of R(ABC)

Relation schemas: R1(AB) with FD A→ B, R2(AC).
Terminal chase sequence:

R(x , y , z ′) ∧ R(x , y ′, z)⇒ R(x , y , z) given JD

R(x , y , z ′) ∧ R(x , y , z)⇒ R(x , y , z) chase with A→ B

Jan Chomicki () Database Consistency June 25-29, 2007 20 / 85

Application: data exchange

Goal

Exchange of data between independent databases with different schemas.

Setting for data exchange

source and target schemas

source-to-target dependencies : describe how the data is mapped between source
and target

target integrity constraints

Data exchange is a specific scenario for data integration, in which a target instance is
constructed.

Jan Chomicki () Database Consistency June 25-29, 2007 21 / 85

Application: data exchange

Goal

Exchange of data between independent databases with different schemas.

Setting for data exchange

source and target schemas

source-to-target dependencies : describe how the data is mapped between source
and target

target integrity constraints

Data exchange is a specific scenario for data integration, in which a target instance is
constructed.

Jan Chomicki () Database Consistency June 25-29, 2007 21 / 85

Application: data exchange

Goal

Exchange of data between independent databases with different schemas.

Setting for data exchange

source and target schemas

source-to-target dependencies : describe how the data is mapped between source
and target

target integrity constraints

Data exchange is a specific scenario for data integration, in which a target instance is
constructed.

Jan Chomicki () Database Consistency June 25-29, 2007 21 / 85

Constraints and solutions

φS , φT , ψT are conjunctions of relation atomic formulas over source and target.

Source-to-target dependencies Σst

tuple-generating dependencies: ∀x (φS(x)⇒ ∃y ψT(x, y)).

Target integrity constraints Σt

tuple-generating dependencies (tgds): ∀x (φT(x)⇒ ∃y ψT(x, y))

equality-generating dependencies: ∀x (φT(x)⇒ x1 = x2).

Solution

Given a source instance I , a target instance J is

a solution for I if J satisfies Σt and (I , J) satisfy Σst

a universal solution for I if it is a solution for I and there is a homomorphism from it
to any other solution for I

solutions can contain labelled nulls

There may be multiple solutions.

Jan Chomicki () Database Consistency June 25-29, 2007 22 / 85

Constraints and solutions

φS , φT , ψT are conjunctions of relation atomic formulas over source and target.

Source-to-target dependencies Σst

tuple-generating dependencies: ∀x (φS(x)⇒ ∃y ψT(x, y)).

Target integrity constraints Σt

tuple-generating dependencies (tgds): ∀x (φT(x)⇒ ∃y ψT(x, y))

equality-generating dependencies: ∀x (φT(x)⇒ x1 = x2).

Solution

Given a source instance I , a target instance J is

a solution for I if J satisfies Σt and (I , J) satisfy Σst

a universal solution for I if it is a solution for I and there is a homomorphism from it
to any other solution for I

solutions can contain labelled nulls

There may be multiple solutions.

Jan Chomicki () Database Consistency June 25-29, 2007 22 / 85

Constraints and solutions

φS , φT , ψT are conjunctions of relation atomic formulas over source and target.

Source-to-target dependencies Σst

tuple-generating dependencies: ∀x (φS(x)⇒ ∃y ψT(x, y)).

Target integrity constraints Σt

tuple-generating dependencies (tgds): ∀x (φT(x)⇒ ∃y ψT(x, y))

equality-generating dependencies: ∀x (φT(x)⇒ x1 = x2).

Solution

Given a source instance I , a target instance J is

a solution for I if J satisfies Σt and (I , J) satisfy Σst

a universal solution for I if it is a solution for I and there is a homomorphism from it
to any other solution for I

solutions can contain labelled nulls

There may be multiple solutions.

Jan Chomicki () Database Consistency June 25-29, 2007 22 / 85

Query evaluation (Fagin et al.[FKMP05])

Certain answer

Given a query Q and a source instance I , a tuple t is a certain answer with respect to I if
t is an answer to Q in every solution J for I .

Conjunctive queries

relational calculus: ∃,∧
relational algebra: σ, π,×

Query evaluation

1 construct any universal solution J0

2 evaluate the query over J0

3 discard answers with nulls

4 the above returns certain answers for unions of conjunctive queries without
inequalities

Jan Chomicki () Database Consistency June 25-29, 2007 23 / 85

Query evaluation (Fagin et al.[FKMP05])

Certain answer

Given a query Q and a source instance I , a tuple t is a certain answer with respect to I if
t is an answer to Q in every solution J for I .

Conjunctive queries

relational calculus: ∃,∧
relational algebra: σ, π,×

Query evaluation

1 construct any universal solution J0

2 evaluate the query over J0

3 discard answers with nulls

4 the above returns certain answers for unions of conjunctive queries without
inequalities

Jan Chomicki () Database Consistency June 25-29, 2007 23 / 85

Query evaluation (Fagin et al.[FKMP05])

Certain answer

Given a query Q and a source instance I , a tuple t is a certain answer with respect to I if
t is an answer to Q in every solution J for I .

Conjunctive queries

relational calculus: ∃,∧
relational algebra: σ, π,×

Query evaluation

1 construct any universal solution J0

2 evaluate the query over J0

3 discard answers with nulls

4 the above returns certain answers for unions of conjunctive queries without
inequalities

Jan Chomicki () Database Consistency June 25-29, 2007 23 / 85

Building a universal solution [FKMP05]

Apply a variant of the chase [AHV95] to the source instance using target and
source-to-target dependencies, obtaining a sequence of instances I0 = I , I1, . . . , In,

Chasing a tgd C

1 find a substitution h that (1) h makes the LHS of C true in the constructed instance
Ij , and (2) h cannot be extended to a substitution that makes the RHS of C true in
that instance

2 apply h to the RHS of C , mapping the existentially quantified variables to fresh
labelled nulls

3 add the resulting facts to Ij , obtaining Ij+1.

Chasing an egd C

Find a substitution h such that makes the LHS of C true in Ij and h(x1) 6= h(x2):

if h(x1) and h(x2) are constants, then FAILURE

otherwise, identify h(x1) and h(x2) in Ij (preferring constants), obtaining Ij+1.

Jan Chomicki () Database Consistency June 25-29, 2007 24 / 85

Building a universal solution [FKMP05]

Apply a variant of the chase [AHV95] to the source instance using target and
source-to-target dependencies, obtaining a sequence of instances I0 = I , I1, . . . , In,

Chasing a tgd C

1 find a substitution h that (1) h makes the LHS of C true in the constructed instance
Ij , and (2) h cannot be extended to a substitution that makes the RHS of C true in
that instance

2 apply h to the RHS of C , mapping the existentially quantified variables to fresh
labelled nulls

3 add the resulting facts to Ij , obtaining Ij+1.

Chasing an egd C

Find a substitution h such that makes the LHS of C true in Ij and h(x1) 6= h(x2):

if h(x1) and h(x2) are constants, then FAILURE

otherwise, identify h(x1) and h(x2) in Ij (preferring constants), obtaining Ij+1.

Jan Chomicki () Database Consistency June 25-29, 2007 24 / 85

Building a universal solution [FKMP05]

Apply a variant of the chase [AHV95] to the source instance using target and
source-to-target dependencies, obtaining a sequence of instances I0 = I , I1, . . . , In,

Chasing a tgd C

1 find a substitution h that (1) h makes the LHS of C true in the constructed instance
Ij , and (2) h cannot be extended to a substitution that makes the RHS of C true in
that instance

2 apply h to the RHS of C , mapping the existentially quantified variables to fresh
labelled nulls

3 add the resulting facts to Ij , obtaining Ij+1.

Chasing an egd C

Find a substitution h such that makes the LHS of C true in Ij and h(x1) 6= h(x2):

if h(x1) and h(x2) are constants, then FAILURE

otherwise, identify h(x1) and h(x2) in Ij (preferring constants), obtaining Ij+1.

Jan Chomicki () Database Consistency June 25-29, 2007 24 / 85

Chase at work

Source and target databases

Source: Emp(N,A), Num(N, Id) Target: Name(Id ,N), Addr(Id ,A)

Source-to-target dependencies

∀n, a. Emp(n, a)⇒ ∃id . Name(id , n) ∧ Addr(id , a)

∀n, a, id . Emp(n, a) ∧ Num(n, id)⇒ Name(id , n)

Target constraints

Name : N → Id , Id → N, Addr : Id → A.

Chase sequence

I0 = {Emp(Li , LA),Num(Li , 111)}

I1 = {Emp(Li , LA),Num(Li , 111),Name(id1, Li),Addr(id1, LA)}

I2 = {Emp(Li , LA),Num(Li , 111),Name(id1, Li),Addr(id1, LA),Name(111, Li)}

I3 = {Emp(Li , LA),Num(Li , 111),Name(111, Li),Addr(111, LA)}

Jan Chomicki () Database Consistency June 25-29, 2007 25 / 85

Chase at work

Source and target databases

Source: Emp(N,A), Num(N, Id) Target: Name(Id ,N), Addr(Id ,A)

Source-to-target dependencies

∀n, a. Emp(n, a)⇒ ∃id . Name(id , n) ∧ Addr(id , a)

∀n, a, id . Emp(n, a) ∧ Num(n, id)⇒ Name(id , n)

Target constraints

Name : N → Id , Id → N, Addr : Id → A.

Chase sequence

I0 = {Emp(Li , LA),Num(Li , 111)}

I1 = {Emp(Li , LA),Num(Li , 111),Name(id1, Li),Addr(id1, LA)}

I2 = {Emp(Li , LA),Num(Li , 111),Name(id1, Li),Addr(id1, LA),Name(111, Li)}

I3 = {Emp(Li , LA),Num(Li , 111),Name(111, Li),Addr(111, LA)}

Jan Chomicki () Database Consistency June 25-29, 2007 25 / 85

Chase at work

Source and target databases

Source: Emp(N,A), Num(N, Id) Target: Name(Id ,N), Addr(Id ,A)

Source-to-target dependencies

∀n, a. Emp(n, a)⇒ ∃id . Name(id , n) ∧ Addr(id , a)

∀n, a, id . Emp(n, a) ∧ Num(n, id)⇒ Name(id , n)

Target constraints

Name : N → Id , Id → N, Addr : Id → A.

Chase sequence

I0 = {Emp(Li , LA),Num(Li , 111)}

I1 = {Emp(Li , LA),Num(Li , 111),Name(id1, Li),Addr(id1, LA)}

I2 = {Emp(Li , LA),Num(Li , 111),Name(id1, Li),Addr(id1, LA),Name(111, Li)}

I3 = {Emp(Li , LA),Num(Li , 111),Name(111, Li),Addr(111, LA)}

Jan Chomicki () Database Consistency June 25-29, 2007 25 / 85

Chase at work

Source and target databases

Source: Emp(N,A), Num(N, Id) Target: Name(Id ,N), Addr(Id ,A)

Source-to-target dependencies

∀n, a. Emp(n, a)⇒ ∃id . Name(id , n) ∧ Addr(id , a)

∀n, a, id . Emp(n, a) ∧ Num(n, id)⇒ Name(id , n)

Target constraints

Name : N → Id , Id → N, Addr : Id → A.

Chase sequence

I0 = {Emp(Li , LA),Num(Li , 111)}

I1 = {Emp(Li , LA),Num(Li , 111),Name(id1, Li),Addr(id1, LA)}

I2 = {Emp(Li , LA),Num(Li , 111),Name(id1, Li),Addr(id1, LA),Name(111, Li)}

I3 = {Emp(Li , LA),Num(Li , 111),Name(111, Li),Addr(111, LA)}

Jan Chomicki () Database Consistency June 25-29, 2007 25 / 85

Chase at work

Source and target databases

Source: Emp(N,A), Num(N, Id) Target: Name(Id ,N), Addr(Id ,A)

Source-to-target dependencies

∀n, a. Emp(n, a)⇒ ∃id . Name(id , n) ∧ Addr(id , a)

∀n, a, id . Emp(n, a) ∧ Num(n, id)⇒ Name(id , n)

Target constraints

Name : N → Id , Id → N, Addr : Id → A.

Chase sequence

I0 = {Emp(Li , LA),Num(Li , 111)}

I1 = {Emp(Li , LA),Num(Li , 111),Name(id1, Li),Addr(id1, LA)}

I2 = {Emp(Li , LA),Num(Li , 111),Name(id1, Li),Addr(id1, LA),Name(111, Li)}

I3 = {Emp(Li , LA),Num(Li , 111),Name(111, Li),Addr(111, LA)}

Jan Chomicki () Database Consistency June 25-29, 2007 25 / 85

Chase at work

Source and target databases

Source: Emp(N,A), Num(N, Id) Target: Name(Id ,N), Addr(Id ,A)

Source-to-target dependencies

∀n, a. Emp(n, a)⇒ ∃id . Name(id , n) ∧ Addr(id , a)

∀n, a, id . Emp(n, a) ∧ Num(n, id)⇒ Name(id , n)

Target constraints

Name : N → Id , Id → N, Addr : Id → A.

Chase sequence

I0 = {Emp(Li , LA),Num(Li , 111)}

I1 = {Emp(Li , LA),Num(Li , 111),Name(id1, Li),Addr(id1, LA)}

I2 = {Emp(Li , LA),Num(Li , 111),Name(id1, Li),Addr(id1, LA),Name(111, Li)}

I3 = {Emp(Li , LA),Num(Li , 111),Name(111, Li),Addr(111, LA)}

Jan Chomicki () Database Consistency June 25-29, 2007 25 / 85

Chase at work

Source and target databases

Source: Emp(N,A), Num(N, Id) Target: Name(Id ,N), Addr(Id ,A)

Source-to-target dependencies

∀n, a. Emp(n, a)⇒ ∃id . Name(id , n) ∧ Addr(id , a)

∀n, a, id . Emp(n, a) ∧ Num(n, id)⇒ Name(id , n)

Target constraints

Name : N → Id , Id → N, Addr : Id → A.

