
Convergence Refinement

Murat Demirbas Anish Arora
�

Department of Computer and Information Science
The Ohio State University

Columbus, Ohio 43210 USA

Abstract
Refinement tools such as compilers do not necessarily

preserve fault-tolerance. That is, given a fault-tolerant pro-
gram in a high-level language as input, the output of a com-
piler in a lower-level language will not necessarily be fault-
tolerant. In this paper, we identify a type of refinement,
namely “convergence refinement”, that preserves the fault-
tolerance property of stabilization. We illustrate the use of
convergence refinement by presenting the first formal design
of Dijkstra’s little-understood 3-state stabilizing token-ring
system. Our designs begin with simple, abstract token-ring
systems that are not stabilizing, and then add an abstract
“wrapper” to the systems so as to achieve stabilization. The
system and the wrapper are then refined to obtain a con-
crete token-ring system, while preserving stabilization. In
fact, the two are refined independently, which demonstrates
that convergence refinement is amenable for “graybox” de-
sign of stabilizing implementations, i.e., design of system
stabilization based solely on system specification and with-
out knowledge of system implementation details.

Keywords : Fault-tolerance, stabilization, refinements,
compilers, convergence refinement, algorithms, token-
ring, graybox design

1 Introduction
Refinement tools such as compilers, program transform-

ers, and code optimizers generally do not preserve the fault-
tolerance properties of their input programs. Consider, for
example, a program that is trivially tolerant to the corrup-
tion of a variable x in that it eventually ensures x is always
0.

int x=0;
while(x==x)

�
x=0; �

The bytecode that a Java compiler produces for this input
program is not tolerant.
�
Email: � demirbas, anish � @cis.ohio-state.edu; Tel: +1-614-292-1836

; Fax: +1-614-292-2911 ; Web: http://www.cis.ohio-state.edu/ � � demirbas,
� anish � ; This work was partially sponsored by DARPA contract OSU-RF
#F33615-01-C-1901, NSF grant NSF-CCR-9972368, an Ameritech Fac-
ulty Fellowship, and a grant from Microsoft Research.

0 iconst 0
1 istore 1
2 goto 7
5 iconst 0
6 istore 1
7 iload 1
8 iload 1
9 if icmpeq 5

12 return

If the value of x (i.e., the value of the local variable at
position 1) is corrupted after line 7 is executed and before
line 8 is executed (i.e., during the evaluation of “x==x”)
then the execution terminates at line 12, thereby failing to
eventually ensure that x is always 0.

As another example, consider the specification of a bid-
ding server component. The server accepts bids during a
bidding period via a “bid(integer)” method and stores
only the highest � bids in order to declare them as win-
ners when the bidding period is over. When the “bid(�)”
method is invoked, the server replaces its minimum stored
bid with � only if � is greater than the minimum stored bid.
The bidding server is tolerant to the corruption of a single
stored bid in that it satisfies the specification for 	
������ out
of best-k bids.

Consider now a sorted-list implementation of the bidding
server. The implementation maintains the highest � bids in
sorted order with their minimum being at the head of the
list. When the “bid(�)” method is invoked on the imple-
mentation, it checks whether � is greater than the bid value
at the head of the list, and if so, the head of the list is deleted
and � is properly inserted to maintain the list sort order. This
implementation, while correct with respect to the specifica-
tion in the absence of faults, does not tolerate the corruption
of a single stored bid: If the stored bid at the head of the list
is corrupted to be equal to MAX INTEGER, then the imple-
mentation prevents new bid values from entering the list,
and hence fails to satisfy the specification for 	
������ out of
best- � bids.

These examples illustrate that even though an abstract
system � is fault-tolerant, it is possible that a refinement�

of � may not be fault-tolerant since the extra states in-

troduced in
�

create additional challenges for the fault-
tolerance of

�
. We are therefore motivated to consider the

problem of making refinement tools fault-tolerance preserv-
ing. In practice refinement tools will preserve selected types
of tolerance with respect to selected classes of faults. In this
paper, we focus our attention on preserving the tolerance
property of stabilization in the face of transient faults.

Contributions of the paper. Our main contribution is to
identify a special class of refinement, “convergence refine-
ment”, that suffices for preserving stabilization. A concrete
system

�
is a convergence refinement of an abstract system

� iff
�

is a refinement of � with respect to the initial states
(i.e., every computation of

�
that starts from an initial state

is a computation of �) and every computation � of
�

that
starts from a non-initial state is a convergence isomorphism
of some computation � of � . Convergence isomorphism
states that � is allowed only to drop some states (except the
initial states and final states [if there are any]) in � .

Intuitively speaking, convergence refinement implies
that even in the unreachable states the computations of

�
track the computations of � , although some states that ap-
pear in the computations of � may disappear in the compu-
tations of

�
, and hence,

�
preserves convergence properties

of � . In particular, stabilization [5] is preserved: If � is sta-
bilizing then any convergence refinement,

�
, of � is also

stabilizing.
Our second contribution is to show that convergence re-

finement enables abstract (or specification-based) design of
stabilization, in contrast to traditional methods which en-
able only concrete (or implementation-based) design. In
other words, it enables a non-stabilizing implementation

�
to be made stabilizing without knowing the implementation
details of

�
but knowing only an abstract specification �

that
�

satisfies (we call this “graybox” design [1]). More
specifically, given

�
that is a convergence refinement of � ,

first stabilization of � is designed by devising an abstract
wrapper

�
for � . Stabilization of

�
is then achieved by

adding to
�

any convergence refinement of
�

; the refined
wrapper is oblivious to the implementation details of

�
.

