Discovering relative importance of skyline attributes

D. Mindolin & J. Chomicki

Department of Computer Science and Engineering University at Buffalo, SUNY

VLDB 2009

Main contributions

- 1. generalizing skylines to p-skylines to capture relative attribute importance
- 2. discovering p-skylines on the basis of user feedback: algorithms and complexity

Skylines [Börzsönyi et al., ICDE'01]

Skyline preferences

- Atomic preferences (\mathcal{H}) : total orders over attribute values
- ▶ Skyline preference relation (sky_H) : t_1 preferred to t_2 if
 - t₁ equal or better than t₂ in every attribute, and
 - ▶ *t*₁ strictly better than *t*₂ in at least one attribute
- ► Skyline: the set w_{sky_H}(O) of best tuples (according to sky_H) in a set of tuples O

Skylines [Börzsönyi et al., ICDE'01]

Skyline preferences

- ► Atomic preferences (*H*): total orders over attribute values
- ▶ Skyline preference relation (sky_H) : t_1 preferred to t_2 if
 - t₁ equal or better than t₂ in every attribute, and
 - ▶ *t*₁ strictly better than *t*₂ in at least one attribute
- ► Skyline: the set w_{sky_H}(O) of best tuples (according to sky_H) in a set of tuples O

Skylines [Börzsönyi et al., ICDE'01]

Skyline preferences

- ► Atomic preferences (*H*): total orders over attribute values
- ▶ Skyline preference relation (sky_H) : t_1 preferred to t_2 if
 - t₁ equal or better than t₂ in every attribute, and
 - ▶ *t*₁ strictly better than *t*₂ in at least one attribute
- ► Skyline: the set w_{sky_H}(O) of best tuples (according to sky_H) in a set of tuples O

Skyline properties

- Simple, unique way of composing atomic preferences
- Equal attribute importance
- Skyline of exponential size

p-skylines

p-skyline relation ≻ Induced by an atomic preference relation >_A ∈ H ≻ = {(t, t') | t.A >_A t'.A} Pareto accumulation ("≻₁ equally important as ≻₂") ≻ = ≻₁ ⊗ ≻₂ Prioritized accumulation ("≻₁ more important than ≻₂") ≻ = ≻₁ & ≻₂

p-skylines

Each atomic preference must be used exactly once in \succ

Pareto accumulation [Kießling'02]

Definitions

 $Var(\succ)$ - set of attributes used in definition of \succ $E_S = \{(t.A, t'.A) \mid A \in S \land t.A = t'.A\}$ - pairs of tuples equal in every attribute in S

Pareto accumulation: \succ_1 as important as \succ_2

 $\succ_1 \otimes \succ_2 = (\succ_1 \cap \textit{E}_{\textit{Var}(\succ_2)}) \cup (\succ_2 \cap \textit{E}_{\textit{Var}(\succ_1)}) \cup (\succ_1 \cap \succ_2)$

Pareto accumulation [Kießling'02]

Definitions

 $Var(\succ)$ - set of attributes used in definition of $\succ E_S = \{(t.A, t'.A) \mid A \in S \land t.A = t'.A\}$ - pairs of tuples equal in every attribute in S

Pareto accumulation: \succ_1 as important as \succ_2

 $\succ_1 \otimes \succ_2 = (\succ_1 \cap E_{Var(\succ_2)}) \cup (\succ_2 \cap E_{Var(\succ_1)}) \cup (\succ_1 \cap \succ_2)$

Related & future work

Prioritized accumulation [Kießling'02]

Definitions

 $Var(\succ)$ - set of attributes used in definition of \succ $E_S = \{(t.A, t'.A) \mid A \in S \land t.A = t'.A\}$ - pairs of tuples equal in every attribute in S

Prioritized accumulation: \succ_1 more important than \succ_2

 $\succ_1 \& \succ_2 = \succ_1 \cup (\succ_2 \cap E_{Var(\succ_2)})$

Related & future work

Prioritized accumulation [Kießling'02]

