Reasoning about Programs

Murat Demirbas

SUNY Buffalo

03 September 2013
1 Specification

2 Reasoning about a single action

3 Safety

4 Progress
Cloud computing explained

Video is unrelated to today’s lecture but related to the course content
http://www.youtube.com/watch?v=QJncFirhjPg
Reasoning about a program involves showing that the program meets its specification. A specification is a high-level description of program behavior.

We will use program properties to specify our programs. A program property is a predicate on an execution.

We say that a program property R holds for a program P exactly when R holds for every possible execution of P.
There are two fundamental categories of program properties that we will use to describe program behavior: safety properties, and progress properties. Before considering these properties on computations (consisting of an infinite sequence of actions), we first examine how to reason about the behavior of a single action, executed once.
A Hoare triple is an expression of the form
\{P\}S\{Q\}

where \(S\) is a program action and \(P\) and \(Q\) are predicates. The predicate \(P\) is often called the “precondition” and \(Q\) the “postcondition”.

Informally, this triple says that if \(S\) begins execution in a state satisfying predicate \(P\), it is guaranteed to terminate in a state satisfying \(Q\).
Saying that a triple \(\{P\} \ x := y + 1 \ {\text{even}.x} \) holds is the same as saying:
\[[P \Rightarrow \text{even.}(y + 1)] \]

To prove \(\{P\} \ x := E \ \{Q\} \), we must show \([P \Rightarrow Q^x_E] \).

\(Q^x_E \) is used to indicate writing expression \(Q \) with all occurrences of \(x \) replaced by \(E \).
Example

Does this triple hold?
\[\{ x \geq -2 \} \ x:=x-y+3 \ \{ x + y \geq 0 \} \]
To prove the triple $\{P\} g \xrightarrow{\quad} x := E \{Q\}$, we need to show:

$$[(P \land g \Rightarrow Q^x_E) \land (P \land \neg g \Rightarrow Q)]$$
What is P?
Safety properties

A safety property is a property that can be violated by a finite computation.

- Invariant property we had discussed earlier is a safety property.
- Two processes are not in critical section concurrently is a safety property.
- The program will terminate eventually is not a safety property.
A **next** property (i.e., a predicate on programs) is written:

\[P \text{ next } Q \]

where \(P \) and \(Q \) are predicates on states in the program.

\(P \text{ next } Q \) means that if a program is in a state satisfying \(P \), its very next state (i.e., after choosing and executing exactly one action) must satisfy \(Q \).

Since any action could be chosen as the next one to be executed, we must show that for every action, if it begins in \(P \), must terminate in \(Q \).
To prove
\((P \text{ next } Q).G\)
we must show
\((\forall x : a \in G : \{P\}a\{Q\})\)

Since *skip* is always part of any program, we have \(P \Rightarrow Q\)
false \texttt{next} Q

\texttt{P next true}

\((P1 \texttt{next} Q1) \land (P2 \texttt{next} Q2) \implies (P1 \land P2) \texttt{next} (Q1 \land Q2)\)

\((P1 \texttt{next} Q1) \land (P2 \texttt{next} Q2) \implies (P1 \lor P2) \texttt{next} (Q1 \lor Q2)\)

\((P \texttt{next} Q) \land [Q \implies Q'] \implies (P \texttt{next} Q')\)

\((P \texttt{next} Q) \land [P' \implies P] \implies (P' \texttt{next} Q)\)
stable.\(P \) means that once \(P \) becomes true, it remains true.

\[
\text{stable.} P \equiv \text{next } P
\]

- \text{stable.}\text{true}
- \text{stable.}\text{false}

- \text{stable.} P \land \text{stable.} Q \Rightarrow \text{stable.} (P \land Q)
- \text{stable.} P \land \text{stable.} Q \Rightarrow \text{stable.} (P \lor Q)

???

- ??? \text{stable.} P \land [P \Rightarrow P'] \Rightarrow \text{stable.} P'
- ??? \text{stable.} P \land [P' \Rightarrow P] \Rightarrow \text{stable.} P'
Invariant property is very important for reasoning about safety of your program.
Unlike safety, a progress (liveness) property can not be violated by a finite execution.

Progress is a predicate on possible computation suffixes.

All program properties of interest can be expressed as a conjunction of safety and progress.
Transient.

\[
\text{ transient.} P . G \equiv \\
(\exists a : a \in G : \{ P \} a \{ \neg P \})
\]

\[
\text{ transient.} P \land [P' \Rightarrow P] \Rightarrow \text{ transient.} P'
\]
\[
\text{ transient.} P \land [P \Rightarrow P'] \Rightarrow \text{ transient.} P' \ ???
\]
Transient (example)

\[\text{even}.x \quad \rightarrow \quad x := x + 1\]
\[\text{transient}.(x = 2) \quad ?\]

\[n \leq 2 \quad \rightarrow \quad n := n + 1\]
\[\text{transient}.(n = 0 \vee n = 1) \quad ???\]
Ensures

P ensures Q means that if P holds, it will continue to hold so long as Q does not hold, and eventually Q does hold.

P ensures $Q \equiv ((P \land {\neg}Q) \text{ next } (P \lor Q)) \land \text{ transient.}(P \land {\neg}Q)$
Ensures (example)

\[
even.x \quad \longrightarrow \quad x := x + 1
\]
\[
(x = 2 \lor x = 6) \text{ ensures } (x = 3 \lor x = 7)
\]

\[
n \leq 2 \quad \longrightarrow \quad n := n + 1
\]
\[
n = 1 \text{ ensures } n = 3
\]
$P \leadsto Q$ means that if P is true at some point, Q will be true (at that same or a later point) in the computation.

$P \text{ ensures } Q \implies P \leadsto Q$

$(P \leadsto Q) \land (Q \leadsto R) \implies P \leadsto R$
What is the relation between:

\textit{transient}. \(P \)

\(P \models \neg P \)
$P \rightsquigarrow true$

false $\rightsquigarrow P$

$P \rightsquigarrow P$

$(P \rightsquigarrow Q) \land [Q \Rightarrow Q'] \Rightarrow P \rightsquigarrow Q'$

$(P \rightsquigarrow Q) \land [P' \Rightarrow P] \Rightarrow P' \rightsquigarrow Q$

stable. $P \land trans. (P \land \neg Q) \Rightarrow P \rightsquigarrow (P \land Q)$

$\text{???} \; (P \rightsquigarrow Q) \land (P' \rightsquigarrow Q') \Rightarrow (P \land P') \rightsquigarrow (Q \land Q')$
A metric (or “variant function”) is a function from the state space to a well-founded set (e.g., the natural numbers). The well-foundedness of the range means that the value of the function is bounded below (i.e., can only decrease a finite number of times).

Theorem 10 (Induction). For a metric M,\\
$(\forall m :: P \land M = m \Rightarrow (P \land M < m) \lor Q) \Rightarrow P \Rightarrow Q$
Theorem 11. For a metric M,

$(\forall m :: P \land M = m \text{ next } (P \land M \leq m) \lor Q) \land (\forall m :: \text{ transient.}(P \land M = m))
\Rightarrow P \Rightarrow Q$

$(\forall i, m :: \{P \land M = m \land g_i\}g_i \rightarrow a_i\{(P \land M < m) \lor FP\})
\Rightarrow P \Rightarrow FP$