Consistent Query Answering
Opportunities and Limitations

Jan Chomicki
Dept. CSE
University at Buffalo
State University of New York
http://www.cse.buffalo.edu/~chomicki
Integrity constraints

Integrity constraints describe valid database instances. Examples:

- **functional dependencies (FDs):** “every employee has a single salary.”
- **denial constraints:** “no employee can make more than her manager.”
- **inclusion dependencies (INDs):** “managers have to be employees.”
Integrity constraints describe valid database instances. Examples:

- **functional dependencies (FDs):** “every employee has a single salary.”
- **denial constraints:** “no employee can make more than her manager.”
- **inclusion dependencies (INDs):** “managers have to be employees.”

The constraints are formulated in first-order logic:

\[\forall n, s, m, s', m'. \neg [\text{Emp}(n, s, m) \land \text{Emp}(m, s', m') \land s > s'] \.]
Integrity constraints

Integrity constraints describe valid database instances. Examples:

- **functional dependencies (FDs):** “every employee has a single salary.”
- **denial constraints:** “no employee can make more than her manager.”
- **inclusion dependencies (INDs):** “managers have to be employees.”

The constraints are formulated in first-order logic:

\[\forall n, s, m, s', m'. \neg[\text{Emp}(n, s, m) \land \text{Emp}(m, s', m') \land s > s'] \]

An inconsistent database violates the constraints.
Traditional view

Integrity constraints are always enforced.
Traditional view

Integrity constraints are always enforced.

<table>
<thead>
<tr>
<th>EmpName</th>
<th>Address</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Gates</td>
<td>Redmond, WA</td>
<td>20M</td>
</tr>
<tr>
<td>B. Gates</td>
<td>Redmond, WA</td>
<td>30M</td>
</tr>
<tr>
<td>A. Grove</td>
<td>Santa Clara, CA</td>
<td>10M</td>
</tr>
</tbody>
</table>

Functional dependency:

\[
\text{EmpName} \rightarrow \text{Address, Salary}
\]
Traditional view

Integrity constraints are always enforced.

<table>
<thead>
<tr>
<th>$EmpName$</th>
<th>$Address$</th>
<th>$Salary$</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Gates</td>
<td>Redmond, WA</td>
<td>20M</td>
</tr>
<tr>
<td>B. Gates</td>
<td>Redmond, WA</td>
<td>30M</td>
</tr>
<tr>
<td>A. Grove</td>
<td>Santa Clara, CA</td>
<td>10M</td>
</tr>
</tbody>
</table>

Functional dependency: $EmpName \rightarrow Address \; Salary$

This instance cannot arise but ... consider data integration.
Ignoring inconsistency

\[
\text{SELECT } * \quad \Rightarrow \\
\text{FROM Emp} \\
\text{WHERE Salary < 25M}
\]

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Gates</td>
<td>Redmond, WA</td>
<td>20M</td>
</tr>
<tr>
<td>A. Grove</td>
<td>Santa Clara, CA</td>
<td>10M</td>
</tr>
</tbody>
</table>

The result is not fully reliable.
Ignoring inconsistency

\[
\text{SELECT *} \\
\text{FROM Emp} \\
\text{WHERE Salary < 25M}
\]

⇒

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Gates</td>
<td>Redmond, WA</td>
<td>20M</td>
</tr>
<tr>
<td>A. Grove</td>
<td>Santa Clara, CA</td>
<td>10M</td>
</tr>
</tbody>
</table>

The result is not fully reliable.
Quarantining inconsistency

The facts involved in an inconsistency are not used in the derivation of query answers [Bry, IICIS’97].
Quarantining inconsistency

The facts involved in an inconsistency are not used in the derivation of query answers [Bry, IICIS’97].

```
SELECT * ⇒ A. Grove  Santa Clara, CA  10M
FROM Emp
WHERE Salary < 25M
```
Quarantining inconsistency

The facts involved in an inconsistency are not used in the derivation of query answers [Bry, IICIS’97].

```
SELECT * FROM Emp WHERE Salary < 25M
```