Definitions

 $Var(\succ)$ - set of attributes used in definition of \succ $E_S = \{(t.A, t'.A) \mid A \in S \land t.A = t'.A\}$ - pairs of tuples equal in every attribute in S

Prioritized accumulation: \succ_1 more important than \succ_2

$$\succ_1 \& \succ_2 = \succ_1 \cup (\succ_2 \cap E_{Var(\succ_2)})$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

p-skyline properties

p-skyline properties

- ► Many different ways of composing atomic preferences (different combinations of ⊗ and &)
- Reduction in query result size w.r.t. skylines
- Differences in attribute importance

Representing attribute importance with p-graphs

p-graph

- Γ_\succ represents attribute importance induced by a p-skyline relation \succ
 - ► Nodes: attributes Var(≻)
 - Edges: from more important to less important attributes

Representing attribute importance with p-graphs

p-graph

- Γ_\succ represents attribute importance induced by a p-skyline relation \succ
 - ► Nodes: attributes Var(≻)
 - Edges: from more important to less important attributes

$$\succ' = \succ_A \otimes \succ_B \otimes \succ_C$$

Representing attribute importance with p-graphs

p-graph

- Γ_\succ represents attribute importance induced by a p-skyline relation \succ
 - ► Nodes: attributes Var(≻)
 - Edges: from more important to less important attributes

$$\succ' = \succ_A \otimes \succ_B \otimes \succ_C \qquad \qquad \succ'' = \succ_A \& (\succ_B \otimes \succ_C)$$

$$A \quad B \quad C \qquad \qquad A \qquad B \quad C \qquad \qquad A \qquad A \qquad \qquad A \qquad$$

Properties of p-graphs

Necessary and sufficient conditions for p-graphs

 Γ is a p-graph of a p-skyline relation iff Γ is

- SPO
- satisfies Envelope property

Envelope

 $\begin{aligned} \forall A, B, C, D \in \mathcal{A}, \text{ all different} \\ (A, B) \in \Gamma \land \ (C, D) \in \Gamma \land (C, B) \in \Gamma \Rightarrow \\ (C, A) \in \Gamma \lor (A, D) \in \Gamma \lor (D, B) \in \Gamma \end{aligned}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Dominance testing using p-graphs

Is o preferred to o' by \succ ?

- $o \succ o'$ iff
 - $o \neq o'$, and
 - for every attribute B in which o is worse than o', there is a parent A of B in which o is better than o'

Dominance testing using p-graphs

Is o preferred to o' by \succ ?

- $o \succ o'$ iff
 - $o \neq o'$, and
 - ▶ for every attribute B in which o is worse than o', there is a parent A of B in which o is better than o'

Example

- A : b better than w
- B: b better than w
- C: b better than w Then $(b, w, b) \succ (w, b, b)$ $(b, w, b) \not\succeq (b, b, w)$

Containment of p-skyline relations

Using p-graphs for checking containment

$$\succ \subset \succ' \Leftrightarrow E(\Gamma_{\succ}) \subset E(\Gamma_{\succ'})$$

Containment hierarchy

(日)、

Э

Containment of p-skyline relations

Using p-graphs for checking containment

$$\succ \subset \succ' \Leftrightarrow E(\Gamma_{\succ}) \subset E(\Gamma_{\succ'})$$

Minimal extensions of \succ

- Correspond to immediate children of Γ_> in the hierarchy
- Obtained using rewriting rules applied to syntax trees of p-skyline formulas

Containment hierarchy

Minimal extension rewriting rules

Rules to compute minimal extensions of p-skyline relation

- Applied to syntax trees of p-skyline formulas
- Every minimal extension computed by a single rule application in PTIME
- Full set consists of four rule templates
- All minimal extensions of p-skyline relation can be computed in PTIME

Minimal extension rewriting rules

Rules to compute minimal extensions of p-skyline relation

- Applied to syntax trees of p-skyline formulas
- Every minimal extension computed by a single rule application in PTIME
- Full set consists of four rule templates
- All minimal extensions of p-skyline relation can be computed in PTIME

Rule₁ template

Original tree part

Transformed tree part

Minimal extension rewriting rules

Example

Rule₁ template

Discovery of p-skyline relations from user feedback

Problem

Given a set \mathcal{A} of relevant attributes and a set \mathcal{H} of atomic preferences over \mathcal{A} , discover the relative importance of attributes [in the form of a p-skyline relation \succ], based on user feedback.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Discovery of p-skyline relations from user feedback

Problem

Given a set \mathcal{A} of relevant attributes and a set \mathcal{H} of atomic preferences over \mathcal{A} , discover the relative importance of attributes [in the form of a p-skyline relation \succ], based on user feedback.