Since specifications are typically more succinct than im-
plementations, graybox stabilization offers the promise of
scalability. Also, since specifications admit multiple imple-
mentations and since system components are often reused,
graybox stabilization offers the promise of reusability. It
moreover offers a design alternative in closed-source situ-
ations, where implementation details are not available. In
such situations, treating the system as a blackbox can yield
a high-cost design. Exploiting a specification may therefore
be warranted, and convergence refinement is useful in this
process.

Finally, our third contribution is a formal derivation of
Dijkstra’s [5] little-understood 3-state stabilizing token-ring
system –as well as his 4-state system– based on conver-

gence refinements. More specifically, we derive Dijkstra’s
token-ring systems starting from simple abstract token-ring
systems. In each case, our derivation has two steps: in the
first, we choose a well-known non-stabilizing token-ring
system and add stabilization to it via an abstract wrapper
component. In the second step, we independently refine
the non-stabilizing system and its wrapper. The composi-
tion of the resulting concrete system and wrapper yield Di-
jkstra’s stabilizing token-ring systems. Proceeding in the
same vein, we are able to derive a new 4-state and a 3-state
stabilizing token-ring system. We note that although there
has been a lot of research on Dijkstra’s token-ring systems
and Ghosh [6] has presented an informal design of Dijk-
stra’s 3-state system, to the best of our knowledge, this is
the first time that any of these systems have been formally
derived as refinements.

The rest of this paper is organized as follows. In Section
2, we show that convergence refinement is stabilization pre-
serving and is amenable for graybox design of stabilization.
In Section 3, we present an abstract bidirectional token-ring
system and then, in Section 4, derive a 4-state system as a
convergence refinement of the abstract bidirectional token-
ring system. In Sections 5 and 6, we derive Dijkstra’s 3-
state system and a new 3-state system again as convergence
refinements of the abstract bidirectional token-ring system.
We discuss some related work in Section 7, and make con-
cluding remarks in Section 8. For reasons of space we refer
the reader to the full version of this paper [4] for a deriva-
tion of Dijkstra’s K-state protocol from an abstract unidi-
rectional token-ring system.

2 Convergence Refinement
In this section, after some preliminary definitions, we

justify why “convergence refinements” preserve stabiliza-
tion, and are useful for graybox design of stabilization.

Let � be a state space.
Definition. A system � is a finite-state automaton (� , � ,�

) where � , the set of transitions, is a subset of � 		��
����� ���
��
������������ and

�
, the set of initial states, is a subset of � .

A computation of � is a maximal sequence of states such
that every state is related to the subsequent one with a tran-
sition in � , i.e., if a computation is finite there are no tran-
sitions in � that start at the final state.

We refer to an abstract system as a specification, and to a
concrete system as an implementation. For now we assume
for convenience that the specification and the implementa-
tion use the same state space. At the end of this section,
in Section 2.3, we present a generalization that allows the
implementation to use a different state space than the spec-
ification. Henceforth, let

�
be an implementation and � a

specification.
Definition.

�
is a refinement of � , denoted � ��� �����! ��#" ,

iff every computation of
�

that starts from an initial state is

a computation of � .
Definition.

�
is an everywhere refinement [1] of � , denoted

� ��� ��� , iff every computation of
�

is a computation of
� .
Definition. A state sequence � is a convergence isomor-
phism of a state sequence � iff � is a subsequence of � with
at most a finite number of omissions and with the same ini-
tial and final (if any) state as � .

For instance, � � � � � ��� is a convergence iso-
morphism of � � � ��� � � ��� ��� ��� . However,
�	� � � � �
� ��� is not a convergence isomorphism of
��� � �
� �
� ��� since � can only drop states in � , and
cannot insert states to � . Intuitively, the convergence iso-
morphism requirement corresponds to the notion of using
similar recovery paths: � should use a similar recovery path
with � and not any arbitrary recovery path.
Definition.

�
is a convergence refinement of � , denoted

� ��� ��� , iff:
 � is a refinement of � ,
 every computation of

�
is a convergence isomorphism

of some computation of � .

Note that convergence refinements are more general than
everywhere refinements: � ��� � ��� � ��� ��� , but not
vice versa.

A fault is a perturbation of the system state. In this paper,
we focus on transient faults that may arbitrarily corrupt the
process states. The following definition captures a standard
tolerance to transient faults.
Definition.

�
is stabilizing to � iff every computation of

�
has a suffix that is a suffix of some computation of � that
starts at an initial state of � .

This definition of stabilization allows the possibility that
� is stabilizing to � , that is, � is self-stabilizing.

2.1 Stabilization preserving refinements

As we showed in [1], not every refinement is stabiliza-
tion preserving. That is,

�
refines � and � is stabilizing to �

does not imply that
�

is stabilizing to � .

By way of counterexample, consider Figure 1. Here
��� � � � �
� � � � ������� and s* are states in � , and ��� is the
initial state of both � and

�
. In both � and

�
, there

is only one computation that starts from the initial state,
namely “ ��� � � �� �
� � � � ������� ”; hence, � ��� ��� �! �!" . But
“s*, �
� � � � ������� ” is a computation that is in � but not in�

. Letting � denote a transient state corruption fault that
yields s* upon starting from ��� , it follows that although �
is stabilizing to � if � occurs initially,

�
is not.

We are therefore led to considering everywhere refine-
ments. We have shown in [1] that everywhere refinements
are stabilization preserving.

s*
F

s1s0 s2 s3 . . .

s*
F

s1s0 s2 s3 . . .A:

C:

Figure 1. � � � ��� �! ��#"

Theorem 0 If � ��� ��� and � is stabilizing to � ,
then

�
is stabilizing to � .