Chase sequence

I0 = {Emp(Li , LA),Num(Li , 111)}

I1 = {Emp(Li , LA),Num(Li , 111),Name(id1, Li),Addr(id1, LA)}

I2 = {Emp(Li , LA),Num(Li , 111),Name(id1, Li),Addr(id1, LA),Name(111, Li)}

I3 = {Emp(Li , LA),Num(Li , 111),Name(111, Li),Addr(111, LA)}

Jan Chomicki () Database Consistency June 25-29, 2007 25 / 85

Chase at work

Source and target databases

Source: Emp(N,A), Num(N, Id) Target: Name(Id ,N), Addr(Id ,A)

Source-to-target dependencies

∀n, a. Emp(n, a)⇒ ∃id . Name(id , n) ∧ Addr(id , a)

∀n, a, id . Emp(n, a) ∧ Num(n, id)⇒ Name(id , n)

Target constraints

Name : N → Id , Id → N, Addr : Id → A.

Chase sequence

I0 = {Emp(Li , LA),Num(Li , 111)}

I1 = {Emp(Li , LA),Num(Li , 111),Name(id1, Li),Addr(id1, LA)}

I2 = {Emp(Li , LA),Num(Li , 111),Name(id1, Li),Addr(id1, LA),Name(111, Li)}

I3 = {Emp(Li , LA),Num(Li , 111),Name(111, Li),Addr(111, LA)}
Jan Chomicki () Database Consistency June 25-29, 2007 25 / 85

Chase termination

Chase result

there is a sequence of chase applications that ends in failure: no universal solution

otherwise: every finite sequence that cannot be extended yields a universal solution

Termination

For weakly acyclic tgds, each chase sequence is of length polynomial in the size of the
input.

Data complexity of computing certain answers

in PTIME for unions of conjunctive queries (without inequalities) and constraints
that are egds and weakly acyclic tgds

co-NP-complete for unions of conjunctive queries (with inequalities) and constraints
that are egds and weakly acyclic tgds

Jan Chomicki () Database Consistency June 25-29, 2007 26 / 85

Chase termination

Chase result

there is a sequence of chase applications that ends in failure: no universal solution

otherwise: every finite sequence that cannot be extended yields a universal solution

Termination

For weakly acyclic tgds, each chase sequence is of length polynomial in the size of the
input.

Data complexity of computing certain answers

in PTIME for unions of conjunctive queries (without inequalities) and constraints
that are egds and weakly acyclic tgds

co-NP-complete for unions of conjunctive queries (with inequalities) and constraints
that are egds and weakly acyclic tgds

Jan Chomicki () Database Consistency June 25-29, 2007 26 / 85

Chase termination

Chase result

there is a sequence of chase applications that ends in failure: no universal solution

otherwise: every finite sequence that cannot be extended yields a universal solution

Termination

For weakly acyclic tgds, each chase sequence is of length polynomial in the size of the
input.

Data complexity of computing certain answers

in PTIME for unions of conjunctive queries (without inequalities) and constraints
that are egds and weakly acyclic tgds

co-NP-complete for unions of conjunctive queries (with inequalities) and constraints
that are egds and weakly acyclic tgds

Jan Chomicki () Database Consistency June 25-29, 2007 26 / 85

Chase termination

Chase result

there is a sequence of chase applications that ends in failure: no universal solution

otherwise: every finite sequence that cannot be extended yields a universal solution

Termination

For weakly acyclic tgds, each chase sequence is of length polynomial in the size of the
input.

Data complexity of computing certain answers

in PTIME for unions of conjunctive queries (without inequalities) and constraints
that are egds and weakly acyclic tgds

co-NP-complete for unions of conjunctive queries (with inequalities) and constraints
that are egds and weakly acyclic tgds

Jan Chomicki () Database Consistency June 25-29, 2007 26 / 85

Application: semantic query optimization

Query optimization

rewrite-based

cost-based

Semantic query optimization

Rewritings enabled by satisfaction of integrity constraints:

join elimination/introduction

predicate elimination/introduction

eliminating redundancies

...

Jan Chomicki () Database Consistency June 25-29, 2007 27 / 85

Application: semantic query optimization

Query optimization

rewrite-based

cost-based

Semantic query optimization

Rewritings enabled by satisfaction of integrity constraints:

join elimination/introduction

predicate elimination/introduction

eliminating redundancies

...

Jan Chomicki () Database Consistency June 25-29, 2007 27 / 85

Application: semantic query optimization

Query optimization

rewrite-based

cost-based

Semantic query optimization

Rewritings enabled by satisfaction of integrity constraints:

join elimination/introduction

predicate elimination/introduction

eliminating redundancies

...

Jan Chomicki () Database Consistency June 25-29, 2007 27 / 85

Preference queries

The winnow operator ωC (Chomicki [Cho03])

Find the best answers to a query, according to a given preference relation �C .

Relation Book(Title,Vendor,Price)

Preference: (i , v , p) �C1 (i ′, v ′, p′) ≡ i = i ′ ∧ p < p′

Indifference: (i , v , p) ∼C1 (i ′, v ′, p′) ≡ i 6= i ′ ∨ p = p′

Jan Chomicki () Database Consistency June 25-29, 2007 28 / 85

Preference queries

The winnow operator ωC (Chomicki [Cho03])

Find the best answers to a query, according to a given preference relation �C .

Relation Book(Title,Vendor,Price)

Preference: (i , v , p) �C1 (i ′, v ′, p′) ≡ i = i ′ ∧ p < p′

Indifference: (i , v , p) ∼C1 (i ′, v ′, p′) ≡ i 6= i ′ ∨ p = p′

Jan Chomicki () Database Consistency June 25-29, 2007 28 / 85

Preference queries

The winnow operator ωC (Chomicki [Cho03])

Find the best answers to a query, according to a given preference relation �C .

Relation Book(Title,Vendor,Price)

Preference: (i , v , p) �C1 (i ′, v ′, p′) ≡ i = i ′ ∧ p < p′

Indifference: (i , v , p) ∼C1 (i ′, v ′, p′) ≡ i 6= i ′ ∨ p = p′

Jan Chomicki () Database Consistency June 25-29, 2007 28 / 85

Preference queries

The winnow operator ωC (Chomicki [Cho03])

Find the best answers to a query, according to a given preference relation �C .

Relation Book(Title,Vendor,Price)

Preference: (i , v , p) �C1 (i ′, v ′, p′) ≡ i = i ′ ∧ p < p′

Indifference: (i , v , p) ∼C1 (i ′, v ′, p′) ≡ i 6= i ′ ∨ p = p′

Book Title Vendor Price

t1 The Flanders Panel amazon.com $14.75

t2 The Flanders Panel fatbrain.com $13.50

t3 The Flanders Panel bn.com $18.80

t4 Green Guide: Greece bn.com $17.30

Jan Chomicki () Database Consistency June 25-29, 2007 28 / 85

Preference queries

The winnow operator ωC (Chomicki [Cho03])

Find the best answers to a query, according to a given preference relation �C .

Relation Book(Title,Vendor,Price)

Preference: (i , v , p) �C1 (i ′, v ′, p′) ≡ i = i ′ ∧ p < p′

Indifference: (i , v , p) ∼C1 (i ′, v ′, p′) ≡ i 6= i ′ ∨ p = p′

Book Title Vendor Price

t1 The Flanders Panel amazon.com $14.75

t2 The Flanders Panel fatbrain.com $13.50

t3 The Flanders Panel bn.com $18.80

t4 Green Guide: Greece bn.com $17.30

Jan Chomicki () Database Consistency June 25-29, 2007 28 / 85

Eliminating redundant occurrences of winnow

Redundant winnow (Chomicki [Cho07b])

Given a set of integrity constraints Σ, ωC (r) = r for every relation r satisfying Σ iff Σ
implies the dependency R(t1) ∧ R(t2)⇒ t1 ∼C t2.

Example

Book(i1, v1, p1) ∧ Book(i2, v2, p2)⇒ i1 6= i2 ∨ p1 = p2

is a functional dependency in disguise:

Book(i1, v1, p1) ∧ Book(i2, v2, p2) ∧ i1 = i2 ⇒ p1 = p2.

If this dependency is implied by Σ, ωC (Book) = Book.

Constraint-generating dependencies (Baudinet et al. [BCW95])

general form: ∀t1, . . . tn. R(t1) ∧ · · · ∧ R(tn) ∧ C(t1, . . . , tn)⇒ C0(t1, . . . , tn)

implication of CGDs is decidable for decidable constraint classes

implication in PTIME for some classes of CGDs

axiomatization not known

Jan Chomicki () Database Consistency June 25-29, 2007 29 / 85

Eliminating redundant occurrences of winnow

Redundant winnow (Chomicki [Cho07b])

Given a set of integrity constraints Σ, ωC (r) = r for every relation r satisfying Σ iff Σ
implies the dependency R(t1) ∧ R(t2)⇒ t1 ∼C t2.

Example

Book(i1, v1, p1) ∧ Book(i2, v2, p2)⇒ i1 6= i2 ∨ p1 = p2

is a functional dependency in disguise:

Book(i1, v1, p1) ∧ Book(i2, v2, p2) ∧ i1 = i2 ⇒ p1 = p2.

If this dependency is implied by Σ, ωC (Book) = Book.

Constraint-generating dependencies (Baudinet et al. [BCW95])

general form: ∀t1, . . . tn. R(t1) ∧ · · · ∧ R(tn) ∧ C(t1, . . . , tn)⇒ C0(t1, . . . , tn)

implication of CGDs is decidable for decidable constraint classes

implication in PTIME for some classes of CGDs

axiomatization not known

Jan Chomicki () Database Consistency June 25-29, 2007 29 / 85

Eliminating redundant occurrences of winnow

Redundant winnow (Chomicki [Cho07b])

Given a set of integrity constraints Σ, ωC (r) = r for every relation r satisfying Σ iff Σ
implies the dependency R(t1) ∧ R(t2)⇒ t1 ∼C t2.

Example

Book(i1, v1, p1) ∧ Book(i2, v2, p2)⇒ i1 6= i2 ∨ p1 = p2

is a functional dependency in disguise:

Book(i1, v1, p1) ∧ Book(i2, v2, p2) ∧ i1 = i2 ⇒ p1 = p2.

If this dependency is implied by Σ, ωC (Book) = Book.

Constraint-generating dependencies (Baudinet et al. [BCW95])

general form: ∀t1, . . . tn. R(t1) ∧ · · · ∧ R(tn) ∧ C(t1, . . . , tn)⇒ C0(t1, . . . , tn)

implication of CGDs is decidable for decidable constraint classes

implication in PTIME for some classes of CGDs

axiomatization not known

Jan Chomicki () Database Consistency June 25-29, 2007 29 / 85

Eliminating redundant occurrences of winnow

Redundant winnow (Chomicki [Cho07b])

Given a set of integrity constraints Σ, ωC (r) = r for every relation r satisfying Σ iff Σ
implies the dependency R(t1) ∧ R(t2)⇒ t1 ∼C t2.

Example

Book(i1, v1, p1) ∧ Book(i2, v2, p2)⇒ i1 6= i2 ∨ p1 = p2

is a functional dependency in disguise:

Book(i1, v1, p1) ∧ Book(i2, v2, p2) ∧ i1 = i2 ⇒ p1 = p2.

If this dependency is implied by Σ, ωC (Book) = Book.

Constraint-generating dependencies (Baudinet et al. [BCW95])

general form: ∀t1, . . . tn. R(t1) ∧ · · · ∧ R(tn) ∧ C(t1, . . . , tn)⇒ C0(t1, . . . , tn)

implication of CGDs is decidable for decidable constraint classes

implication in PTIME for some classes of CGDs

axiomatization not known
Jan Chomicki () Database Consistency June 25-29, 2007 29 / 85

Part II

Consistent query answers

Jan Chomicki () Database Consistency June 25-29, 2007 30 / 85

Outline of Part II

5 Motivation

6 Basics

7 Computing CQA
Methods
Complexity

8 Variants of CQA

9 Conclusions

Jan Chomicki () Database Consistency June 25-29, 2007 31 / 85

Whence Inconsistency?

Sources of inconsistency:

integration of independent data sources with overlapping data

time lag of updates (eventual consistency)

unenforced integrity constraints

dataspace systems,...

Eliminating inconsistency?

not enough information, time, or money

difficult, impossible or undesirable

unnecessary: queries may be insensitive to inconsistency

Jan Chomicki () Database Consistency June 25-29, 2007 32 / 85

Whence Inconsistency?

Sources of inconsistency:

integration of independent data sources with overlapping data

time lag of updates (eventual consistency)

unenforced integrity constraints

dataspace systems,...

Eliminating inconsistency?

not enough information, time, or money

difficult, impossible or undesirable

unnecessary: queries may be insensitive to inconsistency

Jan Chomicki () Database Consistency June 25-29, 2007 32 / 85

Ignoring Inconsistency

Query results not reliable.

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name

Gates

Grove

SELECT Name
FROM Employee
WHERE Salary ≤ 25M

Jan Chomicki () Database Consistency June 25-29, 2007 33 / 85

Ignoring Inconsistency

Query results not reliable.

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name

Gates

Grove

SELECT Name
FROM Employee
WHERE Salary ≤ 25M

Jan Chomicki () Database Consistency June 25-29, 2007 33 / 85

Ignoring Inconsistency

Query results not reliable.

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name

Gates

Grove

SELECT Name
FROM Employee
WHERE Salary ≤ 25M

Jan Chomicki () Database Consistency June 25-29, 2007 33 / 85

Ignoring Inconsistency

Query results not reliable.