⇒
```
A. Grove Santa Clara, CA 10M
```

But what about

```
SELECT EmpName FROM Emp WHERE Salary > 10K
```

⇒
```
A. Grove
```

Partial information cannot be obtained.
Quarantining inconsistency

The facts involved in an inconsistency are not used in the derivation of query answers [Bry, IICIS’97].

\[
\text{SELECT } * \quad \Rightarrow \quad \boxed{\text{A. Grove \quad Santa Clara, CA \quad 10M}} \\
\text{FROM Emp} \\
\text{WHERE Salary} < 25M
\]

But what about

\[
\text{SELECT EmpName} \quad \Rightarrow \quad \boxed{\text{A. Grove}} \\
\text{FROM Emp} \\
\text{WHERE Salary} > 10K
\]

Partial information cannot be obtained.
Constraints with exceptions

Weaken the constraints [Borgida, TODS’85], without affecting query evaluation.
Constraints with exceptions

Weaken the constraints [Borgida, TODS’85], without affecting query evaluation.

Emp

<table>
<thead>
<tr>
<th>EmpName</th>
<th>Address</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Gates</td>
<td>Redmond, WA</td>
<td>20M</td>
</tr>
<tr>
<td>B. Gates</td>
<td>Redmond, WA</td>
<td>30M</td>
</tr>
<tr>
<td>A. Grove</td>
<td>Santa Clara, CA</td>
<td>10M</td>
</tr>
</tbody>
</table>

Constraint with exception:

\[(\forall x, y, z, y', z') \neg [\text{Emp}(x, y, z) \land \text{Emp}(x, y', z') \land y \neq y' \land x \neq \text{B.Gates}]\]
Data cleaning

Functional dependency:

\[\text{EmpName} \rightarrow \text{Address} \text{ Salary} \]

Emp

<table>
<thead>
<tr>
<th>EmpName</th>
<th>Address</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Gates</td>
<td>Redmond, WA</td>
<td>20M</td>
</tr>
<tr>
<td>B. Gates</td>
<td>Redmond, WA</td>
<td>30M</td>
</tr>
<tr>
<td>A. Grove</td>
<td>Santa Clara, CA</td>
<td>10M</td>
</tr>
</tbody>
</table>

Some information is lost.
Data cleaning

<table>
<thead>
<tr>
<th>EmpName</th>
<th>Address</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Gates</td>
<td>Redmond, WA</td>
<td>20M</td>
</tr>
<tr>
<td>B. Gates</td>
<td>Redmond, WA</td>
<td>30M</td>
</tr>
<tr>
<td>A. Grove</td>
<td>Santa Clara, CA</td>
<td>10M</td>
</tr>
</tbody>
</table>

Functional dependency:

$$EmpName \rightarrow Address \ Salary$$

Repair:

<table>
<thead>
<tr>
<th>EmpName</th>
<th>Address</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Gates</td>
<td>Redmond, WA</td>
<td>30M</td>
</tr>
<tr>
<td>A. Grove</td>
<td>Santa Clara, CA</td>
<td>10M</td>
</tr>
</tbody>
</table>
Data cleaning

\[\text{Emp} \]

<table>
<thead>
<tr>
<th>EmpName</th>
<th>Address</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Gates</td>
<td>Redmond, WA</td>
<td>20M</td>
</tr>
<tr>
<td>B. Gates</td>
<td>Redmond, WA</td>
<td>30M</td>
</tr>
<tr>
<td>A. Grove</td>
<td>Santa Clara, CA</td>
<td>10M</td>
</tr>
</tbody>
</table>

Functional dependency:
\[\text{EmpName} \rightarrow \text{Address Salary} \]

Repair:

<table>
<thead>
<tr>
<th>EmpName</th>
<th>Address</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Gates</td>
<td>Redmond, WA</td>
<td>30M</td>
</tr>
<tr>
<td>A. Grove</td>
<td>Santa Clara, CA</td>
<td>10M</td>
</tr>
</tbody>
</table>

Some information is lost.
CQA: a query-driven approach

Consider all repairs: possible databases that result from fixing the original database in a minimal way.