The requirements for everywhere refinements might not
be satisfied for every refinement of an abstract system into
a concrete one. For instance, every computation of the con-
crete might not be a computation of the abstract since the
execution model of the concrete is more restrictive than that
of the abstract. We give an example of model refinements
in Section 3.1 where a process is allowed to write to the
state of its neighbor in the abstract system but not allowed
to do so in the concrete system. To address such cases, we
consider the more general convergence refinements.

Theorem 1 If � ��� ��� and � is stabilizing to � ,
then

�
is stabilizing to � .

Theorem 1 follows immediately from the definitions of
stabilization and convergence refinement (

�
can only drop

a finite number of states from the computations of �). The-
orem 1 is the formal statement of the amenability of conver-
gence refinements as stabilization preserving refinements.

2.2 Graybox stabilization

Here we focus on the graybox stabilization problem of
how to design stabilization to a given implementation

�
us-

ing only its specification � . That is, we want to prove that:
If adding a wrapper

�
to a specification � renders � sta-

bilizing, then adding
�

to any convergence refinement
�

of � also yields a stabilizing system. We define a wrapper
to be a system over � and formulate the “addition” of one
system to another in terms of the operator (pronounced
“box”) which denotes the union of automata.

Lemma 2 If � ��� ��� and 	
� � � is stabilizing to �
then � 	 � � � � 	
� � � � .

Proof. This proof consists of two parts. We prove
� 	 � � � � 	 � � � � � �!" in the first part, and we prove
in the second part that every computation � of 	 � � �
is a convergence isomorphism of a computation ��� of
	 � � � .

1. � ��� ����� � � � � � � �!" . Thus, every computation
of
�

starting from the initial states is a computation of
� , and hence � 	 � � � � 	
� � � � � �#" .

2. Any computation � of 	 � � � can be written as
����� � � � � � � � � � � � ��� � � � � ��� � � ����� where� � denotes consecutive states produced by

�
and

� � denotes consecutive states produced by
�

. Since
� ��� ��� , � can only drop states from computations
of � . Thus, there exists a computation ��� of 	 � � �
of the form ����� � ��� � � � � � � � � ��� � � � � ��� � �
����� � � �! �!" where for all � , � � � is a convergence iso-
morphism of � � � Since 	 � � � is stabilizing to A,
� � has a suffix, � � �!" , that is a suffix of some com-
putation of � that starts from the initial states. Since
� ��� ��� � � � � � � � �!" , � cannot drop any states
from � � after 	
� � � stabilizes to A. That is, � can
drop only a finite number of states from � � , and hence
we conclude that � is a convergence isomorphism of
� � .

Theorem 3 If � ��� � � and 	 � � � is stabilizing to �
then 	 � � � is stabilizing to � .

Proof. The result follows from Lemma 2 and Theorem 1.

Theorem 3 states that if a wrapper
�

satisfies 	 � � �
is stabilizing to � , then, for any

�
that satisfies � ��� � � ,

	 � � � is stabilizing to � . In fact, after proving Lemma
4, we prove a more general result in Theorem 5.

Lemma 4 If � � � � � � and 	
� � � is stabilizing to �
then 	 � � � � is stabilizing to � .

Proof. Note that � � � � � � and “ 	
� � � is stabilizing
to � ” implies � � � � � � � � . (This proof is similar
to the proof of Lemma 2, and hence, is not included here.)
The result follows from the above via Theorem 1.

Theorem 5 If � ��� � � and 	
� � � is stabilizing to �
then 	�� � � � � � � � � � � 	 � � � � is stabilizing to �). 1

Proof. Given � � � � � � and 	 � � � is stabiliz-
ing to � , we get 	 � � � � is stabilizing to � from
Lemma 4. Since � ��� � � , from Lemma 2 we get
� 	 � � � � � 	
� � � � � . The result follows via Theo-
rem 1.

Theorem 5 is the formal statement of the amenability of
convergence refinements for graybox stabilization: If

�
provides stabilization to � , then any convergence refine-
ment

� � of
�

provides stabilization to every convergence
refinement

�
of � .

2.3 Refinement between different state spaces

The definitions and theorems introduced in this section
assumed for the sake of convenience that

�
and � use the

same state space. However, as the examples presented in
1A formula �����	��
��� ��
���� ��� denotes the value obtained by per-

forming the (commutative and associative) ��� on the ��� � values for all
� that satisfy ��� � . As special cases, where ��� is conjunction, we write
������
���� ��
���� ��� , and where ��� is disjunction, we write ������
���� ��
���� ��� .
Thus, ������
���� ��
���� ��� may be read as “if ��� � is true then so is ��� � ”, and
�����
!��� �
���� ��� may be read as “there exists an � such that both ��� � and
��� � are true”. Where ��� � is true, we omit ��� � . If � is a statement then
�����"
#��� �$
%��� ��� denotes that � is executed for all � that satisfy ��� � .

the introduction illustrate, the state space of the implemen-
tation can be different than that of the specification since the
implementations often introduce some components of states
that are not used by the specifications.

This is handled by relating the states of the concrete im-
plementation with the abstract specification via an abstrac-
tion function. The abstraction function is a total mapping
from �'& , the state space of the implementation

�
, onto

�'(, the state space of the specification � . That is, every
state in

�
is mapped to a state in � , and correspondingly,

every state in � is an image of some state in
�

.
All definitions and theorems in Section 2 are readily ex-

tended with respect to the abstraction function.