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name

Gates

Grove

SELECT Name
FROM Employee
WHERE Salary ≤ 25M

Jan Chomicki () Database Consistency June 25-29, 2007 33 / 85

Horizontal Decomposition

Decomposition into two relations:

violators

the rest

(De Bra, Paredaens [DBP83])

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Grove Santa Clara 10M

Name → City Salary

Gates Redmond 20M

Gates Redmond 30M

Name → City Salary

Jan Chomicki () Database Consistency June 25-29, 2007 34 / 85

Horizontal Decomposition

Decomposition into two relations:

violators

the rest

(De Bra, Paredaens [DBP83])

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Grove Santa Clara 10M

Name → City Salary

Gates Redmond 20M

Gates Redmond 30M

Name → City Salary

Jan Chomicki () Database Consistency June 25-29, 2007 34 / 85

Horizontal Decomposition

Decomposition into two relations:

violators

the rest

(De Bra, Paredaens [DBP83])

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Grove Santa Clara 10M

Name → City Salary

Gates Redmond 20M

Gates Redmond 30M

Name → City Salary

Jan Chomicki () Database Consistency June 25-29, 2007 34 / 85

Exceptions to Constraints

Weakening the contraints:

functional dependencies → denial constraints

(Borgida [Bor85])

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

except Name=’Gates’

Jan Chomicki () Database Consistency June 25-29, 2007 35 / 85

Exceptions to Constraints

Weakening the contraints:

functional dependencies → denial constraints

(Borgida [Bor85])

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

except Name=’Gates’

Jan Chomicki () Database Consistency June 25-29, 2007 35 / 85

Exceptions to Constraints

Weakening the contraints:

functional dependencies → denial constraints

(Borgida [Bor85])

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

except Name=’Gates’

Jan Chomicki () Database Consistency June 25-29, 2007 35 / 85

The Impact of Inconsistency on Queries

Traditional view

query results defined irrespective of integrity constraints

query evaluation may be optimized in the presence of integrity constraints (semantic
query optimization)

Our view

inconsistency reflects uncertainty

query results may depend on integrity constraint satisfaction

inconsistency may be eliminated or tolerated

Jan Chomicki () Database Consistency June 25-29, 2007 36 / 85

The Impact of Inconsistency on Queries

Traditional view

query results defined irrespective of integrity constraints

query evaluation may be optimized in the presence of integrity constraints (semantic
query optimization)

Our view

inconsistency reflects uncertainty

query results may depend on integrity constraint satisfaction

inconsistency may be eliminated or tolerated

Jan Chomicki () Database Consistency June 25-29, 2007 36 / 85

Database Repairs

Restoring consistency:

insertion, deletion, update

minimal change?

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name City Salary

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name City Salary

Gates Redmond 20M

Grove Santa Clara 10M

Name → City Salary

Jan Chomicki () Database Consistency June 25-29, 2007 37 / 85

Database Repairs

Restoring consistency:

insertion, deletion, update

minimal change?

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name City Salary

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name City Salary

Gates Redmond 20M

Grove Santa Clara 10M

Name → City Salary

Jan Chomicki () Database Consistency June 25-29, 2007 37 / 85

Database Repairs

Restoring consistency:

insertion, deletion, update

minimal change?

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name City Salary

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name City Salary

Gates Redmond 20M

Grove Santa Clara 10M

Name → City Salary

Jan Chomicki () Database Consistency June 25-29, 2007 37 / 85

Consistent Query Answering

Consistent query answer:

Query answer obtained in every
repair.

(Arenas, Bertossi, Chomicki
[ABC99])

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name

Grove

SELECT Name
FROM Employee
WHERE Salary ≤ 25M

Name

Gates

Grove

SELECT Name
FROM Employee
WHERE Salary ≥ 10M

Jan Chomicki () Database Consistency June 25-29, 2007 38 / 85

Consistent Query Answering

Consistent query answer:

Query answer obtained in every
repair.

(Arenas, Bertossi, Chomicki
[ABC99])

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name

Grove

SELECT Name
FROM Employee
WHERE Salary ≤ 25M

Name

Gates

Grove

SELECT Name
FROM Employee
WHERE Salary ≥ 10M

Jan Chomicki () Database Consistency June 25-29, 2007 38 / 85

Consistent Query Answering

Consistent query answer:

Query answer obtained in every
repair.

(Arenas, Bertossi, Chomicki
[ABC99])

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name

Grove

SELECT Name
FROM Employee
WHERE Salary ≤ 25M

Name

Gates

Grove

SELECT Name
FROM Employee
WHERE Salary ≥ 10M

Jan Chomicki () Database Consistency June 25-29, 2007 38 / 85

Consistent Query Answering

Consistent query answer:

Query answer obtained in every
repair.

(Arenas, Bertossi, Chomicki
[ABC99])

Name City Salary

Gates Redmond 20M

Gates Redmond 30M

Grove Santa Clara 10M

Name → City Salary

Name

Grove

SELECT Name
FROM Employee
WHERE Salary ≤ 25M

Name

Gates

Grove

SELECT Name
FROM Employee
WHERE Salary ≥ 10M

Jan Chomicki () Database Consistency June 25-29, 2007 38 / 85

Research Goals

Formal definition

What constitutes reliable (consistent) information in an inconsistent database.

Algorithms

How to compute consistent information.

Computational complexity analysis

tractable vs. intractable classes of queries and integrity constraints

tradeoffs: complexity vs. expressiveness.

Implementation

preferably using DBMS technology.

Applications

???

Jan Chomicki () Database Consistency June 25-29, 2007 39 / 85

Research Goals

Formal definition

What constitutes reliable (consistent) information in an inconsistent database.

Algorithms

How to compute consistent information.

Computational complexity analysis

tractable vs. intractable classes of queries and integrity constraints

tradeoffs: complexity vs. expressiveness.

Implementation

preferably using DBMS technology.

Applications

???

Jan Chomicki () Database Consistency June 25-29, 2007 39 / 85

Research Goals

Formal definition

What constitutes reliable (consistent) information in an inconsistent database.

Algorithms

How to compute consistent information.

Computational complexity analysis

tractable vs. intractable classes of queries and integrity constraints

tradeoffs: complexity vs. expressiveness.

Implementation

preferably using DBMS technology.

Applications

???

Jan Chomicki () Database Consistency June 25-29, 2007 39 / 85

Research Goals

Formal definition

What constitutes reliable (consistent) information in an inconsistent database.

Algorithms

How to compute consistent information.

Computational complexity analysis

tractable vs. intractable classes of queries and integrity constraints

tradeoffs: complexity vs. expressiveness.

Implementation

preferably using DBMS technology.

Applications

???

Jan Chomicki () Database Consistency June 25-29, 2007 39 / 85

Research Goals

Formal definition

What constitutes reliable (consistent) information in an inconsistent database.

Algorithms

How to compute consistent information.

Computational complexity analysis

tractable vs. intractable classes of queries and integrity constraints

tradeoffs: complexity vs. expressiveness.

Implementation

preferably using DBMS technology.

Applications

???

Jan Chomicki () Database Consistency June 25-29, 2007 39 / 85

Basic Notions

Repair D ′ of a database D w.r.t. the integrity constraints IC :

D ′: over the same schema as D

D ′ |= IC

symmetric difference between D and D ′ is minimal.

Consistent query answer to a query Q in D w.r.t. IC :

an element of the result of Q in every repair of D w.r.t. IC .

Another incarnation of the idea of sure query answers
[Lipski: TODS’79].

Jan Chomicki () Database Consistency June 25-29, 2007 40 / 85

Basic Notions

Repair D ′ of a database D w.r.t. the integrity constraints IC :

D ′: over the same schema as D

D ′ |= IC

symmetric difference between D and D ′ is minimal.

Consistent query answer to a query Q in D w.r.t. IC :

an element of the result of Q in every repair of D w.r.t. IC .

Another incarnation of the idea of sure query answers
[Lipski: TODS’79].

Jan Chomicki () Database Consistency June 25-29, 2007 40 / 85

Basic Notions

Repair D ′ of a database D w.r.t. the integrity constraints IC :

D ′: over the same schema as D

D ′ |= IC

symmetric difference between D and D ′ is minimal.

Consistent query answer to a query Q in D w.r.t. IC :

an element of the result of Q in every repair of D w.r.t. IC .

Another incarnation of the idea of sure query answers
[Lipski: TODS’79].

Jan Chomicki () Database Consistency June 25-29, 2007 40 / 85

A Logical Aside

Belief revision

semantically: repairing ≡ revising the database with integrity constraints

consistent query answers ≡ counterfactual inference.

Logical inconsistency

inconsistent database: database facts together with integrity constraints form an
inconsistent set of formulas

trivialization of reasoning does not occur because constraints are not used in
relational query evaluation.

Jan Chomicki () Database Consistency June 25-29, 2007 41 / 85

Exponentially many repairs

Example relation R(A,B)

violates the dependency A→ B

has 2n repairs.

A B

a1 b1

a1 c1

a2 b2

a2 c2

· · ·

an bn

an cn

A→ B

It is impractical to apply the definition of CQA directly.

Jan Chomicki () Database Consistency June 25-29, 2007 42 / 85

Exponentially many repairs

Example relation R(A,B)

violates the dependency A→ B

has 2n repairs.

A B

a1 b1

a1 c1

a2 b2

a2 c2

· · ·

an bn

an cn

A→ B

It is impractical to apply the definition of CQA directly.

Jan Chomicki () Database Consistency June 25-29, 2007 42 / 85

Computing Consistent Query Answers

Query Rewriting

Given a query Q and a set of integrity constraints IC , build a query Q IC such that for
every database instance D

the set of answers to Q IC in D = the set of consistent answers to Q in D w.r.t.
IC .

Representing all repairs

Given IC and D:

1 build a space-efficient representation of all repairs of D w.r.t. IC

2 use this representation to answer (many) queries.

Logic programs

Given IC , D and Q:

1 build a logic program PIC ,D whose models are the repairs of D w.r.t. IC

2 build a logic program PQ expressing Q

3 use a logic programming system that computes the query atoms present in all
models of PIC ,D ∪ PQ .

Jan Chomicki () Database Consistency June 25-29, 2007 43 / 85

Computing Consistent Query Answers

Query Rewriting

Given a query Q and a set of integrity constraints IC , build a query Q IC such that for
every database instance D

the set of answers to Q IC in D = the set of consistent answers to Q in D w.r.t.
IC .

Representing all repairs

Given IC and D:

1 build a space-efficient representation of all repairs of D w.r.t. IC

2 use this representation to answer (many) queries.

Logic programs

Given IC , D and Q:

1 build a logic program PIC ,D whose models are the repairs of D w.r.t. IC

2 build a logic program PQ expressing Q

3 use a logic programming system that computes the query atoms present in all
models of PIC ,D ∪ PQ .

Jan Chomicki () Database Consistency June 25-29, 2007 43 / 85

Computing Consistent Query Answers

Query Rewriting

Given a query Q and a set of integrity constraints IC , build a query Q IC such that for
every database instance D

the set of answers to Q IC in D = the set of consistent answers to Q in D w.r.t.
IC .

Representing all repairs

Given IC and D:

1 build a space-efficient representation of all repairs of D w.r.t. IC

2 use this representation to answer (many) queries.

Logic programs

Given IC , D and Q:

1 build a logic program PIC ,D whose models are the repairs of D w.r.t. IC

2 build a logic program PQ expressing Q

3 use a logic programming system that computes the query atoms present in all
models of PIC ,D ∪ PQ .

Jan Chomicki () Database Consistency June 25-29, 2007 43 / 85

Constraint classes

Universal constraints

∀. ¬A1 ∨ · · · ∨ ¬An ∨ B1 ∨ · · · ∨ Bm

Example

∀. ¬Par(x) ∨Ma(x) ∨ Fa(x)

Denial constraints

∀. ¬A1 ∨ · · · ∨ ¬An

Example

∀. ¬M(n, s,m)∨¬M(m, t,w)∨s ≤ t

Functional dependencies

X → Y :

a key dependency in F if
Y = U

a primary-key dependency: only
one key exists

Example primary-key dependency

Name → Address Salary

Inclusion dependencies

R[X] ⊆ S [Y]:

a foreign key constraint if Y is
a key of S

Example foreign key constraint

M[Manager] ⊆ M[Name]

Jan Chomicki () Database Consistency June 25-29, 2007 44 / 85

Constraint classes

Universal constraints

∀. ¬A1 ∨ · · · ∨ ¬An ∨ B1 ∨ · · · ∨ Bm

Example

∀. ¬Par(x) ∨Ma(x) ∨ Fa(x)

Denial constraints

∀. ¬A1 ∨ · · · ∨ ¬An

Example

∀. ¬M(n, s,m)∨¬M(m, t,w)∨s ≤ t

Functional dependencies

X → Y :

a key dependency in F if
Y = U

a primary-key dependency: only
one key exists

Example primary-key dependency

Name → Address Salary

Inclusion dependencies

R[X] ⊆ S [Y]:

a foreign key constraint if Y is
a key of S

Example foreign key constraint

M[Manager] ⊆ M[Name]

Jan Chomicki () Database Consistency June 25-29, 2007 44 / 85

Constraint classes

Universal constraints

∀. ¬A1 ∨ · · · ∨ ¬An ∨ B1 ∨ · · · ∨ Bm

Example

∀. ¬Par(x) ∨Ma(x) ∨ Fa(x)

Denial constraints

∀. ¬A1 ∨ · · · ∨ ¬An

Example

∀. ¬M(n, s,m)∨¬M(m, t,w)∨s ≤ t

Functional dependencies

X → Y :

a key dependency in F if
Y = U

a primary-key dependency: only
one key exists

Example primary-key dependency

Name → Address Salary

Inclusion dependencies

R[X] ⊆ S [Y]:

a foreign key constraint if Y is
a key of S

Example foreign key constraint

M[Manager] ⊆ M[Name]

Jan Chomicki () Database Consistency June 25-29, 2007 44 / 85

Constraint classes

Universal constraints

∀. ¬A1 ∨ · · · ∨ ¬An ∨ B1 ∨ · · · ∨ Bm

Example

∀. ¬Par(x) ∨Ma(x) ∨ Fa(x)

Denial constraints

∀. ¬A1 ∨ · · · ∨ ¬An

Example

∀. ¬M(n, s,m)∨¬M(m, t,w)∨s ≤ t

Functional dependencies

X → Y :

a key dependency in F if
Y = U

a primary-key dependency: only
one key exists

Example primary-key dependency

Name → Address Salary

Inclusion dependencies

R[X] ⊆ S [Y]:

a foreign key constraint if Y is
a key of S

Example foreign key constraint

M[Manager] ⊆ M[Name]

Jan Chomicki () Database Consistency June 25-29, 2007 44 / 85

Constraint classes

Universal constraints

∀. ¬A1 ∨ · · · ∨ ¬An ∨ B1 ∨ · · · ∨ Bm

Example

∀. ¬Par(x) ∨Ma(x) ∨ Fa(x)

Denial constraints

∀. ¬A1 ∨ · · · ∨ ¬An

Example

∀. ¬M(n, s,m)∨¬M(m, t,w)∨s ≤ t

Functional dependencies

X → Y :

a key dependency in F if
Y = U

a primary-key dependency: only
one key exists

Example primary-key dependency

Name → Address Salary

Inclusion dependencies

R[X] ⊆ S [Y]:

a foreign key constraint if Y is
a key of S

Example foreign key constraint

M[Manager] ⊆ M[Name]

Jan Chomicki () Database Consistency June 25-29, 2007 44 / 85

Constraint classes

Universal constraints

∀. ¬A1 ∨ · · · ∨ ¬An ∨ B1 ∨ · · · ∨ Bm

Example

∀. ¬Par(x) ∨Ma(x) ∨ Fa(x)