Return all the answers that belong to the result of query evaluation in every repair (consistent answers).
Emp

<table>
<thead>
<tr>
<th>EmpName</th>
<th>Address</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Gates</td>
<td>Redmond, WA</td>
<td>20M</td>
</tr>
<tr>
<td>B. Gates</td>
<td>Redmond, WA</td>
<td>30M</td>
</tr>
<tr>
<td>A. Grove</td>
<td>Santa Clara, CA</td>
<td>10M</td>
</tr>
</tbody>
</table>

Repairs:

<table>
<thead>
<tr>
<th>EmpName</th>
<th>Address</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Gates</td>
<td>Redmond, WA</td>
<td>30M</td>
</tr>
<tr>
<td>A. Grove</td>
<td>Santa Clara, CA</td>
<td>10M</td>
</tr>
</tbody>
</table>

Functional dependency:

\[\text{EmpName} \rightarrow \text{Address Salary} \]
SELECT * FROM Emp WHERE Salary < 25M

⇒

A. Grove Santa Clara, CA 10M

SELECT EmpName FROM Emp WHERE Salary > 10K

⇒

B. Gates A. Grove

21
SELECT *
FROM Emp
WHERE Salary < 25M

⇒

A. Grove Santa Clara, CA 10M

But

SELECT EmpName
FROM Emp
WHERE Salary > 10K

⇒

B. Gates
A. Grove
Inconsistent databases

There are many situations when users want/need to live with inconsistent databases:

- integration of heterogeneous databases with overlapping information
- not enough information to resolve inconsistencies
- preservation of all data (even erroneous)
- the consistency of the database will be restored by executing further transactions
- inconsistency wrt “soft” integrity constraints (those that we hope to see satisfied but do not/cannot check) process
Research goals

Formal definition of reliable (“consistent”) information in an inconsistent database.

Computational mechanisms for obtaining consistent information.

Computational complexity analysis:
- tractable vs. intractable classes of queries and integrity constraints
- trade-off: complexity vs. expressiveness.

Implementation:
- preferably using DBMS technology.
Plan of the talk

1. repairs and consistent query answers
2. computing consistent query answers to relational algebra/calculus/SQL queries
3. extensions and new directions:
 - other notions of repair
 - probabilistic databases
4. further active research directions
5. related work
6. lessons of CQA research
7. the CQA community
Constraint classes

Universal: $\forall. \neg A_1 \lor \cdots \lor \neg A_n \lor B_1 \lor \cdots \lor B_m$.

Denial: $\forall. \neg A_1 \lor \cdots \lor \neg A_n$.

Functional dependencies (FDs): $X \rightarrow Y$.

Inclusion dependencies (INDs): $P[X] \subseteq R[Y]$.
Consistent query answers

Arenas, Bertossi, Ch. [PODS’99].

Repair:

- a database that satisfies the integrity constraints
- difference from the given database is minimal (the set of inserted/deleted facts is minimal under set inclusion).

A tuple \((a_1, \ldots, a_n)\) is a consistent query answer to a query \(Q(x_1, \ldots, x_n)\) in a database \(r\) if it is an element of the result of \(Q\) in every repair of \(r\).
A logical aside

Belief revision:

- semantically: repairing \equiv revising the database with integrity constraints
- consistent query answers \equiv counterfactual inference.

Logical inconsistency:

- inconsistent database: database facts together with integrity constraints form an inconsistent set of formulas
- trivialization of reasoning does not occur because constraints are not used in relational query evaluation.
Computational issues

There are too many repairs to evaluate the query in each of them.

\[
\begin{array}{cc}
A & B \\
\hline
a_1 & b_1 \\
a_1 & b'_1 \\
a_2 & b_2 \\
a_2 & b'_2 \\
\cdots \\
a_n & b_n \\
a_n & b'_n \\
\end{array}
\]

Under the functional dependency \(A \rightarrow B \), this instance has \(2^n \) repairs.
Computing consistent query answers

Query rewriting: given a query Q and a set of integrity constraints, construct a query Q' such that for every database instance r

the set of answers to Q' in $r = \text{the set of consistent answers to } Q$ in r.