Discovery of p-skyline relations from user feedback

Problem

Given a set \mathcal{A} of relevant attributes and a set \mathcal{H} of atomic preferences over \mathcal{A} , discover the relative importance of attributes [in the form of a p-skyline relation \succ], based on user feedback.

Discovery of p-skyline relations from user feedback

Problem

Given a set \mathcal{A} of relevant attributes and a set \mathcal{H} of atomic preferences over \mathcal{A} , discover the relative importance of attributes [in the form of a p-skyline relation \succ], based on user feedback.

\succ favors *G*/disfavors *W* in *O*

- 1. G are among the best tuples in \mathcal{O} according to \succ
- 2. W are not among the best tuples in \mathcal{O} according to \succ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Complexity of p-skyline relation discovery

	Arbitrary W	$W = \emptyset$
Checking existence of \succ favoring <i>G</i> and	NP-complete	PTIME
disfavoring W in O		
Computing maximal \succ		
favoring G and	FNP-complete	PTIME
disfavoring W in O		

Computing maximal \succ favoring G in \mathcal{O} ($W = \emptyset$)

Approach

- 1. Construct a system ${\cal N}$ of negative constraints from ${\it G}$ and ${\it O}$
- 2. Apply minimal extension rules to find maximal \succ satisfying ${\cal N}$
- 3. Various optimizations possible

Computing maximal \succ favoring G in \mathcal{O} ($W = \emptyset$)

Approach

- 1. Construct a system ${\cal N}$ of negative constraints from ${\it G}$ and ${\it O}$
- 2. Apply minimal extension rules to find maximal \succ satisfying ${\cal N}$
- 3. Various optimizations possible

Algorithm complexity $\mathcal{O}(|\mathcal{O}| \cdot |\mathcal{G}| \cdot |\mathcal{A}|^3)$

Negative constraints

\succ favors G in \mathcal{O} : what does it mean?

- 1. \succ favors G in \mathcal{O} : for every $o \in O, o' \in G$, $o \not\succ o'$
- 2. $o \neq o'$: use the dominance testing rule
 - \mathcal{L}_{τ} : attributes in which o is better than o'
 - \mathcal{R}_{τ} : attributes in which o is worse than o'
 - negative constraint τ =< L_τ, R_τ >: some attribute in R_τ is not a child in Γ_≻ of (i.e., not less important than) any attribute in L_τ
- 3. $o \not\succ o'$ iff corresponding τ is satisfied

Negative constraints

\succ favors G in \mathcal{O} : what does it mean?

- 1. \succ favors G in \mathcal{O} : for every $o \in O, o' \in G$, $o \not\succ o'$
- 2. $o \neq o'$: use the dominance testing rule
 - \mathcal{L}_{τ} : attributes in which o is better than o'
 - \mathcal{R}_{τ} : attributes in which o is worse than o'
 - negative constraint τ =< L_τ, R_τ >: some attribute in R_τ is not a child in Γ_≻ of (i.e., not less important than) any attribute in L_τ

3. $o \not\succ o'$ iff corresponding τ is satisfied

Example						
	id	Α	В	С		
	0	b	w	W		
	<i>o</i> ′	w	b	Ь		
$o \neq o'$ represented by $\tau = < \{A\}, \{B, C\} >$						

Negative constraints

\succ favors G in \mathcal{O} : what does it mean?