3 Stabilizing the Bidirectional Token-Ring

In this section, we start with a simple, fault-intolerant
abstract bidirectional token-ring system, � �*) , and then de-
sign two dependability wrappers,

� and
� � , in order to

render � �*) stabilizing.
� ensures that always there ex-

ists at least one token in the system and
� � ensures that the

extra tokens in the system are eventually removed.

3.1 Bidirectional token-ring problem

The abstract system � �*) consists of processes � 0,.., + �
arranged on a bidirectional ring. Let ,�- � . denote that “pro-
cess . received the token from . � ”, and /�- � . denote that
“process . received the token from .10 ”. Note that /2- � +
and ,�- � � are undefined for � �*) .

We use guarded-command language to specify systems.
The actions for 0 –bottom process–, for + –top process–,
and for all . such that 	3.54� �768.94�:+ � are as follows.

,�- � + �$; ,<- � + � �>=#?!@�A#BDCE/�- � 	F+ � �� � �HGJI%KLB
/2- � � �$; /<- � � � �M=#?<@NAOBDC,<- � � �HGJI%KLB
,<- � . �$; ,<- � . � �>=#?!@NAOBPC,�- � 	3.�0 � � �QGRI%KLB
/<- � . �$; /<- � . � �>=#?!@NAOBPC/�- � 	3. � � � �QGRI%KLB

Initially, there is a unique token in the system. The in-
variant

�
of � �*) can be written as

� S6 � �T6 � � 6 � �
where� VU 	RW<. �!�2,<- � .YXZ/<- � . �� �[U 	��\.�� � �!� 	 	�,2- � .]6^,�- � � �_X 	F,�- � .76^/�- � � �

X 	�/2- � .]6Z/2- � � � � �`. � � �� � U 	��\. �!�Pa 	�,2- � .]6Z/2- � . � �� � U 	��\. �!�2,<- � .�b<cLd1/�e�� f gihOhOj\klnm3eporq�sDjLb�t�u�kvq�sDj\q�cLh#w �
� states that there exists a token in the system,

� � and� �
state that at most one process can have a token and only

one token, and thus,
�

states that there is a unique token in
the system.

� � states that the token changes direction for
each successive round.

System models. The abstract system model permits a
process . to read and write to its state and the states of its
right and left neighbors in one atomic step. The concrete
system model is more restrictive: . can read its state and
the states of its right and left neighbors but can write only
to its own state.

Bidirectional token-ring (BTR) problem: Identify re-
finements,

�
, of � ��) in the concrete system model such

that � ��� � �*)�� �! �!" and 	�� � � � 	 � �*) � � is stabiliz-
ing to � �*) � 	 � � � is stabilizing to � �*)).

From Theorem 5, it follows that any concrete system
�

that satisfies � ��� � ��)�� is a solution to the � �*) prob-
lem.

3.2 Stabilization wrappers for � �*)
We add two wrappers

� , � � in order to stabilize
� �*) to

� and 	 � � 6 � � � respectively. We do not need a
wrapper to correct

� � because
� � follows from � �*) after� 6 � � 6 � �

is established.� ensures
� (i.e., there exists at least one token in the

system) as follows:

W1:: 	��i. ��.94�:+ �DaE,�- � . 6 aE/2- � . ��� ; ,<- � + � �QGRI%KLB
� � guarantees eventually 	 � � 6 � � � , there exists at

most one token in the system, by ensuring at every process
. that if ever ,�- � . and /�- � . are truthified at the same state,
then both of the tokens are deleted. This way, it is clear that
tokens moving on opposite directions (toward each other)
will cancel each other and their numbers will decrease. If
there are multiple tokens all going in one direction, then
eventually the tokens will bounce from either top or bottom
process and this case reduces to the previous case.

� � �!�2,<- � .Y6^/<- � . �$; ,2- � . � �M=#?!@NAOBPCE/<- � . � �M=#?<@NAOB

Theorem 6 	 � �*) � � � � is stabilizing to � ��) .

4 A 4-state solution to the
�����

problem

Consider the following mapping that transforms � �*) to
an equivalent system � ��)�� that uses two boolean variables
� � . and �
	 � . at every process . to simulate ,<- � . and /<- � . . For
every process the mappings between � , �
	 variables and ,�- ,
/<- are given as follows.

,<- � + U � � + 4� � � 	F+ � ��_6��
	 � 	F+ � �
/<- � � U � � � � � � 6`a��	 �

������������. � .54� � 6 .94�:+ �
,2- � . U � � .94� � � 	3. � � 6��	 � 	�. � ���6 a��	 � .
/2- � . U � � . � � � 	3.�0 � 6 a��	 � 	�.�0 ���6��
	 � .

We also map �
	 � + ��� ���	��� and �	 � � � -������ . The
actions for � �*) � follow from � ��) via the mapping:

� � + 4� � � 	F+ � �� 6��	 � 	R+ � ��
�$; � � + � � � � 	R+ � �%C��
	 � 	F+ � �� � � -������

� � � � � � 6`a��
	 �
�$; � � � � � a � � 2C �
	 � � �!� ���	���

� � .94� � � 	�. � ��_6��
	 � 	3. � �� 6`a��
	 � .
�$; � � . � � � � 	3. � �%C��	 � . � � -������DC

� � 	3.�0 �� � � a � � ."C��	 � 	�.�0 �� � �"� ��� �#�
� � . � � � 	�.�0 ��_6`a��
	 � 	3.�0 ��_6��
	 � .