Representing all repairs: given a set of integrity constraints and a database instance r:

1. construct a space-efficient representation of all repairs of r
2. use this representation to answer (many) queries.

Specifying repairs as logic programs.
Query rewriting

First-order queries transformed using semantic query optimization techniques: [Arenas, Bertossi, Ch., PODS’99].
Query rewriting

First-order queries transformed using semantic query optimization techniques: [Arenas, Bertossi, Ch., PODS’99].

Functional dependencies:

\[(\forall x)(\forall y)(\forall z)(\forall y')(\forall z')(\neg Emp(x, y, z) \lor \neg Emp(x, y', z') \lor y = y')\]
\[(\forall x)(\forall y)(\forall z)(\forall y')(\forall z')(\neg Emp(x, y, z) \lor \neg Emp(x, y', z') \lor z = z')\]

Query: \(Emp(x, y, z)\).
Query rewriting

First-order queries transformed using semantic query optimization techniques: [Arenas, Bertossi, Ch., PODS’99].

Functional dependencies:

\[(\forall x)(\forall y)(\forall z)(\forall y')(\forall z')(\neg Emp(x, y, z) \vee \neg Emp(x, y', z') \vee y = y')\]

\[(\forall x)(\forall y)(\forall z)(\forall y')(\forall z')(\neg Emp(x, y, z) \vee \neg Emp(x, y', z') \vee z = z')\]

Query: \(Emp(x, y, z)\).

Transformed query:

\[Emp(x, y, z) \land (\forall y')(\forall z')(\neg Emp(x, y', z') \vee y = y')\]

\[\land (\forall y')(\forall z')(\neg Emp(x, y', z') \vee z = z').\]
Scope of query rewriting

Query rewriting:

• queries involving conjunctions of literals (relational algebra: \(\sigma, \times, -\)) and binary universal integrity constraints [Arenas, Bertossi, Ch., PODS’99].

• existentially-quantified conjunctions (\(\pi, \sigma, \Join\)) and single-key dependencies [Fuxman, Miller, ICDT’05]:
 – CTree queries (\(\approx\) no non-key joins)
 – extended to exclusion dependencies [Grieco et al., CIKM’05].
SELECT Name
FROM Emp
WHERE Salary > 10K

SELECT Name
FROM Emp e1
WHERE Salary > 10K
 AND NOT EXISTS
 (SELECT *
 FROM EMPLOYEE e2
 WHERE e2.Name = e1.Name
 AND e2.Salary <= 10K)
Experimental results (ConQuer)

[Fuxman, Fazli, Miller, SIGMOD’05].

The system ConQuer:

- back-end: DB2 UDB.
- query rewriting into SQL, producing unnested queries
- queries from the TPC-H workload
- databases can be annotated with consistency indicators
- tested for synthetic databases with 400K–8M tuples, 0–50% conflicts
- relatively little overhead compared to evaluating the original query using the backend
Conflict hypergraph

Denial constraints only.

Vertices: facts in the original instance.

Edges: (minimal) sets of facts that violate some constraint.

Repairs: maximal independent sets.

![Diagram of conflict hypergraph]
Computing CQAs using the conflict hypergraph

[Ch., Marcinkowski, I&C, 2005].

Algorithm HProver:

1. input: query Φ a disjunction of ground atoms

2. $\neg \Phi = P_1(t_1) \land \cdots \land P_m(t_m) \land \neg P_{m+1}(t_{m+1}) \land \cdots \land \neg P_n(t_n)$

3. find a repair including $P_1(t_1), \ldots, P_m(t_m)$ and excluding $P_{m+1}(t_{m+1}), \ldots, P_n(t_n)$ by enumerating the appropriate edges.

Excluding a fact A:

- A is not in the original instance, or
- A belongs to an edge $\{A, B_1, \ldots, B_k\}$ in the conflict hypergraph and B_1, \ldots, B_k belong to the repair.