Denial constraints

∀. ¬A1 ∨ · · · ∨ ¬An

Example

∀. ¬M(n, s,m)∨¬M(m, t,w)∨s ≤ t

Functional dependencies

X → Y :

a key dependency in F if
Y = U

a primary-key dependency: only
one key exists

Example primary-key dependency

Name → Address Salary

Inclusion dependencies

R[X] ⊆ S [Y]:

a foreign key constraint if Y is
a key of S

Example foreign key constraint

M[Manager] ⊆ M[Name]

Jan Chomicki () Database Consistency June 25-29, 2007 44 / 85

Constraint classes

Universal constraints

∀. ¬A1 ∨ · · · ∨ ¬An ∨ B1 ∨ · · · ∨ Bm

Example

∀. ¬Par(x) ∨Ma(x) ∨ Fa(x)

Denial constraints

∀. ¬A1 ∨ · · · ∨ ¬An

Example

∀. ¬M(n, s,m)∨¬M(m, t,w)∨s ≤ t

Functional dependencies

X → Y :

a key dependency in F if
Y = U

a primary-key dependency: only
one key exists

Example primary-key dependency

Name → Address Salary

Inclusion dependencies

R[X] ⊆ S [Y]:

a foreign key constraint if Y is
a key of S

Example foreign key constraint

M[Manager] ⊆ M[Name]

Jan Chomicki () Database Consistency June 25-29, 2007 44 / 85

Constraint classes

Universal constraints

∀. ¬A1 ∨ · · · ∨ ¬An ∨ B1 ∨ · · · ∨ Bm

Example

∀. ¬Par(x) ∨Ma(x) ∨ Fa(x)

Denial constraints

∀. ¬A1 ∨ · · · ∨ ¬An

Example

∀. ¬M(n, s,m)∨¬M(m, t,w)∨s ≤ t

Functional dependencies

X → Y :

a key dependency in F if
Y = U

a primary-key dependency: only
one key exists

Example primary-key dependency

Name → Address Salary

Inclusion dependencies

R[X] ⊆ S [Y]:

a foreign key constraint if Y is
a key of S

Example foreign key constraint

M[Manager] ⊆ M[Name]

Jan Chomicki () Database Consistency June 25-29, 2007 44 / 85

Query Rewriting

Building queries that compute CQAs

relational calculus (algebra) ; relational calculus (algebra)

SQL ; SQL

leads to PTIME data complexity

Rewritten query

Emp(x , y , z) ∧ ∀ y ′, z ′. ¬Emp(x , y ′, z ′) ∨ z = z ′

Jan Chomicki () Database Consistency June 25-29, 2007 45 / 85

Query Rewriting

Building queries that compute CQAs

relational calculus (algebra) ; relational calculus (algebra)

SQL ; SQL

leads to PTIME data complexity

Query

Emp(x , y , z)

Rewritten query

Emp(x , y , z) ∧ ∀ y ′, z ′. ¬Emp(x , y ′, z ′) ∨ z = z ′

Jan Chomicki () Database Consistency June 25-29, 2007 45 / 85

Query Rewriting

Building queries that compute CQAs

relational calculus (algebra) ; relational calculus (algebra)

SQL ; SQL

leads to PTIME data complexity

Query

Emp(x , y , z)

Integrity constraint

∀ x , y , z , y ′, z ′. ¬Emp(x , y , z) ∨ ¬Emp(x , y ′, z ′) ∨ z = z ′

Rewritten query

Emp(x , y , z) ∧ ∀ y ′, z ′. ¬Emp(x , y ′, z ′) ∨ z = z ′

Jan Chomicki () Database Consistency June 25-29, 2007 45 / 85

Query Rewriting

Building queries that compute CQAs

relational calculus (algebra) ; relational calculus (algebra)

SQL ; SQL

leads to PTIME data complexity

Query

Emp(x , y , z)

Integrity constraint

∀ x , y , z , y ′, z ′. ¬Emp(x , y , z) ∨ ¬Emp(x , y ′, z ′) ∨ z = z ′

Rewritten query

Emp(x , y , z) ∧ ∀ y ′, z ′. ¬Emp(x , y ′, z ′) ∨ z = z ′

Jan Chomicki () Database Consistency June 25-29, 2007 45 / 85

Query Rewriting

Building queries that compute CQAs

relational calculus (algebra) ; relational calculus (algebra)

SQL ; SQL

leads to PTIME data complexity

Query

Emp(x , y , z)

Integrity constraint

∀ x , y , z , y ′, z ′. ¬Emp(x , y , z) ∨ ¬Emp(x , y ′, z ′) ∨ z = z ′

Rewritten query

Emp(x , y , z) ∧ ∀ y ′, z ′. ¬Emp(x , y ′, z ′) ∨ z = z ′

Jan Chomicki () Database Consistency June 25-29, 2007 45 / 85

The Scope of Query Rewriting

(Arenas, Bertossi, Chomicki [ABC99])

Queries: conjunctions of literals (relational algebra: σ,×,−)

Integrity constraints: binary universal

(Fuxman, Miller [FM05b])

Queries: Cforest

a class of conjunctive queries (π, σ,×)
no non-key or non-full joins
no repeated relation symbols
no built-ins

Integrity constraints: primary key functional dependencies

Jan Chomicki () Database Consistency June 25-29, 2007 46 / 85

The Scope of Query Rewriting

(Arenas, Bertossi, Chomicki [ABC99])

Queries: conjunctions of literals (relational algebra: σ,×,−)

Integrity constraints: binary universal

(Fuxman, Miller [FM05b])

Queries: Cforest

a class of conjunctive queries (π, σ,×)
no non-key or non-full joins
no repeated relation symbols
no built-ins

Integrity constraints: primary key functional dependencies

Jan Chomicki () Database Consistency June 25-29, 2007 46 / 85

SQL Rewriting

SQL query

SELECT Name FROM Emp

WHERE Salary ≥ 10K

SQL rewritten query

SELECT e1.Name FROM Emp e1

WHERE e1.Salary ≥ 10K AND NOT EXISTS

(SELECT * FROM EMPLOYEE e2

WHERE e2.Name = e1.Name AND e2.Salary < 10K)

(Fuxman, Fazli, Miller [FM05a])

ConQuer: a system for computing CQAs

conjunctive (Cforest) and aggregation SQL queries

databases can be annotated with consistency indicators

tested on TPC-H queries and medium-size databases

Jan Chomicki () Database Consistency June 25-29, 2007 47 / 85

SQL Rewriting

SQL query

SELECT Name FROM Emp

WHERE Salary ≥ 10K

SQL rewritten query

SELECT e1.Name FROM Emp e1

WHERE e1.Salary ≥ 10K AND NOT EXISTS

(SELECT * FROM EMPLOYEE e2

WHERE e2.Name = e1.Name AND e2.Salary < 10K)

(Fuxman, Fazli, Miller [FM05a])

ConQuer: a system for computing CQAs

conjunctive (Cforest) and aggregation SQL queries

databases can be annotated with consistency indicators

tested on TPC-H queries and medium-size databases

Jan Chomicki () Database Consistency June 25-29, 2007 47 / 85

SQL Rewriting

SQL query

SELECT Name FROM Emp

WHERE Salary ≥ 10K

SQL rewritten query

SELECT e1.Name FROM Emp e1

WHERE e1.Salary ≥ 10K AND NOT EXISTS

(SELECT * FROM EMPLOYEE e2

WHERE e2.Name = e1.Name AND e2.Salary < 10K)

(Fuxman, Fazli, Miller [FM05a])

ConQuer: a system for computing CQAs

conjunctive (Cforest) and aggregation SQL queries

databases can be annotated with consistency indicators

tested on TPC-H queries and medium-size databases

Jan Chomicki () Database Consistency June 25-29, 2007 47 / 85

Conflict Hypergraph

Vertices

Tuples in the
database.

Edges

Minimal sets of tuples
violating a constraint.

Repairs

Maximal independent
sets in the conflict
graph.

(Gates, Redmond, 20M)

(Gates, Redmond, 30M)

(Grove, Santa Clara, 10M)

Jan Chomicki () Database Consistency June 25-29, 2007 48 / 85

Conflict Hypergraph

Vertices

Tuples in the
database.

Edges

Minimal sets of tuples
violating a constraint.

Repairs

Maximal independent
sets in the conflict
graph.

(Gates, Redmond, 20M)

(Gates, Redmond, 30M)

(Grove, Santa Clara, 10M)

Jan Chomicki () Database Consistency June 25-29, 2007 48 / 85

Conflict Hypergraph

Vertices

Tuples in the
database.

Edges

Minimal sets of tuples
violating a constraint.

Repairs

Maximal independent
sets in the conflict
graph.

(Gates, Redmond, 20M)

(Gates, Redmond, 30M)

(Grove, Santa Clara, 10M)

Jan Chomicki () Database Consistency June 25-29, 2007 48 / 85

Conflict Hypergraph

Vertices

Tuples in the
database.

Edges

Minimal sets of tuples
violating a constraint.

Repairs

Maximal independent
sets in the conflict
graph.

(Gates, Redmond, 20M)

(Gates, Redmond, 30M)

(Grove, Santa Clara, 10M)

Jan Chomicki () Database Consistency June 25-29, 2007 48 / 85

Computing CQAs Using Conflict Hypergraphs

Algorithm HProver

INPUT: query Φ a disjunction of ground atoms, conflict hypergraph G OUTPUT: is Φ
false in some repair of D w.r.t. IC?
ALGORITHM:

1 ¬Φ = P1(t1) ∧ · · · ∧ Pm(tm) ∧ ¬Pm+1(tm+1) ∧ · · · ∧ ¬Pn(tn)
2 find a consistent set of facts S such that

S ⊇ {P1(t1), . . . ,Pm(tm)}
for every fact A ∈ {Pm+1(tm+1), . . . ,Pn(tn)}: A 6∈ D or there is an edge
E = {A,B1, . . . ,Bm} in G and S ⊇ {B1, . . . ,Bm}.

(Chomicki, Marcinkowski, Staworko [CMS04])

Hippo: a system for computing CQAs in PTIME

quantifier-free queries and denial constraints

only edges of the conflict hypergraph are kept in main memory

optimization can eliminate many (sometimes all) database accesses in HProver

tested for medium-size synthetic databases

Jan Chomicki () Database Consistency June 25-29, 2007 49 / 85

Computing CQAs Using Conflict Hypergraphs

Algorithm HProver

INPUT: query Φ a disjunction of ground atoms, conflict hypergraph G OUTPUT: is Φ
false in some repair of D w.r.t. IC?
ALGORITHM:

1 ¬Φ = P1(t1) ∧ · · · ∧ Pm(tm) ∧ ¬Pm+1(tm+1) ∧ · · · ∧ ¬Pn(tn)
2 find a consistent set of facts S such that

S ⊇ {P1(t1), . . . ,Pm(tm)}
for every fact A ∈ {Pm+1(tm+1), . . . ,Pn(tn)}: A 6∈ D or there is an edge
E = {A,B1, . . . ,Bm} in G and S ⊇ {B1, . . . ,Bm}.

(Chomicki, Marcinkowski, Staworko [CMS04])

Hippo: a system for computing CQAs in PTIME

quantifier-free queries and denial constraints

only edges of the conflict hypergraph are kept in main memory

optimization can eliminate many (sometimes all) database accesses in HProver

tested for medium-size synthetic databases

Jan Chomicki () Database Consistency June 25-29, 2007 49 / 85

Logic programs

Specifying repairs as answer sets of logic programs

(Arenas, Bertossi, Chomicki [ABC03])

(Greco, Greco, Zumpano [GGZ03])

(Cal̀ı, Lembo, Rosati [CLR03b])

Example

emp(x , y , z)← empD(x , y , z), not dubious emp(x , y , z).
dubious emp(x , y , z)← empD(x , y , z), emp(x , y ′, z ′), y 6= y ′.
dubious emp(x , y , z)← empD(x , y , z), emp(x , y ′, z ′), z 6= z ′.

Answer sets

{emp(Gates,Redmond , 20M), emp(Grove,SantaClara, 10M), . . .}
{emp(Gates,Redmond , 30M), emp(Grove,SantaClara, 10M), . . .}

Jan Chomicki () Database Consistency June 25-29, 2007 50 / 85

Logic programs

Specifying repairs as answer sets of logic programs

(Arenas, Bertossi, Chomicki [ABC03])

(Greco, Greco, Zumpano [GGZ03])

(Cal̀ı, Lembo, Rosati [CLR03b])

Example

emp(x , y , z)← empD(x , y , z), not dubious emp(x , y , z).
dubious emp(x , y , z)← empD(x , y , z), emp(x , y ′, z ′), y 6= y ′.
dubious emp(x , y , z)← empD(x , y , z), emp(x , y ′, z ′), z 6= z ′.

Answer sets

{emp(Gates,Redmond , 20M), emp(Grove,SantaClara, 10M), . . .}
{emp(Gates,Redmond , 30M), emp(Grove,SantaClara, 10M), . . .}

Jan Chomicki () Database Consistency June 25-29, 2007 50 / 85

Logic programs

Specifying repairs as answer sets of logic programs

(Arenas, Bertossi, Chomicki [ABC03])

(Greco, Greco, Zumpano [GGZ03])

(Cal̀ı, Lembo, Rosati [CLR03b])

Example

emp(x , y , z)← empD(x , y , z), not dubious emp(x , y , z).
dubious emp(x , y , z)← empD(x , y , z), emp(x , y ′, z ′), y 6= y ′.
dubious emp(x , y , z)← empD(x , y , z), emp(x , y ′, z ′), z 6= z ′.

Answer sets

{emp(Gates,Redmond , 20M), emp(Grove,SantaClara, 10M), . . .}
{emp(Gates,Redmond , 30M), emp(Grove,SantaClara, 10M), . . .}

Jan Chomicki () Database Consistency June 25-29, 2007 50 / 85

Logic Programs for computing CQAs

Logic Programs

disjunction and classical negation

checking whether an atom is in all answer sets is Πp
2-complete

dlv, smodels, . . .

Scope

arbitrary first-order queries

universal constraints

approach unlikely to yield tractable cases

INFOMIX (Eiter et al. [EFGL03])

combines CQA with data integration (GAV)

uses dlv for repair computations

optimization techniques: localization, factorization

tested on small-to-medium-size legacy databases

Jan Chomicki () Database Consistency June 25-29, 2007 51 / 85

Logic Programs for computing CQAs

Logic Programs

disjunction and classical negation

checking whether an atom is in all answer sets is Πp
2-complete

dlv, smodels, . . .