�$;$�	 � . � �!� ���	���DC
� � 	3. � �� � � � � ."C��	 � 	�. � �� � � -������

The initial states of � �*) � follow from those of � �*)
using the mapping. � �*)%� uses the same abstract execution
model as � ��) .

4.1 Refinement of wrappers

We now consider refinements of
� and

� � for � ��)%� .� states that 	��\. �7. 4� + � aE,2- � . 6
aE/�- � . ���$; ,2- � + � � -������ . When we apply the mapping
on

� , we get
� �� :

	��i. ��.94�:+ �&�	 � . � 6 � � 	F+ � ���4� � � +
�"; � � + � � a � � 	F+ � ��#C��
	 � 	F+ � � � � -������

It turns out that
� �� is a trivial wrapper since the guard

of
� �� already implies that � � + 4� � � 	F+ � �� 6'�	 � 	R+ �

�� . Thus
� �� is vacuously implemented.� � states that if a process . has ,�- � . and /�- � . it will drop

both of them.
� � � is also trivial since using the mapping

we get 	F,�- � . 6 /�- � . U!� ���	��� � . That is, in � �*)%�r. cannot
possess ,�- � . and /<- � . at the same time.

4.2 Refinement of � �*) �
The concrete execution model does not allow writing to

the states of the neighboring processes, thus, the actions of
� �*) � are too coarse grained for the concrete execution
model. We refine � �*) � into

� by commenting (“//”)
out the clauses in � �*) � that violate the restrictions of the
concrete execution model.

� � + 4� � � 	F+ � �� 6��
	 � 	F+ � �
�$; � � + � � � � 	F+ � ��#C)((��	 � 	R+ � �� �

� � � � � � 6`a��	 �
�$; � � � � � a � � �LC)((Ra��
	 � ��

� � .94� � � 	3. � � 6��
	 � 	3. � � 6`a��
	 � .
�$; � � . � � � � 	3. � �%C*�
	 � . � � -������DC

(+(� � 	3.�0 ���4� � � .Y6`a��	 � 	�.�0 �� �
� � . � � � 	3.�0 � 6`a��
	 � 	3.�0 � 6��	 � .

�$;$�	 � . � �!� �
� ���2C
(+(� � 	3. � �� � � � .Y6��	 � 	�. � �� �

In the legitimate states of
� the conditions in the com-

ments are satisfied by the computations of
� . However,� might not satisfy these conditions in every state since the

concrete system model is more restrictive than the abstract.
In the illegitimate states, where these conditions might not
be satisfied, computations of

� might correspond to com-
pressed forms of computations of � ��) . Consider the fol-
lowing transition of the concrete.

t.1 t.3

p1 moves
t.3

c.0=1 c.1=0 c.2=1
up.2

c.3=0

c.0=1 c.1=0
~up.1 up.2

c.2=1 c.3=0

up.1

Starting from a state where ,�- � and ,2- � � holds, a state
with only ,<- � � is true is reached in one transition. This cor-
responds to a compression of the following transitions of
� �*) :

p1 moves

p2 moves

t.1 t.3

t.3

t.3t.2

Lemma 7 � � � � �*)�� .
Proof. Any compression performed by

� only results in a
token loss and

� cannot perform any compressions when
the token-ring contains less than two tokens. Since there
are finite number of tokens to begin with, and since process
actions do not create new tokens (they just propagate the
existing tokens),

� can do only a finite number of com-
pressions. In � �*) , starting from a state with � (s.t., ��� �)
tokens, any state with � (s.t., ��� ��� �) tokens is reach-
able. Thus, any computation of

� can be written as a
compression of some computation of � �*) . Since we also
have � � � � �*)�� �! ��#" , � is a convergence refinement of
� �*) .

Theorem 8
� � �� � � � is stabilizing to � �*) .

Proof. Since � � �� � � � and � � � � � � ��� , we have
� � �� � � � � � � ��� . The result then follows
from Theorem 5, Lemma 7, and Theorem 6.

The resulting system 	 � � �� � � � � is as fol-
lows.

� � 	F+ � ��4� � � + 6
�
	 � 	F+ � �� �$; � � + � � � � 	F+ � ��

� � � � � � 6 a��
	 � �$; � � � � � a � � �
� � 	3. � �*4� � � . 6
�	 � 	�. � ���69a��
	 � . �$; � � . � � � � 	�. � ��#C*�
	 � . � � -������
� � 	3.�0 � � � � . 6
a��	 � 	�.�0 ���6 �
	 � . �$; �
	 � . � �"� ���	���

Interested reader may note that 	 � � �� � � � �
can further be optimized (by relaxing the guards of the first
and third actions) to Dijkstra’s 4-state stabilizing token-ring
system below.

� � 	F+ � ���4� � � + � ; � � + � � � � 	F+ � ��
� � � � � � 69a��	 � � ; � � � � �:a � � �

� � 	3. � ���4� � � . � ; � � . � � � � 	3. � ��#C*�
	 � . � � -������
� � 	3.�0 �� � � � . 6
a��
	 � 	3.�0 ��6 �
	 � . � ; �
	 � . � �"� ��� �#�

5 A 3-state implementation of
� ���

We define a mapping that transforms � �*) to an equiva-
lent system � �*)�� that uses a 3-valued counter � � . at every
process . to simulate ,�- � . and /<- � . .

,<- � + U � � 	F+ � �� � � � +��
/<- � � U � � � � � �	�

��������� ��. � .94� � 68.54� + �
,�- � . U � � 	3. � � � � � .
�
/�- � . U � � 	3.�0 � � � � .
�

Above, � denotes addition operation under modulo 3.
� �*) � follows from the above mapping and uses the same
abstract execution model as � �*) . Below � denotes sub-
traction operation under modulo 3.