P (data complexity) for quantifier-free queries and denial constraints.
Experimental results (Hippo)

[Ch., Marcinkowski, Staworko, CIKM’04].

The system Hippo:

- back-end: PostgreSQL
- conflict hypergraph (edges) in main memory
- optimization can eliminate many (sometimes all) database accesses in HProver
- tested for synthetic databases with up to 200K tuples, 2% conflicts
- computing consistent query answers using the conflict hypergraph faster than evaluating transformed queries
- relatively little overhead compared to evaluating the original query using the backend
Specifying repairs as logic programs

[Arenas, Bertossi, Ch., TPLP’03], [Greco, Greco and Zumpano, TKDE’03], [Barcelo, Bertossi, PADL’03], [Eiter et al., ICLP’03]:

• using logic programs with negation and disjunction
• repairs \equiv answer sets
• several different encodings
• implemented using main-memory LP systems (dlv, smodels)
• Π_2^0-complete problems

Scope:

• arbitrary universal constraints, some inclusion dependencies
• arbitrary first-order queries
The approach of [Arenas, Bertossi, Ch., TPLP'03].

Facts:

\[\text{Emp('B.Gates', 'Redmond WA', 20K)}.\]
\[\text{Emp('B.Gates', 'Redmond WA', 30K)}.\]
\[\text{Emp('A.Grove', 'Santa Clara CA', 10K)}.\]

Rules:

\[\neg \text{Emp}'(x, y, z) \lor \neg \text{Emp}'(x, y', z') \leftarrow \text{Emp}(x, y, z), \text{Emp}(x, y', z'), y \neq y'.\]
\[\neg \text{Emp}'(x, y, z) \lor \neg \text{Emp}'(x, y', z') \leftarrow \text{Emp}(x, y, z), \text{Emp}(x, y', z'), z \neq z'.\]
\[\text{Emp}'(x, y, z) \leftarrow \text{Emp}(x, y, z), \text{not} \neg \text{Emp}'(x, y, z).\]
\[\neg \text{Emp}'(x, y, z) \leftarrow \text{not Emp}(x, y, z), \text{not Emp}'(x, y, z).\]
Experimental data (INFOMIX)

[Eiter at al., ICLP’03].

The system **INFOMIX**:

- combines CQA with data integration (GAV)
- relational backend: PostgreSQL
- uses the disjunctive LP system \(\text{dlv} \) for repair computations
- optimization techniques: localization, factorization
- tested on legacy databases of up to 50K tuples.
Data complexity of consistent query answers

<table>
<thead>
<tr>
<th>Keys / primary keys</th>
<th>Denial</th>
<th>Universal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma, \times, -$</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>$\sigma, \times, -, \cup$</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>σ, π</td>
<td>$\text{co-NPC} / \text{P}$</td>
<td>co-NPC</td>
</tr>
<tr>
<td>σ, \times, π</td>
<td>$\text{co-NPC} / \text{P(Ctree)}$</td>
<td>co-NPC</td>
</tr>
</tbody>
</table>

Tractable approaches:

- query rewriting
- conflict graphs

Sources: [Ch., Marcinkowski, I&C’05], [Fuxman, Miller, ICDT’05], [Cali, Lembo, Rosati, PODS’03].
Tractable/intractable queries

Tractable (P):

- under any denial constraints:

  ```sql
  SELECT * FROM P
  UNION (SELECT * FROM Q
      EXCEPT SELECT * FROM R)
  ```
Schema:

CREATE TABLE P (A PRIMARY KEY, B);
CREATE TABLE Q (C PRIMARY KEY, D)
Schema:
CREATE TABLE P (A PRIMARY KEY, B);
CREATE TABLE Q (C PRIMARY KEY, D)

Tractable (P):
SELECT Q.D
FROM P, Q
WHERE P.B = Q.C
Schema:

CREATE TABLE P (A PRIMARY KEY, B);
CREATE TABLE Q (C PRIMARY KEY, D)

Tractable (P):

SELECT Q.D
FROM P, Q
WHERE P.B = Q.C

Intractable (co-NP-complete):