Scope

arbitrary first-order queries

universal constraints

approach unlikely to yield tractable cases

INFOMIX (Eiter et al. [EFGL03])

combines CQA with data integration (GAV)

uses dlv for repair computations

optimization techniques: localization, factorization

tested on small-to-medium-size legacy databases

Jan Chomicki () Database Consistency June 25-29, 2007 51 / 85

Logic Programs for computing CQAs

Logic Programs

disjunction and classical negation

checking whether an atom is in all answer sets is Πp
2-complete

dlv, smodels, . . .

Scope

arbitrary first-order queries

universal constraints

approach unlikely to yield tractable cases

INFOMIX (Eiter et al. [EFGL03])

combines CQA with data integration (GAV)

uses dlv for repair computations

optimization techniques: localization, factorization

tested on small-to-medium-size legacy databases

Jan Chomicki () Database Consistency June 25-29, 2007 51 / 85

Co-NP-completeness of CQA

Theorem (Chomicki, Marcinkowski [CM05a])

For primary-key functional dependencies and conjunctive queries, consistent query
answering is data-complete for co-NP.

Proof.

Membership: S is a repair iff S |= IC and W 6|= IC if W = S ∪ A.
Co-NP-hardness: reduction from MONOTONE 3-SAT.

1 Positive clauses β1 = φ1 ∧ · · · ∧ φm, negative clauses β2 = ψm+1 ∧ · · · ∧ ψl .
2 Database D contains two binary relations R(A,B) and S(A,B):

R(i , p) if variable p occurs in φi , i = 1, . . . ,m.
S(i , p) if variable p occurs in ψi , i = m + 1, . . . , l .

3 A is the primary key of both R and S .

4 Query Q ≡ ∃x , y , z .
(
R(x , y) ∧ S(z , y)

)
.

5 There is an assignment which satisfies β1 ∧ β2 iff there exists a repair in which Q is
false.

Q does not belong to Cforest .

Jan Chomicki () Database Consistency June 25-29, 2007 52 / 85

Co-NP-completeness of CQA

Theorem (Chomicki, Marcinkowski [CM05a])

For primary-key functional dependencies and conjunctive queries, consistent query
answering is data-complete for co-NP.

Proof.

Membership: S is a repair iff S |= IC and W 6|= IC if W = S ∪ A.
Co-NP-hardness: reduction from MONOTONE 3-SAT.

1 Positive clauses β1 = φ1 ∧ · · · ∧ φm, negative clauses β2 = ψm+1 ∧ · · · ∧ ψl .
2 Database D contains two binary relations R(A,B) and S(A,B):

R(i , p) if variable p occurs in φi , i = 1, . . . ,m.
S(i , p) if variable p occurs in ψi , i = m + 1, . . . , l .

3 A is the primary key of both R and S .

4 Query Q ≡ ∃x , y , z .
(
R(x , y) ∧ S(z , y)

)
.

5 There is an assignment which satisfies β1 ∧ β2 iff there exists a repair in which Q is
false.

Q does not belong to Cforest .

Jan Chomicki () Database Consistency June 25-29, 2007 52 / 85

Co-NP-completeness of CQA

Theorem (Chomicki, Marcinkowski [CM05a])

For primary-key functional dependencies and conjunctive queries, consistent query
answering is data-complete for co-NP.

Proof.

Membership: S is a repair iff S |= IC and W 6|= IC if W = S ∪ A.
Co-NP-hardness: reduction from MONOTONE 3-SAT.

1 Positive clauses β1 = φ1 ∧ · · · ∧ φm, negative clauses β2 = ψm+1 ∧ · · · ∧ ψl .
2 Database D contains two binary relations R(A,B) and S(A,B):

R(i , p) if variable p occurs in φi , i = 1, . . . ,m.
S(i , p) if variable p occurs in ψi , i = m + 1, . . . , l .

3 A is the primary key of both R and S .

4 Query Q ≡ ∃x , y , z .
(
R(x , y) ∧ S(z , y)

)
.

5 There is an assignment which satisfies β1 ∧ β2 iff there exists a repair in which Q is
false.

Q does not belong to Cforest .

Jan Chomicki () Database Consistency June 25-29, 2007 52 / 85

Data complexity of CQA

Primary keys Arbitrary keys Denial Universal

σ,×,−

PTIME PTIME PTIME PTIME: binary

Πp
2-complete

σ,×,−,∪

PTIME PTIME PTIME Πp
2-complete

σ, π

PTIME co-NPC co-NPC Πp
2-complete

σ, π,×

co-NPC co-NPC co-NPC Πp
2-complete

PTIME: Cforest

σ, π,×,−,∪

co-NPC co-NPC co-NPC Πp
2-complete

(Arenas, Bertossi, Chomicki [ABC99])

(Chomicki, Marcinkowski [CM05a])

(Fuxman, Miller [FM05b])

(Staworko, Ph.D., 2007)

Jan Chomicki () Database Consistency June 25-29, 2007 53 / 85

Data complexity of CQA

Primary keys Arbitrary keys Denial Universal

σ,×,− PTIME PTIME

PTIME

PTIME: binary

Πp
2-complete

σ,×,−,∪

PTIME PTIME PTIME Πp
2-complete

σ, π

PTIME co-NPC co-NPC Πp
2-complete

σ, π,×

co-NPC co-NPC co-NPC Πp
2-complete

PTIME: Cforest

σ, π,×,−,∪

co-NPC co-NPC co-NPC Πp
2-complete

(Arenas, Bertossi, Chomicki [ABC99])

(Chomicki, Marcinkowski [CM05a])

(Fuxman, Miller [FM05b])

(Staworko, Ph.D., 2007)

Jan Chomicki () Database Consistency June 25-29, 2007 53 / 85

Data complexity of CQA

Primary keys Arbitrary keys Denial Universal

σ,×,− PTIME PTIME PTIME PTIME: binary

Πp
2-complete

σ,×,−,∪ PTIME PTIME PTIME

Πp
2-complete

σ, π PTIME co-NPC co-NPC

Πp
2-complete

σ, π,× co-NPC co-NPC co-NPC

Πp
2-complete

PTIME: Cforest

σ, π,×,−,∪ co-NPC co-NPC co-NPC

Πp
2-complete

(Arenas, Bertossi, Chomicki [ABC99])

(Chomicki, Marcinkowski [CM05a])

(Fuxman, Miller [FM05b])

(Staworko, Ph.D., 2007)

Jan Chomicki () Database Consistency June 25-29, 2007 53 / 85

Data complexity of CQA

Primary keys Arbitrary keys Denial Universal

σ,×,− PTIME PTIME PTIME PTIME: binary

Πp
2-complete

σ,×,−,∪ PTIME PTIME PTIME

Πp
2-complete

σ, π PTIME co-NPC co-NPC

Πp
2-complete

σ, π,× co-NPC co-NPC co-NPC

Πp
2-complete

PTIME: Cforest

σ, π,×,−,∪ co-NPC co-NPC co-NPC

Πp
2-complete

(Arenas, Bertossi, Chomicki [ABC99])

(Chomicki, Marcinkowski [CM05a])

(Fuxman, Miller [FM05b])

(Staworko, Ph.D., 2007)

Jan Chomicki () Database Consistency June 25-29, 2007 53 / 85

Data complexity of CQA

Primary keys Arbitrary keys Denial Universal

σ,×,− PTIME PTIME PTIME PTIME: binary

Πp
2-complete

σ,×,−,∪ PTIME PTIME PTIME Πp
2-complete

σ, π PTIME co-NPC co-NPC Πp
2-complete

σ, π,× co-NPC co-NPC co-NPC Πp
2-complete

PTIME: Cforest

σ, π,×,−,∪ co-NPC co-NPC co-NPC Πp
2-complete

(Arenas, Bertossi, Chomicki [ABC99])

(Chomicki, Marcinkowski [CM05a])

(Fuxman, Miller [FM05b])

(Staworko, Ph.D., 2007)

Jan Chomicki () Database Consistency June 25-29, 2007 53 / 85

The Semantic Explosion

Tuple-based repairs

asymmetric treatment of insertion and deletion:
repairs by minimal deletions only (Chomicki, Marcinkowski [CM05a]): data possibly
incorrect but complete
repairs by minimal deletions and arbitrary insertions (Cal̀ı, Lembo, Rosati [CLR03a]):
data possibly incorrect and incomplete

minimal cardinality changes (Lopatenko, Bertossi [LB07])

Attribute-based repairs

(A) ground and non-ground repairs (Wijsen [Wij05])

(B) project-join repairs (Wijsen [Wij06])

(C) repairs minimizing Euclidean distance (Bertossi et al. [BBFL05])

(D) repairs of minimum cost (Bohannon et al. [BFFR05])

Computational complexity

(A) and (B): similar to tuple based repairs

(C) and (D): checking existence of a repair of cost < K NP-complete.

Jan Chomicki () Database Consistency June 25-29, 2007 54 / 85

The Semantic Explosion

Tuple-based repairs

asymmetric treatment of insertion and deletion:
repairs by minimal deletions only (Chomicki, Marcinkowski [CM05a]): data possibly
incorrect but complete
repairs by minimal deletions and arbitrary insertions (Cal̀ı, Lembo, Rosati [CLR03a]):
data possibly incorrect and incomplete

minimal cardinality changes (Lopatenko, Bertossi [LB07])

Attribute-based repairs

(A) ground and non-ground repairs (Wijsen [Wij05])

(B) project-join repairs (Wijsen [Wij06])

(C) repairs minimizing Euclidean distance (Bertossi et al. [BBFL05])

(D) repairs of minimum cost (Bohannon et al. [BFFR05])

Computational complexity

(A) and (B): similar to tuple based repairs

(C) and (D): checking existence of a repair of cost < K NP-complete.

Jan Chomicki () Database Consistency June 25-29, 2007 54 / 85

The Semantic Explosion

Tuple-based repairs

asymmetric treatment of insertion and deletion:
repairs by minimal deletions only (Chomicki, Marcinkowski [CM05a]): data possibly
incorrect but complete
repairs by minimal deletions and arbitrary insertions (Cal̀ı, Lembo, Rosati [CLR03a]):
data possibly incorrect and incomplete

minimal cardinality changes (Lopatenko, Bertossi [LB07])

Attribute-based repairs

(A) ground and non-ground repairs (Wijsen [Wij05])

(B) project-join repairs (Wijsen [Wij06])

(C) repairs minimizing Euclidean distance (Bertossi et al. [BBFL05])

(D) repairs of minimum cost (Bohannon et al. [BFFR05])

Computational complexity

(A) and (B): similar to tuple based repairs

(C) and (D): checking existence of a repair of cost < K NP-complete.

Jan Chomicki () Database Consistency June 25-29, 2007 54 / 85

The Need for Attribute-based Repairing

Tuple-based repairing leads to information loss.

EmpDept

Name Dept Location

John Sales Buffalo

Mary Sales Toronto

Name → Dept

Dept → City

Name Dept Location

John Sales Buffalo

Name → Dept

Dept → City

Name Dept Location

Mary Sales Toronto

Name → Dept

Dept → City

Jan Chomicki () Database Consistency June 25-29, 2007 55 / 85

The Need for Attribute-based Repairing

Tuple-based repairing leads to information loss.

EmpDept

Name Dept Location

John Sales Buffalo

Mary Sales Toronto

Name → Dept

Dept → City

Name Dept Location

John Sales Buffalo

Name → Dept

Dept → City

Name Dept Location

Mary Sales Toronto

Name → Dept

Dept → City

Jan Chomicki () Database Consistency June 25-29, 2007 55 / 85

The Need for Attribute-based Repairing

Tuple-based repairing leads to information loss.

EmpDept

Name Dept Location

John Sales Buffalo

Mary Sales Toronto

Name → Dept

Dept → City

Name Dept Location

John Sales Buffalo

Name → Dept

Dept → City

Name Dept Location

Mary Sales Toronto

Name → Dept

Dept → City

Jan Chomicki () Database Consistency June 25-29, 2007 55 / 85

Attribute-based Repairs through Tuple-based Repairs (Wijsen [Wij06])

Repair a lossless join decomposition.

The decomposition:

πName,Dept(EmpDept) 1 πDept,Location(EmpDept)

Name Dept Location

John Sales Buffalo

John Sales Toronto

Mary Sales Buffalo

Mary Sales Toronto

Name → Dept

Dept → City

Name Dept Location

John Sales Buffalo

Mary Sales Buffalo

Name → Dept

Dept → City

Name Dept Location

John Sales Toronto

Mary Sales Toronto

Name → Dept

Dept → City

Jan Chomicki () Database Consistency June 25-29, 2007 56 / 85

Attribute-based Repairs through Tuple-based Repairs (Wijsen [Wij06])

Repair a lossless join decomposition.

The decomposition:

πName,Dept(EmpDept) 1 πDept,Location(EmpDept)

Name Dept Location

John Sales Buffalo

John Sales Toronto

Mary Sales Buffalo

Mary Sales Toronto

Name → Dept

Dept → City

Name Dept Location

John Sales Buffalo

Mary Sales Buffalo

Name → Dept

Dept → City

Name Dept Location

John Sales Toronto

Mary Sales Toronto

Name → Dept

Dept → City

Jan Chomicki () Database Consistency June 25-29, 2007 56 / 85

Attribute-based Repairs through Tuple-based Repairs (Wijsen [Wij06])

Repair a lossless join decomposition.