� � 	F+ � �� � � � +�� �$; � � + � � � � 	F+ � ���
� � � � � �	� �$; � � � � � � � ��

� � 	3. � � � � � .
� �$; � � . � � � � 	�. � ��#C
� � 	�.�0 �� � � � � .
�

� � 	3.�0 � � � � .
� �$; � � . � � � � 	�.�0 ��#C
� � 	�. � �� � � � � .
�

5.1 Refinement of wrappers

We now consider convergence refinements of
� and� � for � �*) � .� states that 	��\. �7. 4� + � aE,2- � . 6

aE/�- � . ���$; ,2- � + . When we apply the mapping on
�

we get
� � :

	��i.� � ��.� � 4� + ��� � . � � � � � 6 � � + 4� � � 	F+ � ��� ��
� ; � � + � � � � 	R+ � ��

(+(n� � � � � � � 	F+ � �� � � � +��

� �� is still a global wrapper because the guard of
� �

is over the states of all . . We can approximate
�
� by using

a local wrapper
� �� � at process + :

� � 	F+ � �� � � � ��6
� � + 4� � � 	F+ � ��� �"; � � + � � � � 	F+ � � �
� �� � is enabled in some states where the abstract

�
is not, and hence, is not an everywhere refinement of the
abstract wrapper. Thus, we need to prove that

� � � does
not interfere with the wrapper

� � . The argument is as
follows.

� �� is enabled only in the illegitimate states,
thus, 		� � 	F+ � �� � � � + 6 � � + � � � � � implies that the
number of tokens in the system is either equal to zero or
more than or equal to two. We observe that if the guard
	�� � 	F+ � �� � � � + 6 � � + � � � � � of

� �� � is infinitely
often enabled, then it eventually implies that the number
of tokens in the system is equal to zero: From the guard
	�� � 	F+ � � � � � + 6 � � + � � � � � it follows that be-
tween two consecutive executions of

� � process � should
execute once, that is, a token is bounced up. Therefore, be-
tween two consecutive executions of

�
� � , � � executes at
least once, and thus, for every extra token that

�
� � gener-
ates, two tokens are deleted by

� � .
� � states that if . has both ,<- � . (i.e., � � 	�. � � � � � . �)

and /<- � . (i.e., � � 	3. 0 �� � � � . �) then both tokens are
deleted.

� � � follows directly from the mapping:

� � 	�. � �� � � � .�� n6
� � 	�.�0 �� � � � .�� �$; � � . � � � � 	�. � ��

Lemma 9 � � ��) � � �� � � � � � is stabilizing to � �*) .

5.2 Refinement of � �*)��

The concrete execution model does not allow writing to
the states of the neighboring processes, thus, the actions of
� �*) � are too coarse grained for the concrete execution
model. We refine � �*) � into

� � by commenting (“//”)
out the clauses in � �*) � that violate the restrictions of the
concrete execution model.

� � 	R+ � � � � � +�� � ; � � + � � � � 	R+ � ��
� � � � � �	� � ; � � � � � � � ��

� � 	�. � �� � � � .�� � ; � � . � � � � 	3. � �
(+(� � � 	3.�0 � � � � .�� �

� � 	�.�0 �� � � � .�� � ; � � . � � � � 	3.�0 �
(+(� � � 	3. � � � � � .�� �

It is possible to merge
� �� � with the guard of the first

action in
� � since

� �� � ensures that “ 		� � 	R+ � � � � � � 6
� � + 4� � � 	R+ � �� � � � � � 	R+ � ���� � � + � ” and
� �*)�� satisfies in the absence of faults that “ 	�� � 	R+ � � �
� � �Q6 � � + 4� � � 	R+ � �� � �EU � � 	F+ � � � � � + � ”. Note
also that we can embed

� � � in the third and fourth actions
of
� � . Thus, the resulting system 	 � � �
� � � � � � is

as follows.

� � 	R+ � �� � � � �Y6
� � 	F+ � ��� r4� � � + �$; � � + � � � � 	F+ � ���

� � � � � �	� �$; � � � � � � � ��
� � 	3. � �� � � � .
� �$; m3u 		� � 	�. � �� � � � 	3.�0 � �

evo\qOc � � . � � � � 	3. � �
q�t � q � � . � � � � 	�. � ��

� � 	3.�0 �� � � � .
� �$; m3u 		� � 	�. � �� � � � 	3.�0 � �
evo\qOc � � . � � � � 	3. � �
q�t � q � � . � � � � 	�.�0 ��

The above system is equal to Dijkstra’s 3-state stabiliz-
ing token-ring system:

� � 	R+ � �� � � � �Y6
� � 	F+ � ��� r4� � � + �"; � � + � � � � 	R+ � �� �

� � � � � �	� �"; � � � � � � � ��
� � 	3. � �� � � � .
� �"; � � . � � � � 	3. � �
� � 	3.�0 �� � � � .
� �"; � � . � � � � 	3.�0 �

Lemma 10 � � � � �� � � � � � � �*)�� � �� � � � � � .
Proof. Similar to Lemma 7.

Theorem 11
� � � �� � � � � is stabilizing to � �*) .

Proof. Follows from Theorem 1, Lemma 9, and Lemma 10.

6 A new 3-state stabilizing token-ring

In Section 5.2 we had presented a 3-state implementation� � . In this section, we present another 3-state implementa-
tion of � �*) ,

� �
, that uses the same mapping as in Section

5. The system
� �

is as follows.