SELECT Q.D
FROM P, Q
WHERE P.B = Q.D
Alternative frameworks

Different assumptions about database completeness and correctness (in the presence of inclusion dependencies):

- possibly incorrect but complete: repairs by deletion only [Ch., Marcinkowski, I&C’05]

- possibly incorrect and incomplete: fix FDs by deletion, INDs by insertion [Cali, Lembo, Rosati, PODS’03].
Different notions of minimal repairs:

- minimal cardinality changes [Lopatenko, Bertossi, ’06]:

 - tractability of incremental CQA:

 given a consistent database D and a fixed sequence of updates U, what is the complexity of computing CQA over $U(DB)$?

- repairing attribute values.
Attribute-based repairs

Several different approaches:

(A) ground and non-ground repairs [Wijsen, TODS’05]

(B) project-join repairs [Wijsen, FQAS’06]

(C) repairs minimizing Euclidean distance [Bertossi et al., DBPL’05]

(D) repairs of minimum cost [Bohannon et al., SIGMOD’05].
Attribute-based repairs

Several different approaches:

(A) ground and non-ground repairs [Wijsen, TODS’05]

(B) project-join repairs [Wijsen, FQAS’06]

(C) repairs minimizing Euclidean distance [Bertossi et al., DBPL’05]

(D) repairs of minimum cost [Bohannon et al., SIGMOD’05].

Computational complexity:

- (A) and (B): similar to tuple based repairs
- (C) and (D): checking existence of a repair of cost $< K$
 NP-complete.
Project-join repairs

PJ-repairs: repairs of a lossless join decomposition.
Project-join repairs

PJ-repairs: repairs of a lossless join decomposition.

<table>
<thead>
<tr>
<th>Name</th>
<th>Dept</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>Sales</td>
<td>Buffalo</td>
</tr>
<tr>
<td>Mary</td>
<td>Sales</td>
<td>Toronto</td>
</tr>
</tbody>
</table>

Functional dependencies:

Name → Dept
Dept → Location
Project-join repairs

PJ-repairs: repairs of a lossless join decomposition.

<table>
<thead>
<tr>
<th>Name</th>
<th>Dept</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>Sales</td>
<td>Buffalo</td>
</tr>
<tr>
<td>Mary</td>
<td>Sales</td>
<td>Toronto</td>
</tr>
</tbody>
</table>

Functional dependencies:

\[Name \rightarrow Dept \]
\[Dept \rightarrow Location \]

Repairs:

<table>
<thead>
<tr>
<th>John</th>
<th>Sales</th>
<th>Buffalo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>Sales</td>
<td>Toronto</td>
</tr>
</tbody>
</table>
Decomposition

$$\pi_{Name,\text{Dept}}(\text{EmpDept}) \Join \pi_{\text{Dept},\text{Location}}(\text{EmpDept})$$
Decomposition

\[\pi_{\text{Name, Dept}}(\text{EmpDept}) \bowtie \pi_{\text{Dept, Location}}(\text{EmpDept}) \]

<table>
<thead>
<tr>
<th>Name</th>
<th>Dept</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>Sales</td>
<td>Buffalo</td>
</tr>
<tr>
<td>John</td>
<td>Sales</td>
<td>Toronto</td>
</tr>
<tr>
<td>Mary</td>
<td>Sales</td>
<td>Buffalo</td>
</tr>
<tr>
<td>Mary</td>
<td>Sales</td>
<td>Toronto</td>
</tr>
</tbody>
</table>
Decomposition

\[\pi_{Name,Dept}(EmpDept) \bowtie \pi_{Dept,Location}(EmpDept) \]

<table>
<thead>
<tr>
<th>Name</th>
<th>Dept</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>Sales</td>
<td>Buffalo</td>
</tr>
<tr>
<td>John</td>
<td>Sales</td>
<td>Toronto</td>
</tr>
<tr>
<td>Mary</td>
<td>Sales</td>
<td>Buffalo</td>
</tr>
<tr>
<td>Mary</td>
<td>Sales</td>
<td>Toronto</td>
</tr>
</tbody>
</table>

PJ-repairs:

<table>
<thead>
<tr>
<th>John</th>
<th>Sales</th>
<th>Buffalo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>Sales</td>
<td>Buffalo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>John</th>
<th>Sales</th>
<th>Toronto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>Sales</td>
<td>Toronto</td>
</tr>
</tbody>
</table>
Probabilistic framework for “dirty” databases

[Andritsos, Fuxman, Miller, ICDE’06].