The decomposition:

πName,Dept(EmpDept) 1 πDept,Location(EmpDept)

Name Dept Location

John Sales Buffalo

John Sales Toronto

Mary Sales Buffalo

Mary Sales Toronto

Name → Dept

Dept → City

Name Dept Location

John Sales Buffalo

Mary Sales Buffalo

Name → Dept

Dept → City

Name Dept Location

John Sales Toronto

Mary Sales Toronto

Name → Dept

Dept → City
Jan Chomicki () Database Consistency June 25-29, 2007 56 / 85

Probabilistic framework for “dirty” databases

(Andritsos, Fuxman, Miller [AFM06])

potential duplicates identified and grouped into clusters

worlds ≈ repairs: one tuple from each cluster

world probability: product of tuple probabilities

clean answers: in the query result in some (supporting) world

clean answer probability: sum of the probabilities of supporting worlds
consistent answer: clean answer with probability 1

Salaries with probabilities

EmpProb

Name Salary Prob

Gates 20M 0.7

Gates 30M 0.3

Grove 10M 0.5

Grove 20M 0.5

Name → Salary

Jan Chomicki () Database Consistency June 25-29, 2007 57 / 85

Probabilistic framework for “dirty” databases

(Andritsos, Fuxman, Miller [AFM06])

potential duplicates identified and grouped into clusters

worlds ≈ repairs: one tuple from each cluster

world probability: product of tuple probabilities

clean answers: in the query result in some (supporting) world

clean answer probability: sum of the probabilities of supporting worlds
consistent answer: clean answer with probability 1

Salaries with probabilities

EmpProb

Name Salary Prob

Gates 20M 0.7

Gates 30M 0.3

Grove 10M 0.5

Grove 20M 0.5

Name → SalaryJan Chomicki () Database Consistency June 25-29, 2007 57 / 85

Computing Clean Answers

SQL query

SELECT Name

FROM EmpProb e

WHERE e.Salary > 15M

SQL rewritten query

SELECT e.Name,SUM(e.Prob)

FROM EmpProb e

WHERE e.Salary > 15M

GROUP BY e.Name

EmpProb

Name Salary Prob

Gates 20M 0.7

Gates 30M 0.3

Grove 10M 0.5

Grove 20M 0.5

Name → Salary

Name Prob

Gates 1

Grove 0.5

SELECT e.Name,SUM(e.Prob)

FROM EmpProb e

WHERE e.Salary > 15M

GROUP BY e.Name

Jan Chomicki () Database Consistency June 25-29, 2007 58 / 85

Computing Clean Answers

SQL query

SELECT Name

FROM EmpProb e

WHERE e.Salary > 15M

SQL rewritten query

SELECT e.Name,SUM(e.Prob)

FROM EmpProb e

WHERE e.Salary > 15M

GROUP BY e.Name

EmpProb

Name Salary Prob

Gates 20M 0.7

Gates 30M 0.3

Grove 10M 0.5

Grove 20M 0.5

Name → Salary

Name Prob

Gates 1

Grove 0.5

SELECT e.Name,SUM(e.Prob)

FROM EmpProb e

WHERE e.Salary > 15M

GROUP BY e.Name

Jan Chomicki () Database Consistency June 25-29, 2007 58 / 85

Computing Clean Answers

SQL query

SELECT Name

FROM EmpProb e

WHERE e.Salary > 15M

SQL rewritten query

SELECT e.Name,SUM(e.Prob)

FROM EmpProb e

WHERE e.Salary > 15M

GROUP BY e.Name

EmpProb

Name Salary Prob

Gates 20M 0.7

Gates 30M 0.3

Grove 10M 0.5

Grove 20M 0.5

Name → Salary

Name Prob

Gates 1

Grove 0.5

SELECT e.Name,SUM(e.Prob)

FROM EmpProb e

WHERE e.Salary > 15M

GROUP BY e.Name

Jan Chomicki () Database Consistency June 25-29, 2007 58 / 85

Computing Clean Answers

SQL query

SELECT Name

FROM EmpProb e

WHERE e.Salary > 15M

SQL rewritten query

SELECT e.Name,SUM(e.Prob)

FROM EmpProb e

WHERE e.Salary > 15M

GROUP BY e.Name

EmpProb

Name Salary Prob

Gates 20M 0.7

Gates 30M 0.3

Grove 10M 0.5

Grove 20M 0.5

Name → Salary

Name Prob

Gates 1

Grove 0.5

SELECT e.Name,SUM(e.Prob)

FROM EmpProb e

WHERE e.Salary > 15M

GROUP BY e.Name

Jan Chomicki () Database Consistency June 25-29, 2007 58 / 85

Computing Clean Answers

SQL query

SELECT Name

FROM EmpProb e

WHERE e.Salary > 15M

SQL rewritten query

SELECT e.Name,SUM(e.Prob)

FROM EmpProb e

WHERE e.Salary > 15M

GROUP BY e.Name

EmpProb

Name Salary Prob

Gates 20M 0.7

Gates 30M 0.3

Grove 10M 0.5

Grove 20M 0.5

Name → Salary

Name Prob

Gates 1

Grove 0.5

SELECT e.Name,SUM(e.Prob)

FROM EmpProb e

WHERE e.Salary > 15M

GROUP BY e.Name

Jan Chomicki () Database Consistency June 25-29, 2007 58 / 85

Taking Stock: Good News

Technology

practical methods for CQA for a subset of SQL:
restricted conjunctive/aggregation queries, primary/foreign-key constraints
quantifier-free queries/denial constraints
LP-based approaches for expressive query/constraint languages

implemented in prototype systems

tested on medium-size databases

The CQA Community

over 30 active researchers

around 100 publications (since 1999)

outreach to the AI community (qualified success)

overview papers [BC03, Ber06, Cho07a, CM05b]

Jan Chomicki () Database Consistency June 25-29, 2007 59 / 85

Taking Stock: Good News

Technology

practical methods for CQA for a subset of SQL:
restricted conjunctive/aggregation queries, primary/foreign-key constraints
quantifier-free queries/denial constraints
LP-based approaches for expressive query/constraint languages

implemented in prototype systems

tested on medium-size databases

The CQA Community

over 30 active researchers

around 100 publications (since 1999)

outreach to the AI community (qualified success)

overview papers [BC03, Ber06, Cho07a, CM05b]

Jan Chomicki () Database Consistency June 25-29, 2007 59 / 85

Taking Stock: Initial Progress

“Blending in” CQA

data integration: tension between repairing and satisfying source-to-target
dependencies

peer-to-peer: how to isolate an inconsistent peer?

Extensions

nulls:
repairs with nulls?
clean semantics vs. SQL conformance

priorities:
preferred repairs
application: conflict resolution

XML
notions of integrity constraint and repair
repair minimality based on tree edit distance?

aggregate constraints

Jan Chomicki () Database Consistency June 25-29, 2007 60 / 85

Taking Stock: Initial Progress

“Blending in” CQA

data integration: tension between repairing and satisfying source-to-target
dependencies

peer-to-peer: how to isolate an inconsistent peer?

Extensions

nulls:
repairs with nulls?
clean semantics vs. SQL conformance

priorities:
preferred repairs
application: conflict resolution

XML
notions of integrity constraint and repair
repair minimality based on tree edit distance?

aggregate constraints

Jan Chomicki () Database Consistency June 25-29, 2007 60 / 85

Taking Stock: Initial Progress

“Blending in” CQA

data integration: tension between repairing and satisfying source-to-target
dependencies

peer-to-peer: how to isolate an inconsistent peer?

Extensions

nulls:
repairs with nulls?
clean semantics vs. SQL conformance

priorities:
preferred repairs
application: conflict resolution

XML
notions of integrity constraint and repair
repair minimality based on tree edit distance?

aggregate constraints

Jan Chomicki () Database Consistency June 25-29, 2007 60 / 85

Taking Stock: Largely Open Issues

Applications

no deployed applications

repairing vs. CQA: data and query
characteristics

heuristics for CQA and repairing

CQA in context

taming the semantic explosion

CQA and data cleaning

CQA and schema matching/mapping

Foundations

defining measures of consistency

more refined complexity analysis,
dynamic aspects

Jan Chomicki () Database Consistency June 25-29, 2007 61 / 85

Taking Stock: Largely Open Issues

Applications

no deployed applications

repairing vs. CQA: data and query
characteristics

heuristics for CQA and repairing

CQA in context

taming the semantic explosion

CQA and data cleaning

CQA and schema matching/mapping

Foundations

defining measures of consistency

more refined complexity analysis,
dynamic aspects

Jan Chomicki () Database Consistency June 25-29, 2007 61 / 85

Taking Stock: Largely Open Issues

Applications

no deployed applications

repairing vs. CQA: data and query
characteristics

heuristics for CQA and repairing

CQA in context

taming the semantic explosion

CQA and data cleaning

CQA and schema matching/mapping

Foundations

defining measures of consistency

more refined complexity analysis,
dynamic aspects

Jan Chomicki () Database Consistency June 25-29, 2007 61 / 85

Taking Stock: Largely Open Issues

Applications

no deployed applications

repairing vs. CQA: data and query
characteristics

heuristics for CQA and repairing

CQA in context

taming the semantic explosion

CQA and data cleaning

CQA and schema matching/mapping

Foundations

defining measures of consistency

more refined complexity analysis,
dynamic aspects

Jan Chomicki () Database Consistency June 25-29, 2007 61 / 85

Taking Stock: Largely Open Issues

Applications

no deployed applications

repairing vs. CQA: data and query
characteristics

heuristics for CQA and repairing

CQA in context

taming the semantic explosion

CQA and data cleaning

CQA and schema matching/mapping

Foundations

defining measures of consistency

more refined complexity analysis,
dynamic aspects

Jan Chomicki () Database Consistency June 25-29, 2007 61 / 85

Part III

XML

Jan Chomicki () Database Consistency June 25-29, 2007 62 / 85

Outline of Part III

10 XML basics

11 XML keys and foreign keys

12 Consistency and implication

13 Applications
Integrity constraint propagation
XML normalization

14 Prospects

15 Valid Query Answers for XML

Jan Chomicki () Database Consistency June 25-29, 2007 63 / 85

Validity of XML documents

XML data model

finite, ordered, unranked tree

element, attribute and text nodes

XML trees represent well-formed documents:

matching, properly nested opening and closing tags

single root element

Valid XML documents

syntactic structure (DTD)

syntactic structure and rich set of types (XML Schema)

integrity constraints

Jan Chomicki () Database Consistency June 25-29, 2007 64 / 85

Validity of XML documents

XML data model

finite, ordered, unranked tree

element, attribute and text nodes

XML trees represent well-formed documents:

matching, properly nested opening and closing tags

single root element

Valid XML documents

syntactic structure (DTD)

syntactic structure and rich set of types (XML Schema)

integrity constraints

Jan Chomicki () Database Consistency June 25-29, 2007 64 / 85

Validity of XML documents

XML data model

finite, ordered, unranked tree

element, attribute and text nodes

XML trees represent well-formed documents:

matching, properly nested opening and closing tags

single root element

Valid XML documents

syntactic structure (DTD)

syntactic structure and rich set of types (XML Schema)

integrity constraints

Jan Chomicki () Database Consistency June 25-29, 2007 64 / 85

Example XML document

books

book

@title=”1984” author

“G. Orwell”

part

@num=1

part

@num=2

citation

@title=”Utopia”

book

@title=”Utopia”

<books>

<book @title="1984">

<author>G. Orwell</author>

<part @num=1></part>

<part @num=2></part>

<citation @title="Utopia"/>

</book>

</books>

Jan Chomicki () Database Consistency June 25-29, 2007 65 / 85

XML integrity constraints

What is familiar

kinds of constraints: key, foreign key

What is new

tree data model: nodes, paths

different notions of equality: value-equality, node identity

constraint scoping: absolute, relative, path-based

interaction with syntax specifications

no uniform framework

Jan Chomicki () Database Consistency June 25-29, 2007 66 / 85

Document Type Definitions (DTDs)

DTD

a finite set of element types E (incl. the root type)

a finite set of attributes A (A ∩ E = ∅)
for each τ ∈ E , the content P(τ) is a regular expression:

E := ε | τ ′ | E ∪ E | E ,E | E∗

Validity

An XML tree is valid w.r.t. a DTD if for every node n with label τ in the tree, the
concatenation of the labels of the children of τ is in the regular language defined by P(τ).

DTD: element types

books ; book*
book ; author, part*, citation*
author; PCDATA
...

DTD: attributes

book: @title
citation: @title
part: @num

Jan Chomicki () Database Consistency June 25-29, 2007 67 / 85

Document Type Definitions (DTDs)

DTD

a finite set of element types E (incl. the root type)

a finite set of attributes A (A ∩ E = ∅)
for each τ ∈ E , the content P(τ) is a regular expression:

E := ε | τ ′ | E ∪ E | E ,E | E∗

Validity

An XML tree is valid w.r.t. a DTD if for every node n with label τ in the tree, the
concatenation of the labels of the children of τ is in the regular language defined by P(τ).

DTD: element types

books ; book*
book ; author, part*, citation*
author; PCDATA
...

DTD: attributes

book: @title
citation: @title
part: @num

Jan Chomicki () Database Consistency June 25-29, 2007 67 / 85

Document Type Definitions (DTDs)

DTD

a finite set of element types E (incl. the root type)

a finite set of attributes A (A ∩ E = ∅)
for each τ ∈ E , the content P(τ) is a regular expression:

E := ε | τ ′ | E ∪ E | E ,E | E∗

Validity

An XML tree is valid w.r.t. a DTD if for every node n with label τ in the tree, the
concatenation of the labels of the children of τ is in the regular language defined by P(τ).

DTD: element types

books ; book*
book ; author, part*, citation*
author; PCDATA
...

DTD: attributes

book: @title
citation: @title
part: @num

Jan Chomicki () Database Consistency June 25-29, 2007 67 / 85

Document Type Definitions (DTDs)

DTD

a finite set of element types E (incl. the root type)

a finite set of attributes A (A ∩ E = ∅)
for each τ ∈ E , the content P(τ) is a regular expression:

E := ε | τ ′ | E ∪ E | E ,E | E∗

Validity

An XML tree is valid w.r.t. a DTD if for every node n with label τ in the tree, the
concatenation of the labels of the children of τ is in the regular language defined by P(τ).

DTD: element types

books ; book*
book ; author, part*, citation*
author; PCDATA
...