- 1. \succ favors G in \mathcal{O} : for every $o \in O, o' \in G$, $o \not\succ o'$
- 2. $o \neq o'$: use the dominance testing rule
 - \mathcal{L}_{τ} : attributes in which o is better than o'
 - \mathcal{R}_{τ} : attributes in which o is worse than o'
 - negative constraint τ =< L_τ, R_τ >: some attribute in R_τ is not a child in Γ_≻ of (i.e., not less important than) any attribute in L_τ

3. $o \not\succ o'$ iff corresponding τ is satisfied

E	xan	ıple			Example 2		
	id	Α	В	С	$\succ_A \& (\succ_B \otimes \succ_C)$	$(\succ_A \& \succ_B) \otimes \succ_C$	
	0	b	W	w	A	A	
	0'	W	b	b			
$o \not\succ o'$ represented by		ited by	(B) (C)	B C			
$\tau = < \{A\}, \{B, C\} >$, C } >	does not satisfy $ au$	satisfy $ au$			

Using ${\cal N}$ in algorithm

Rule application strategy

Three out of four rule templates used to compute

$$\succ_{sky} \subset \succ_1 \subset \ldots \subset \succ_k$$

- Each \succ_i satisfies \mathcal{N}
- Each \succ_i is a minimal extension of \succ_{i-1} ($\succ_{sky} = \succ_0$)
- No minimal extension of \succ_k satisfies \mathcal{N}
- Each rule only addes edges to Γ_{>i} going to/from set of attributes to distinguished attribute E

Using ${\cal N}$ in algorithm

Rule application strategy

Three out of four rule templates used to compute

$$\succ_{sky} \subset \succ_1 \subset \ldots \subset \succ_k$$

- Each \succ_i satisfies \mathcal{N}
- Each \succ_i is a minimal extension of \succ_{i-1} ($\succ_{sky} = \succ_0$)
- No minimal extension of \succ_k satisfies \mathcal{N}
- Each rule only addes edges to Γ_{>i} going to/from set of attributes to distinguished attribute E

Bottleneck: checking satisfaction of $\mathcal N$ by \succ

- Efficiently check every $au \in \mathcal{N}$ against \succ
- Reduce the size of \mathcal{N}

Efficient checking satisfaction to ${\cal N}$

Minimization of $\ensuremath{\mathcal{N}}$

- \mathcal{N} is minimal w.r.t. \succ iff every $\tau \in \mathcal{N}$ is minimal w.r.t. \succ
- ► τ is minimal w.r.t. \succ iff $\neg \exists X \in \mathcal{L}_{\tau}, Y \in \mathcal{R}_{\tau} : (X, Y) \in \Gamma_{\succ}$

Efficient checking satisfaction to ${\cal N}$

Minimization of ${\cal N}$

- ▶ \mathcal{N} is minimal w.r.t. \succ iff every $\tau \in \mathcal{N}$ is minimal w.r.t. \succ
- ► τ is minimal w.r.t. \succ iff $\neg \exists X \in \mathcal{L}_{\tau}, Y \in \mathcal{R}_{\tau} : (X, Y) \in \Gamma_{\succ}$

satisfy τ

 $\tau = < \{A\}, \{B, C\} >$ Minimal $\tau = < \{A\}, \{C\} >$

Efficient checking satisfaction to ${\cal N}$

Minimization of $\ensuremath{\mathcal{N}}$

- $\blacktriangleright \ \mathcal{N} \text{ is minimal w.r.t. } \succ \text{ iff every } \tau \in \mathcal{N} \text{ is minimal w.r.t. } \succ$
- ► τ is minimal w.r.t. \succ iff $\neg \exists X \in \mathcal{L}_{\tau}, Y \in \mathcal{R}_{\tau} : (X, Y) \in \Gamma_{\succ}$

Minimization of τ

 $\tau = < \{A\}, \{B, C\} >$ Minimal $\tau = < \{A\}, \{C\} >$

Checking minimal τ

- τ minimal w.r.t \succ_i
- \succ_{i+1} minimal extension of \succ_i
- ► $\Gamma_{\succ_{i+1}} \Gamma_{\succ_i} =$ { $(X, E) \mid X \in P_E$ } \cup { $(E, Y) \mid Y \in C_E$ }