Framework:

• potential duplicates identified and grouped into clusters

• worlds ≈ repairs: one tuple from each cluster

• world probability: product of tuple probabilities

• clean answers: in the query result in some (supporting) world

• clean answer probability: sum of the probabilities of supporting worlds
EmpSal

<table>
<thead>
<tr>
<th>EmpName</th>
<th>Salary</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Gates</td>
<td>20M</td>
<td>0.7</td>
</tr>
<tr>
<td>B. Gates</td>
<td>30M</td>
<td>0.3</td>
</tr>
<tr>
<td>A. Grove</td>
<td>10M</td>
<td>0.5</td>
</tr>
<tr>
<td>A. Grove</td>
<td>20M</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Functional dependency:

$EmpName \rightarrow Salary$
Query rewriting:

```
SELECT Name
FROM Emp
WHERE Salary > 15M

SELECT Name, SUM(e.prob)
FROM Emp e
WHERE Salary > 15M
GROUP BY Name
```
Query rewriting:

\[
\begin{align*}
\text{SELECT Name} \\
\text{FROM Emp} \\
\text{WHERE Salary > 15M}
\end{align*}
\]

\[
\begin{align*}
\text{SELECT Name, SUM(e.prob)} \\
\text{FROM Emp e} \\
\text{WHERE Salary > 15M} \\
\text{GROUP BY Name}
\end{align*}
\]

Evaluation of the rewritten query:

<table>
<thead>
<tr>
<th>Name</th>
<th>Salary</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Gates</td>
<td>20M</td>
<td>0.7</td>
</tr>
<tr>
<td>B. Gates</td>
<td>30M</td>
<td>0.3</td>
</tr>
<tr>
<td>A. Grove</td>
<td>10M</td>
<td>0.5</td>
</tr>
<tr>
<td>A. Grove</td>
<td>20M</td>
<td>0.5</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\Rightarrow \\
\text{B. Gates} & | 1 \\
\text{A. Grove} & | 0.5
\end{align*}
\]
Further active topics

SQL queries:

- aggregation: glb/lub answers
- grouping

Data integration:

- GAV, LAV, GLAV,...
- tension between repairing and satisfying source-to-target dependencies

P2P:

- how to isolate an inconsistent peer
Nulls:

- repairs with nulls?
- clean semantics vs. SQL conformance

Priorities:

- preferred repairs
- conflict resolution

XML:

- what is an integrity constraint?
- what is a repair?
- minimum edit distance
Related work

Belief revision:

- revising database with integrity constraints
- revised theory changes with each database update
- emphasis on semantics (AGM postulates), not computation
- complexity results [Eiter, Gottlob, AI’92] do not quite transfer
- beyond revision: merging, arbitration

Disjunctive information:

- repair \equiv possible world (sometimes)
- consistent answer \equiv certain answer (sometimes)
- using disjunctions to represent resolved conflicts
- complexity results [Imielinski et al., JCSS’95] do not quite transfer
Lessons of CQA research

Need to tame the semantic explosion:

- different repair semantics overwhelm the potential user

More focus on applications:

- 99% technology, 1% applications
- often only repairing is needed
- heuristics

Integrate with other tools:

- schema matching/mapping
- data cleaning
The CQA community

Some data:

- over 30 active researchers
- 80–100 publications (since 1999)
- papers in major conferences (PODS, SIGMOD, ICDT, ICDE, CIKM, DBPL) and journals (TODS, TKDE, TCS, I&C, AMAI, JAL, TPLP)
- outreach to the AI community (qualified success)
- yearly workshop: IIDB (+LAAIC?)
Selected papers