DTD: attributes

book: @title
citation: @title
part: @num

Jan Chomicki () Database Consistency June 25-29, 2007 67 / 85

Keys and foreign keys (Buneman et al. [BDF+02])

Absolute vs. relative

absolute: constraints hold over the entire document

relative: constraints hold over subdocuments rooted at a given element type

Absolute keys

A document satisfies a key τ [X]→ τ iff

∀u, v ∈ ext(τ).
∧
A∈X

u.A = v .A⇒ u = v

Notation

ext(τ): the set of τ -element
nodes in the document

Notions of equality

LHS: string value
equality

RHS: node identity

Absolute foreign keys

A document satisfies a foreign key (τ1[X] ⊆ τ2[Y], τ2[Y]→ τ2) iff

∀u ∈ ext(τ1).∃v ∈ ext(τ2).u[X] = v [Y]

Jan Chomicki () Database Consistency June 25-29, 2007 68 / 85

Keys and foreign keys (Buneman et al. [BDF+02])

Absolute vs. relative

absolute: constraints hold over the entire document

relative: constraints hold over subdocuments rooted at a given element type

Absolute keys

A document satisfies a key τ [X]→ τ iff

∀u, v ∈ ext(τ).
∧
A∈X

u.A = v .A⇒ u = v

Notation

ext(τ): the set of τ -element
nodes in the document

Notions of equality

LHS: string value
equality

RHS: node identity

Absolute foreign keys

A document satisfies a foreign key (τ1[X] ⊆ τ2[Y], τ2[Y]→ τ2) iff

∀u ∈ ext(τ1).∃v ∈ ext(τ2).u[X] = v [Y]

Jan Chomicki () Database Consistency June 25-29, 2007 68 / 85

Keys and foreign keys (Buneman et al. [BDF+02])

Absolute vs. relative

absolute: constraints hold over the entire document

relative: constraints hold over subdocuments rooted at a given element type

Absolute keys

A document satisfies a key τ [X]→ τ iff

∀u, v ∈ ext(τ).
∧
A∈X

u.A = v .A⇒ u = v

Notation

ext(τ): the set of τ -element
nodes in the document

Notions of equality

LHS: string value
equality

RHS: node identity

Absolute foreign keys

A document satisfies a foreign key (τ1[X] ⊆ τ2[Y], τ2[Y]→ τ2) iff

∀u ∈ ext(τ1).∃v ∈ ext(τ2).u[X] = v [Y]

Jan Chomicki () Database Consistency June 25-29, 2007 68 / 85

Keys and foreign keys (Buneman et al. [BDF+02])

Absolute vs. relative

absolute: constraints hold over the entire document

relative: constraints hold over subdocuments rooted at a given element type

Absolute keys

A document satisfies a key τ [X]→ τ iff

∀u, v ∈ ext(τ).
∧
A∈X

u.A = v .A⇒ u = v

Notation

ext(τ): the set of τ -element
nodes in the document

Notions of equality

LHS: string value
equality

RHS: node identity

Absolute foreign keys

A document satisfies a foreign key (τ1[X] ⊆ τ2[Y], τ2[Y]→ τ2) iff

∀u ∈ ext(τ1).∃v ∈ ext(τ2).u[X] = v [Y]

Jan Chomicki () Database Consistency June 25-29, 2007 68 / 85

Example XML document

books

book

@title=”1984” author

“G. Orwell”

part

@num=1

part

@num=2

citation

@title=”Utopia”

book

@title=”Utopia”

Integrity constraints

Keys:

book.@title → book

book(part.@num→ part)

Foreign keys:

(citation.@title ⊆ book.@title, book.@title → book)

Jan Chomicki () Database Consistency June 25-29, 2007 69 / 85

Example XML document

books

book

@title=”1984” author

“G. Orwell”

part

@num=1

part

@num=2

citation

@title=”Utopia”

book

@title=”Utopia”

Integrity constraints

Keys:

book.@title → book

book(part.@num→ part)

Foreign keys:

(citation.@title ⊆ book.@title, book.@title → book)

Jan Chomicki () Database Consistency June 25-29, 2007 69 / 85

Path constraints

Path expressions

E := ε | τ ′ | E/E | E//E

Absolute key constraints

(Q, {P1, . . . ,Pk}):
Q: target path to identify the target set of nodes JQK on which the key is defined

P1, . . . ,Pk : key paths to provide identification for the nodes in JQK
semantics: for any two nodes in JQK, if they have all the key paths and agree on
them by value equality, then they must be the same node.

Relative key constraints

(Q0, (Q, {P1, . . . ,Pk})):
Q0: context path

(Q, {P1, . . . ,Pk}) is a key on subdocuments rooted at the nodes in JQ0K

Jan Chomicki () Database Consistency June 25-29, 2007 70 / 85

Path constraints

Path expressions

E := ε | τ ′ | E/E | E//E

Absolute key constraints

(Q, {P1, . . . ,Pk}):
Q: target path to identify the target set of nodes JQK on which the key is defined

P1, . . . ,Pk : key paths to provide identification for the nodes in JQK
semantics: for any two nodes in JQK, if they have all the key paths and agree on
them by value equality, then they must be the same node.

Relative key constraints

(Q0, (Q, {P1, . . . ,Pk})):
Q0: context path

(Q, {P1, . . . ,Pk}) is a key on subdocuments rooted at the nodes in JQ0K

Jan Chomicki () Database Consistency June 25-29, 2007 70 / 85

Path constraints

Path expressions

E := ε | τ ′ | E/E | E//E

Absolute key constraints

(Q, {P1, . . . ,Pk}):
Q: target path to identify the target set of nodes JQK on which the key is defined

P1, . . . ,Pk : key paths to provide identification for the nodes in JQK
semantics: for any two nodes in JQK, if they have all the key paths and agree on
them by value equality, then they must be the same node.

Relative key constraints

(Q0, (Q, {P1, . . . ,Pk})):
Q0: context path

(Q, {P1, . . . ,Pk}) is a key on subdocuments rooted at the nodes in JQ0K

Jan Chomicki () Database Consistency June 25-29, 2007 70 / 85

books

book

@title=”1984” author

“G. Orwell”

part

@num=1

part

@num=2

citation

@title=”Utopia”

book

@title=”Utopia”

Path constraints

(ε, (//book, {@title}))

(//book, (part, {@num}))

(//book, (author , ∅)) each book has a single author

Jan Chomicki () Database Consistency June 25-29, 2007 71 / 85

books

book

@title=”1984” author

“G. Orwell”

part

@num=1

part

@num=2

citation

@title=”Utopia”

book

@title=”Utopia”

Path constraints

(ε, (//book, {@title}))

(//book, (part, {@num}))

(//book, (author , ∅)) each book has a single author

Jan Chomicki () Database Consistency June 25-29, 2007 71 / 85

XML Schema

(Absolute) key constraints

(Q, {P1, . . . ,Pk}):
Q,P1, . . . ,Pk : (limited) XPath expression

uniqueness and existence: for each node x in JQK and each i = 1, . . . , k, there is a
single node ui (text or attribute) reached from x via Pi

identification: for different nodes in JQK, at least one of paths in P1, . . . ,Pk results
in different nodes.

(Absolute) foreign key constraints

(Q, {P1, . . . ,Pk}) ⊆ (S , {T1, . . . ,Tk}):
key constraint (S , {T1, . . . ,Tk})
uniqueness and existence: for both P1, . . . ,Pk and T1, . . . ,Tk

Jan Chomicki () Database Consistency June 25-29, 2007 72 / 85

XML Schema

(Absolute) key constraints

(Q, {P1, . . . ,Pk}):
Q,P1, . . . ,Pk : (limited) XPath expression

uniqueness and existence: for each node x in JQK and each i = 1, . . . , k, there is a
single node ui (text or attribute) reached from x via Pi

identification: for different nodes in JQK, at least one of paths in P1, . . . ,Pk results
in different nodes.

(Absolute) foreign key constraints

(Q, {P1, . . . ,Pk}) ⊆ (S , {T1, . . . ,Tk}):
key constraint (S , {T1, . . . ,Tk})
uniqueness and existence: for both P1, . . . ,Pk and T1, . . . ,Tk

Jan Chomicki () Database Consistency June 25-29, 2007 72 / 85

Main problems

Consistency

Given a syntax specification S and a set of integrity constraints Σ, is there a document
valid w.r.t. S and satisfying Σ?

Implication

Given a syntax specification S , a set of ICs Σ and an IC σ, does every document valid
w.r.t. S and satisfying Σ also satisfy σ?

Jan Chomicki () Database Consistency June 25-29, 2007 73 / 85

Main problems

Consistency

Given a syntax specification S and a set of integrity constraints Σ, is there a document
valid w.r.t. S and satisfying Σ?

Implication

Given a syntax specification S , a set of ICs Σ and an IC σ, does every document valid
w.r.t. S and satisfying Σ also satisfy σ?

Jan Chomicki () Database Consistency June 25-29, 2007 73 / 85

Consistency is nontrivial

DTD: element types

teachers ; teacher+

teacher ; teach, research
teach ; subject, subject
subject ; PCDATA
research ; PCDATA

DTD: attributes

teacher: @name
subject: @by

Integrity constraints

teacher .@name → teacher
subject.@by → subject
subject.@by ⊆ teacher .@name

From the DTD

|ext(teacher)| <
|ext(subject)|

From the constraints

ext(teacher .@name)	=	ext(teacher)
ext(subject.@by)	=	ext(subject)
ext(subject.@by)	≤	ext(teacher .@name)
⇒ |ext(subject)| ≤ |ext(teacher)|

Jan Chomicki () Database Consistency June 25-29, 2007 74 / 85

Consistency is nontrivial

DTD: element types

teachers ; teacher+

teacher ; teach, research
teach ; subject, subject
subject ; PCDATA
research ; PCDATA

DTD: attributes

teacher: @name
subject: @by

Integrity constraints

teacher .@name → teacher
subject.@by → subject
subject.@by ⊆ teacher .@name

From the DTD

|ext(teacher)| <
|ext(subject)|

From the constraints

ext(teacher .@name)	=	ext(teacher)
ext(subject.@by)	=	ext(subject)
ext(subject.@by)	≤	ext(teacher .@name)
⇒ |ext(subject)| ≤ |ext(teacher)|

Jan Chomicki () Database Consistency June 25-29, 2007 74 / 85

Consistency is nontrivial

DTD: element types

teachers ; teacher+

teacher ; teach, research
teach ; subject, subject
subject ; PCDATA
research ; PCDATA

DTD: attributes

teacher: @name
subject: @by

Integrity constraints

teacher .@name → teacher
subject.@by → subject
subject.@by ⊆ teacher .@name

From the DTD

|ext(teacher)| <
|ext(subject)|

From the constraints

ext(teacher .@name)	=	ext(teacher)
ext(subject.@by)	=	ext(subject)
ext(subject.@by)	≤	ext(teacher .@name)
⇒ |ext(subject)| ≤ |ext(teacher)|

Jan Chomicki () Database Consistency June 25-29, 2007 74 / 85

Checking consistency with a DTD (Arenas, Fan, Libkin [FL02, AFL05])

Keys and foreign keys

Absolute Relative

Unary NP-complete Undecidable

Multi-attribute Undecidable Undecidable

Keys only

Multi-attribute relative Linear time

XML Schema unary NP-hard

Proof techniques

multi-attribute constraints: reductions from relational problems

unary constraints: polynomially equivalent to Linear Integer Programming

Jan Chomicki () Database Consistency June 25-29, 2007 75 / 85

Checking consistency with a DTD (Arenas, Fan, Libkin [FL02, AFL05])

Keys and foreign keys

Absolute Relative

Unary NP-complete Undecidable

Multi-attribute Undecidable Undecidable

Keys only

Multi-attribute relative Linear time

XML Schema unary NP-hard

Proof techniques

multi-attribute constraints: reductions from relational problems

unary constraints: polynomially equivalent to Linear Integer Programming

Jan Chomicki () Database Consistency June 25-29, 2007 75 / 85

Checking consistency with a DTD (Arenas, Fan, Libkin [FL02, AFL05])

Keys and foreign keys

Absolute Relative

Unary NP-complete Undecidable

Multi-attribute Undecidable Undecidable

Keys only

Multi-attribute relative Linear time

XML Schema unary NP-hard

Proof techniques

multi-attribute constraints: reductions from relational problems

unary constraints: polynomially equivalent to Linear Integer Programming

Jan Chomicki () Database Consistency June 25-29, 2007 75 / 85

Implication

Keys and foreign keys

Absolute Relative

Unary co-NP-complete Undecidable

Multi-attribute Undecidable Undecidable

Keys only

Multi-attribute absolute Linear time

XML Schema unary co-NP-hard

Simple relative path keys, no DTD Quadratic time [HL07]

Jan Chomicki () Database Consistency June 25-29, 2007 76 / 85

Implication

Keys and foreign keys

Absolute Relative

Unary co-NP-complete Undecidable

Multi-attribute Undecidable Undecidable

Keys only

Multi-attribute absolute Linear time

XML Schema unary co-NP-hard

Simple relative path keys, no DTD Quadratic time [HL07]

Jan Chomicki () Database Consistency June 25-29, 2007 76 / 85

Propagating relational constraints (Davidson, Fan, Hara[DFH07])

XML shredding

mapping XML documents to relations

mapping XML keys to relation keys

XML path keys

(//book, {@isbn}) globally unique ISBN

(//book, (chapter , {@num})) chapter numbers unique within a book

(//book, (title, ∅)) each book has a single title ... which does not have to be unique

Candidate relation?

Chapter(Title,ChapterNum,ChapterTitle)

Will the key constraint of the relation Chapter be propagated?

Jan Chomicki () Database Consistency June 25-29, 2007 77 / 85

Propagating relational constraints (Davidson, Fan, Hara[DFH07])

XML shredding

mapping XML documents to relations

mapping XML keys to relation keys

XML path keys

(//book, {@isbn}) globally unique ISBN

(//book, (chapter , {@num})) chapter numbers unique within a book

(//book, (title, ∅)) each book has a single title ... which does not have to be unique

Candidate relation?

Chapter(Title,ChapterNum,ChapterTitle)

Will the key constraint of the relation Chapter be propagated?

Jan Chomicki () Database Consistency June 25-29, 2007 77 / 85

Propagating relational constraints (Davidson, Fan, Hara[DFH07])

XML shredding

mapping XML documents to relations

mapping XML keys to relation keys

XML path keys

(//book, {@isbn}) globally unique ISBN

(//book, (chapter , {@num})) chapter numbers unique within a book

(//book, (title, ∅)) each book has a single title ... which does not have to be unique

Candidate relation?

Chapter(Title,ChapterNum,ChapterTitle)

Will the key constraint of the relation Chapter be propagated?

Jan Chomicki () Database Consistency June 25-29, 2007 77 / 85

Propagating relational constraints (Davidson, Fan, Hara[DFH07])

XML shredding

mapping XML documents to relations

mapping XML keys to relation keys

XML path keys

(//book, {@isbn}) globally unique ISBN

(//book, (chapter , {@num})) chapter numbers unique within a book

(//book, (title, ∅)) each book has a single title ... which does not have to be unique

Candidate relation?

Chapter(Title,ChapterNum,ChapterTitle)

Will the key constraint of the relation Chapter be propagated?