� � 	R+ � � � � � +�� �"; � � + � � � � 	F+ � ���
� � � � � �	� �"; � � � � � � � ��

� � 	3. � � � � � .�� �"; � � . � � � � 	3.�0 ��
(+(� � 	3. � ���4� � � .��

� � 	3.�0 � � � � .�� �"; � � . � � � � 	3. � ��
(+(� � 	3.�0 ���4� � � .��

Recall that in
� � we implemented � � 	�. � ��*4� � � . � and

� � 	�.0 ���4� � � . � by setting � � . � � � � 	3. � � , � � . � � � � 	3.E0
�� respectively and due to the limitations of the execution
model commented out the predicates � � 	3.�0 �� � � � . � and
� � 	�. � �� � � � .�� . On the contrary, in

� �
, we implement

� � 	�. 0 � � � � . � and � � 	3. � ���� � � . � by setting
� � . � � � � 	3.�0 �� � , � � . � � � � 	3. � ��� respectively and
due to the limitations of the execution model comment out
� � 	�. � ���4� � � .
� and � � 	3.�0 ��4� � � . � .

In the illegitimate states, when the conditions in the
brackets are not satisfied,

� �
takes � steps (stuttering) as

seen in the following case.

c.1=2 c.2=1c.0=3
p1 moves

c.1=2 c.2=1c.0=3

t.1 t.2 t.1 t.2

Because of the stuttering,
� �

does not perform any com-
pression of the computations of � �*) . Hence, Lemma 12
is trivially satisfied.

Lemma 12 � � � � � ��)�� .
Next, we consider refinement of the wrappers

�
and

� � for
� �

. Even though we have indepen-
dently refined � �*)�� into

� �
and

� �� into
� �� � , the

theory of convergence refinement enables us to con-
clude that

� � � � � � � � preserves the stabilization
property of � ��)�� � �� � � � , and hence, that of
� �*) � � � . That is, since convergence refine-
ment is amenable for graybox design of stabilization, the
same wrappers

�
� � and
� � � that we developed in Section

5.1 are applicable without any modification for
� �

. Thus,
our new 3-state stabilizing system is as follows.

� � 	R+ � � � � � � 6
� � 	R+ � � � r4� � � + �$; � � + � � � � 	R+ � � �

� � � � � �	� �$; � � � � � � � �
� � 	�. � �� � � � .
� �$; m u 	�� � 	�. � �� � � � 	�.�0 �� �

epo\q�c � � . � � � � 	�. � ��
qOt � q � � . � � � � 	3.�0 ���

� � 	�.�0 �� � � � .
� �$; m u 	�� � 	�. � �� � � � 	�.�0 �� �
epo\q�c � � . � � � � 	�.�0 ��
qOt � q � � . � � � � 	3. � ���

Theorem 13
� � � � � � � � is stabilizing to � �*) .

Proof. Follows from Theorem 3, Lemma 9, and Lemma 12.

Next we show that our new 3-state stabilizing system
above can be refined further to obtain Dijkstra’s 3-state sys-
tem. To this end we use a more aggressive version of

� � �
that deletes ,<- � . when ,<- � 	3. 0 �� also holds in that state
and similarly deletes /<- � . when /<- � 	�. � � is also true. The
resulting system is as follows.

� � 	R+ � � � � � � 6
� � 	R+ � � � r4� � � + �"; � � + � � � � 	F+ � �� �

� � � � � �	� �"; � � � � � � � ��
� � 	�. � �� � � � .
� �"; m3u 		� � 	3. � � � � � 	3.�0 � �

evo\qOc � � . � � � � 	3. � �
q�t � q m3u 		� � . � � � 	�.�0 ��� ��

epo\q�c � � . � � � � 	�. � ��
qOt � q � � . � � � � 	3.�0 ���

� � 	�.�0 �� � � � .
� �"; m3u 		� � 	3. � � � � � 	3.�0 � �
evo\qOc � � . � � � � 	3.�0 �
q�t � q m3u 		� � . � � � 	�. � ��� ��

epo\q�c � � . � � � � 	�.�0 ��
qOt � q � � . � � � � 	3. � ���

Since
� � �

, we have 	 	�� � 	3. � � � � � . � � 6 		� � 	�. �
�� 4� � � 	3. 0 �� � 6 		� � . 4� � � 	3. 0 �� � �� � � 	 � � . �
� � 	3. 0 ��Q6 � � 	3. � �� � � � . �� � . Thus, the above system
can be rewritten as Dijkstra’s 3-state system:

� � 	R+ � �� � � � �Y6
� � 	F+ � ��� r4� � � + �"; � � + � � � � 	R+ � �� �

� � � � � �	� �"; � � � � � � � ��
� � 	3. � �� � � � .
� �"; � � . � � � � 	3. � �
� � 	3.�0 �� � � � .
� �"; � � . � � � � 	3.�0 �

7 Related Work

In this section, we discuss some related work on fault-
tolerance preserving refinements.

In [1], we had presented another stabilization preserv-
ing refinement, namely everywhere-eventually refinement.�

is said to be an everywhere-eventually refinement of �
iff (1) � ��� � � � �!" , and (2) every computation of

�
is an

arbitrary finite prefix from the state space � followed by a
computation of � . It follows from this definition that if � is
stabilizing to � , any everywhere refinement

�
of � is also

stabilizing to � .
Everywhere-eventually refinement is more permissive

than convergence refinement. That is, every convergence
refinement

�
of � is an everywhere-eventually refinement

of � , but not vice versa.
�

may use a different recovery
path than � and still be an everywhere-eventually refine-
ment of � , however, that is not the case for convergence
refinements. For example, let � be an abstract program
that stabilizes to state ��� using a recovery path consisting
of odd numbered states (such as s* s3 s1 s0). A concrete
program

�
that uses a recovery path consisting of even

numbered states to reach state ��� (such as s* s4 s2 s0) is
an everywhere-eventually refinement of � but not a conver-
gence refinement of � .