Then \succ_{i+1} violates τ iff

- $\mathcal{R}_{ au} = \{E\} \land P_E \cap \mathcal{L}_{ au} \neq \emptyset$, or
- $\blacktriangleright \ \mathcal{R}_{\tau} \subseteq \mathcal{C}_{\mathcal{E}} \land \mathcal{E} \in \mathcal{L}_{\tau}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Methods to reduce $|\mathcal{N}|$

Motivation

\mathcal{N} of $|\mathcal{G}| \cdot (|\mathcal{O}| - 1)$ constraints checked agains \succ_i in every iteration

Methods to reduce $|\mathcal{N}|$

Motivation

 \mathcal{N} of $|\mathcal{G}| \cdot (|\mathcal{O}| - 1)$ constraints checked agains \succ_i in every iteration

Apply skyline to $\ensuremath{\mathcal{O}}$

- Need only to compare G with skyline of O instead of O
- $\mathcal{N}(G, \mathcal{O})$ equivalent to $\mathcal{N}(G, w_{sky_{\mathcal{H}}}(O))$

Methods to reduce $|\mathcal{N}|$

Motivation

 $\mathcal N$ of $|\mathcal G|\cdot (|\mathcal O|-1)$ constraints checked agains \succ_i in every iteration

Apply skyline to ${\cal O}$

- Need only to compare G with skyline of O instead of O
- $\mathcal{N}(G, \mathcal{O})$ equivalent to $\mathcal{N}(G, w_{sky_{\mathcal{H}}}(O))$

Apply skyline to $\ensuremath{\mathcal{N}}$

$$\begin{array}{c|c} \text{Represent } \tau \in \mathcal{N} \text{ as bitmap, e.g.,} \\ \mathcal{L}_{\tau} = \{A\}, \mathcal{R}_{\tau} = \{C\} \\ \hline \mathcal{L}_{\tau} & \mathcal{R}_{\tau} \\ \hline \hline \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{A} & \mathbf{B} & \mathbf{C} \\ \hline \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} \end{array}$$

 $\mathcal{N}(G,\mathcal{O})$ equivalent to bitmap skyline of $\mathcal{N}(G,\mathcal{O})$

Experiments: Accuracy

Setup

- \mathcal{O} : NHL player stats of $\sim 10k$ tuples
- $\blacktriangleright |\mathcal{A}| \in \{9, 12\}$
- \succ_{fav} generated randomly
- G drawn from $w_{\succ_{fav}}(\mathcal{O})$

Accuracy measures

• Precision =
$$\frac{|w_{\succ}(\mathcal{O}) \cap w_{\succ_{fav}}(\mathcal{O})|}{|w_{\succ}(\mathcal{O})|}$$

•
$$Recall = \frac{|w_{\succ}(\mathcal{O}) \cap w_{\succ_{fav}}(\mathcal{O})|}{|w_{\succ_{fav}}(\mathcal{O})|}$$

Conclusions

- Precision is consistently high
- Recall is low for small G (due to the maximality of \succ) but grows fast

Results

Experiments: Performance

Setup

- Three datasets (anticorrelated, uniform, correlated) of 50k tuples
- ▶ $|\mathcal{A}| \in \{10, 15, 20\}$

Conclusions

Algorithm is scalable w.r.t. # superior examples and |A|

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Related work

- 1. [Börzsönyi et al., ICDE'01]
 - Skylines
- 2. [Kießling et al., VLDB'02]
 - Pareto and prioritized accumulation
- 3. [Holland et al., PKDD'03]
 - Mining p-skyline-like preferences (atomic preferences, operators)
 - Web server logs used as input
 - Heuristics used
- 4. [Jiang et al., KDD'08]
 - Mining atomic preference relations using superior/inferior examples [skyline semantics]
 - Intractable problems, heuristics used
- 5. [Lee et al., DEXA'08]
 - Mining of [Skyline+equivalence] preference relations
 - ► Answers to simple comparison questions used as feedback

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Future work

- Attribute importance relationships between sets of attributes
- Selecting "good " superior examples
- Other scenarios of discovery (various forms of feedback, various result criteria)
- p-skylines: expressiveness, algorithms