Jan Chomicki () Database Consistency June 25-29, 2007 77 / 85

Which constraints are propagated?

Correctness criterion

Assuming a set of XML keys Σ, a relation key α is propagated using a mapping f , if for
every document I satisfying Σ, the relation f (I) satisfies α.

Unsuccessful propagation

The key of Chapter(Title,ChapterNum,ChapterTitle) will not be propagated.

Successful propagation

A different schema: Chapter(ISBN,ChapterNum,ChapterTitle).

Jan Chomicki () Database Consistency June 25-29, 2007 78 / 85

Which constraints are propagated?

Correctness criterion

Assuming a set of XML keys Σ, a relation key α is propagated using a mapping f , if for
every document I satisfying Σ, the relation f (I) satisfies α.

Unsuccessful propagation

The key of Chapter(Title,ChapterNum,ChapterTitle) will not be propagated.

Successful propagation

A different schema: Chapter(ISBN,ChapterNum,ChapterTitle).

Jan Chomicki () Database Consistency June 25-29, 2007 78 / 85

Which constraints are propagated?

Correctness criterion

Assuming a set of XML keys Σ, a relation key α is propagated using a mapping f , if for
every document I satisfying Σ, the relation f (I) satisfies α.

Unsuccessful propagation

The key of Chapter(Title,ChapterNum,ChapterTitle) will not be propagated.

Successful propagation

A different schema: Chapter(ISBN,ChapterNum,ChapterTitle).

Jan Chomicki () Database Consistency June 25-29, 2007 78 / 85

XML normalization (Arenas, Libkin [AL04])

We need to adapt the notions of functional dependency, normal forms etc. to the context
of XML.

Tree tuple

Assigns nodes, attribute values or nulls to paths:

paths are valid w.r.t. a DTD

paths are mapped to their last nodes in a consistent manner

XFDs

An XFD ϕ = {q1, . . . , qn} → q is true in a document if for every tree tuples t1 and t2 of
the document, whenever t1 and t2 agree on all q1, . . . , qn and are non-null, then they also
agree on q.

Jan Chomicki () Database Consistency June 25-29, 2007 79 / 85

XML normalization (Arenas, Libkin [AL04])

We need to adapt the notions of functional dependency, normal forms etc. to the context
of XML.

Tree tuple

Assigns nodes, attribute values or nulls to paths:

paths are valid w.r.t. a DTD

paths are mapped to their last nodes in a consistent manner

XFDs

An XFD ϕ = {q1, . . . , qn} → q is true in a document if for every tree tuples t1 and t2 of
the document, whenever t1 and t2 agree on all q1, . . . , qn and are non-null, then they also
agree on q.

Jan Chomicki () Database Consistency June 25-29, 2007 79 / 85

Example

DTD: element types

db ; conf*

conf ; issue+

issue ; paper+

DTD: attributes

conf: @title
paper: @title
paper: @pages
paper: @year

XFDs

db.conf.@title → db.conf
db.conf.issue → db.conf.issue.paper.@year

Are there any potential redundancies?

Jan Chomicki () Database Consistency June 25-29, 2007 80 / 85

Example

DTD: element types

db ; conf*

conf ; issue+

issue ; paper+

DTD: attributes

conf: @title
paper: @title
paper: @pages
paper: @year

XFDs

db.conf.@title → db.conf
db.conf.issue → db.conf.issue.paper.@year

Are there any potential redundancies?

Jan Chomicki () Database Consistency June 25-29, 2007 80 / 85

db

conf

@title=”PODS” issue

paper

@title=”FD” @pages=10 @year=1982

paper

@title=”JD” @pages=12 @year=1982

Jan Chomicki () Database Consistency June 25-29, 2007 81 / 85

Normal form

XNF

Given a DTD D and a set Σ of XFDs, (D,Σ) is in XNF if for every nontrivial XFD
X → p.@A implied by (D,Σ), the XFD X → p is also implied by (D,Σ).

Reaching XNF

The example document is not in XNF but can be transformed into XNF by moving the
attribute year from paper to issue.

Computational complexity

The complexity of testing XFD implication ranges from quadratic time to
co-NEXPTIME, depending on the form of the DTD.

Jan Chomicki () Database Consistency June 25-29, 2007 82 / 85

Normal form

XNF

Given a DTD D and a set Σ of XFDs, (D,Σ) is in XNF if for every nontrivial XFD
X → p.@A implied by (D,Σ), the XFD X → p is also implied by (D,Σ).

Reaching XNF

The example document is not in XNF but can be transformed into XNF by moving the
attribute year from paper to issue.

Computational complexity

The complexity of testing XFD implication ranges from quadratic time to
co-NEXPTIME, depending on the form of the DTD.

Jan Chomicki () Database Consistency June 25-29, 2007 82 / 85

Normal form

XNF

Given a DTD D and a set Σ of XFDs, (D,Σ) is in XNF if for every nontrivial XFD
X → p.@A implied by (D,Σ), the XFD X → p is also implied by (D,Σ).

Reaching XNF

The example document is not in XNF but can be transformed into XNF by moving the
attribute year from paper to issue.

Computational complexity

The complexity of testing XFD implication ranges from quadratic time to
co-NEXPTIME, depending on the form of the DTD.

Jan Chomicki () Database Consistency June 25-29, 2007 82 / 85

Normal form

XNF

Given a DTD D and a set Σ of XFDs, (D,Σ) is in XNF if for every nontrivial XFD
X → p.@A implied by (D,Σ), the XFD X → p is also implied by (D,Σ).

Reaching XNF

The example document is not in XNF but can be transformed into XNF by moving the
attribute year from paper to issue.

Computational complexity

The complexity of testing XFD implication ranges from quadratic time to
co-NEXPTIME, depending on the form of the DTD.

Jan Chomicki () Database Consistency June 25-29, 2007 82 / 85

XML constraints: the bottom line

The right language

using path expressions to capture the scope and the contents of a constraint

various proposals: no uniform syntax or semantics

very preliminary logical formulations [DT05], equational chase

applications: data shredding/publishing, schema mapping

Constraint analysis

constraints and syntax specifications separately

constraints and syntax specifications together: high complexity if both keys and
foreign keys

Jan Chomicki () Database Consistency June 25-29, 2007 83 / 85

Prospects for integrity constraints

Semantic Web

knowledge bases and ontologies

extensions of ICs

relational representations

Data mining

discovery of FDs and INDs

Data cleaning

Jan Chomicki () Database Consistency June 25-29, 2007 84 / 85

Jan Chomicki () Database Consistency June 25-29, 2007 85 / 85

M. Arenas, L. Bertossi, and J. Chomicki.
Consistent Query Answers in Inconsistent Databases.
In ACM Symposium on Principles of Database Systems (PODS), pages 68–79, 1999.

M. Arenas, L. Bertossi, and J. Chomicki.
Answer Sets for Consistent Query Answering in Inconsistent Databases.
Theory and Practice of Logic Programming, 3(4–5):393–424, 2003.

M. Arenas, W. Fan, and L. Libkin.
Consistency of XML Specifications.
In Bertossi et al. [BHS05], pages 15–41.

P. Andritsos, A. Fuxman, and R. Miller.
Clean Answers over Dirty Databases.
In IEEE International Conference on Data Engineering (ICDE), 2006.

S. Abiteboul, R. Hull, and V. Vianu.
Foundations of Databases.
Addison-Wesley, 1995.

M. Arenas and L. Libkin.
A Normal Form for XML Documents.
ACM Transactions on Database Systems, 29:195–232, 2004.

L. Bertossi, L. Bravo, E. Franconi, and A. Lopatenko.

Jan Chomicki () Database Consistency June 25-29, 2007 85 / 85

Complexity and Approximation of Fixing Numerical Attributes in Databases Under
Integrity Constraints.
In International Workshop on Database Programming Languages, pages 262–278.
Springer, LNCS 3774, 2005.

L. Bertossi and J. Chomicki.
Query Answering in Inconsistent Databases.
In J. Chomicki, R. van der Meyden, and G. Saake, editors, Logics for Emerging
Applications of Databases, pages 43–83. Springer-Verlag, 2003.

M. Baudinet, J. Chomicki, and P. Wolper.
Constraint-Generating Dependencies.
In International Conference on Database Theory (ICDT), pages 322–337, Prague,
Czech Republic, January 1995. Springer-Verlag, LNCS 893.
Short version in: Proc. 2nd Workshop on Principles and Practice of Constraint
Programming, 1994.

P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan.
Keys for XML.
Computer Networks, 39(5):473–487, 2002.

L. Bertossi.
Consistent Query Answering in Databases.
SIGMOD Record, 35(2), June 2006.

P. Bohannon, M. Flaster, W. Fan, and R. Rastogi.

Jan Chomicki () Database Consistency June 25-29, 2007 85 / 85

A Cost-Based Model and Effective Heuristic for Repairing Constraints by Value
Modification.
In ACM SIGMOD International Conference on Management of Data, pages
143–154, 2005.

L. Bertossi, A. Hunter, and T. Schaub, editors.
Inconsistency Tolerance.
Springer-Verlag, 2005.

A. Borgida.
Language Features for Flexible Handling of Exceptions in Information Systems.
ACM Transactions on Database Systems, 10(4):565–603, 1985.

J. Chomicki.
Preference Formulas in Relational Queries.
ACM Transactions on Database Systems, 28(4):427–466, December 2003.

J. Chomicki.
Consistent Query Answering: Five Easy Pieces.
In International Conference on Database Theory (ICDT), pages 1–17. Springer,
LNCS 4353, 2007.
Keynote talk.

J. Chomicki.
Semantic optimization techniques for preference queries.
Information Systems, 2007.

Jan Chomicki () Database Consistency June 25-29, 2007 85 / 85

In press.

A. Chandra, H.R. Lewis, and J.A. Makowsky.
Embedded Implicational Dependencies and their Inference Problem.
In ACM Symposium on Theory of Computing (STOC), pages 342–354, 1981.

A. Cal̀ı, D. Lembo, and R. Rosati.
On the Decidability and Complexity of Query Answering over Inconsistent and
Incomplete Databases.
In ACM Symposium on Principles of Database Systems (PODS), pages 260–271,
2003.

A. Cal̀ı, D. Lembo, and R. Rosati.
Query Rewriting and Answering under Constraints in Data Integration Systems.
In International Joint Conference on Artificial Intelligence (IJCAI), pages 16–21,
2003.

J. Chomicki and J. Marcinkowski.
Minimal-Change Integrity Maintenance Using Tuple Deletions.
Information and Computation, 197(1-2):90–121, 2005.

J. Chomicki and J. Marcinkowski.
On the Computational Complexity of Minimal-Change Integrity Maintenance in
Relational Databases.
In Bertossi et al. [BHS05], pages 119–150.

J. Chomicki, J. Marcinkowski, and S. Staworko.
Jan Chomicki () Database Consistency June 25-29, 2007 85 / 85

Computing Consistent Query Answers Using Conflict Hypergraphs.
In International Conference on Information and Knowledge Management (CIKM),
pages 417–426. ACM Press, 2004.

A. Chandra and M. Vardi.
The Implication Problem for Functional and Inclusion Dependencies is Undecidable.
SIAM Journal on Computing, 14(3):671–677, 1985.

P. De Bra and J. Paredaens.
Conditional Dependencies for Horizontal Decompositions.
In International Colloquium on Automata, Languages and Programming (ICALP),
pages 123–141, 1983.

S. Davidson, W. Fan, and C. S. Hara.
Propagating XML constraints to relations.
Journal of Computer and System Sciences, 73(3):316–361, 2007.

W.F. Dowling and J. H. Gallier.
Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn
Formulae.
Journal of Logic Programming, 1(3):267–284, 1984.

A. Deutsch and V. Tannen.
XML Queries and Constraints, Containment and Reformulation.
Theoretical Computer Science, 336(1):57–87, 2005.

Jan Chomicki () Database Consistency June 25-29, 2007 85 / 85

T. Eiter, M. Fink, G. Greco, and D. Lembo.
Efficient Evaluation of Logic Programs for Querying Data Integration Systems.
In International Conference on Logic Programming (ICLP), pages 163–177, 2003.

R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data Exchange: Semantics and Query Answering.
Theoretical Computer Science, 336(1):89–124, 2005.

W. Fan and L. Libkin.
On XML Integrity Constraints in the Presence of DTDs.
Journal of the ACM, 49(3):368–406, 2002.

A. Fuxman and R. J. Miller.
ConQuer: Efficient Management of Inconsistent Databases.
In ACM SIGMOD International Conference on Management of Data, pages
155–166, 2005.

A. Fuxman and R. J. Miller.
First-Order Query Rewriting for Inconsistent Databases.
In International Conference on Database Theory (ICDT), pages 337–351. Springer,
LNCS 3363, 2005.
Full version to appear in JCSS.

G. Greco, S. Greco, and E. Zumpano.
A Logical Framework for Querying and Repairing Inconsistent Databases.

Jan Chomicki () Database Consistency June 25-29, 2007 85 / 85

IEEE Transactions on Knowledge and Data Engineering, 15(6):1389–1408, 2003.

S. Hartmann and S. Link.
Unlocking Keys for XML Trees.
In International Conference on Database Theory (ICDT), pages 104–118, 2007.

A. Lopatenko and L. Bertossi.
Complexity of Consistent Query Answering in Databases under Cardinality-Based
and Incremental Repair Semantics.
In International Conference on Database Theory (ICDT), pages 179–193. Springer,
LNCS 4353, 2007.

J. Wijsen.
Database Repairing Using Updates.
ACM Transactions on Database Systems, 30(3):722–768, 2005.

J. Wijsen.
Project-Join Repair: An Approach to Consistent Query Answering Under Functional
Dependencies.
In International Conference on Flexible Query Answering Systems (FQAS), 2006.

Jan Chomicki () Database Consistency June 25-29, 2007 85 / 85

	Integrity constraints
	Consistent query answers
	XML
	Integrity constraints
	Basic notions
	Implication of dependencies
	Axiomatization
	Applications
	Database design
	Data exchange
	Semantic query optimization

	Consistent query answers
	Motivation
	Research Goals
	Basics
	Computing CQA
	Methods
	Complexity

	Variants of CQA
	Conclusions

	XML
	XML basics
	XML keys and foreign keys
	Consistency and implication
	Applications
	Integrity constraint propagation
	XML normalization

	Prospects
	Valid Query Answers for XML