Convergence refinement, by virtue of being more re-
strictive than everywhere-eventually refinement, is more
amenable for the design and verification of graybox sta-
bilization. In order for the graybox wrapping theorem,
Theorem 3, to be valid for everywhere-eventually re-
finements, the wrapper

�
should truthify the condition

� ��� � � � ��� 	
� � � � , i.e.,
�

can only add com-
putations to a system and is not allowed to remove any com-
putation from any system. However, there are useful wrap-
pers that do not satisfy this condition. In this paper, by using
convergence refinement, which does not have such restric-
tions on

�
, we are able to achieve graybox stabilization for

a more general class of wrappers.

Liu and Joseph [8] have considered designing fault-
tolerance via transformations. In their work, an abstract
program � is refined to a more concrete implementation

�
and then based on the refined program

�
and the fault ac-

tions � that are introduced in the refinement process, further
precautions (such as using a checkpointing&recovery pro-
tocol) are taken to render

�
fault-tolerant. They focus on

the faults introduced during the refinement, while we focus
on the faults that exist in the abstract program. Also, they
design the tolerance based on the concrete program, while
we design our wrappers based on the abstract program.

Fault-tolerance preserving refinements have been stud-
ied in the context of atomicity refinement [3, 10], whereas
here we have studied them in the more general context of
computation-model refinement. Also, the fault-tolerance
preserving refinements presented in [3, 10] are everywhere
refinements; here we present a more general type of fault-
tolerance preserving refinement, convergence refinement.

McGuire and Gouda [9] have also dealt with fault-
tolerance preserving refinements of abstract specifications.
They have developed an execution model that can be used
in translating abstract network protocol specifications writ-
ten in a guarded-command language into C programs us-
ing Unix sockets. While their framework solves the fault-
tolerance preserving refinement problem for a guarded-
command to a C program by producing everywhere refine-
ments, the problem remains open for the refinements from
a C program to an executable code.

Leal [7] has also observed that refinement tools are in-
adequate for preserving fault-tolerance. The focus of his
work is on defining the semantics of tolerance preserving
refinements of components. Whereas, in our work, we have
focused on sufficient conditions for fault-tolerance preserv-
ing refinements.

The graybox approach has received limited attention in
the previous work on dependability. In particular, we can
point to [1, 2, 11] which reason at a graybox level.

8 Concluding Remarks
In this paper, we have investigated stabilization preserv-

ing refinements, and, more specifically, have identified con-
vergence refinement as a sufficient condition for preserving
stabilization. We have illustrated the use of convergence
refinements by deriving several stabilizing token-ring im-
plementations (i.e., 3-state and 4-state token-ring systems)
from an abstract stabilizing token-ring system.

In contrast to traditional designs of stabilizing systems
that are implementation-based (whitebox), we have demon-
strated specification-based (graybox) design of stabilization
via convergence refinement. Graybox approach offers the
promise of scalable, reusable and low-cost design of stabi-
lization since any wrapper component designed to achieve
stabilization for an abstract specification is reusable for
achieving stabilization for any convergence refinement of
the specification.

In future work, we will focus on devising refine-
ment tools and methodologies that accommodate common
classes of faults and feasible types of fault-tolerances.

References

[1] A. Arora, M. Demirbas, and S. S. Kulkarni. Graybox stabi-
lization. Proceedings of the International Conference on De-
pendable Systems and Networks, pages 389–398, July 2001.

[2] A. Arora, S. S. Kulkarni, and M. Demirbas. Resettable vec-
tor clocks. Proceedings of the 19th ACM Symposium on
Principles of Distributed Computing (PODC), pages 269–
278, August 2000.

[3] J. Beauquier, A. K. Datta, M. Gradinariu, and F. Magniette.
Self-stabilizing local mutual exclusion and daemon refine-
ment. International Symposium on Distributed Computing,
pages 223–237, 2000.

[4] M. Demirbas and A. Arora. Convergence refinement. Tech-
nical report OSU-CISRC-3/02-TR06, Ohio State University,
March 2002.

[5] E. W. Dijkstra. Self-stabilizing systems in spite of dis-
tributed control. Communications of the ACM, 17(11), 1974.

[6] S. Ghosh. Understanding self-stabilization in distributed
systems, Part I. Technical Report 90-02, Computer Science
Department, University of Iowa, 1990.

[7] W. Leal. A Foundation for Fault Tolerant Components. PhD
thesis, The Ohio State University, 2001.

[8] Z. Liu and M. Joseph. Transformations of programs for
fault-tolerance. Formal Aspects of Computing, 4(5):442–
469, 1992.

[9] T. M. McGuire. Correct implementation of network proto-
cols from abstract specifications. PhD Thesis in progress,
http://www.cs.utexas.edu/users/mcguire/research/html/dp/.

[10] M. Nesterenko and A. Arora. Stabilization-preserving atom-
icity refinement. 13th International Symposium on Dis-
tributed Computing(DISC), 1999.

[11] J. Rushby. Calculating with requirements. Invited paper
presented at 3rd IEEE International Symposium on Require-
ments Engineering, pages 144–146, January 1997.

