
TRANSACT: A Transactional Framework for
Programming Wireless Sensor/Actor Networks

Murat Demirbas, Onur Soysal, Muzammil Hussain
{demirbas — osoysal — mh69}@cse.buffalo.edu
Department of Computer Science & Engineering

University at Buffalo, SUNY

Abstract

Effectively managing concurrent execution is one of the
biggest challenges for future wireless sensor/actor networks
(WSANs): For safety reasons concurrency needs to be
tamed to prevent unintentional nondeterministic executions,
on the other hand, for real-time guarantees concurrency
needs to be boosted to achieve timeliness. We propose
a transactional, optimistic concurrency control framework
for WSANs that enables understanding of a system exe-
cution as a single thread of control, while permitting the
deployment of actual execution over multiple threads dis-
tributed on several nodes. By exploiting the atomicity and
broadcast properties of singlehop wireless communication,
we provide a lightweight implementation of our transac-
tional framework on the motes platform.

1 Introduction

Traditionally wireless sensor networks (WSNs) act
mostly as data collection and aggregation networks and do
not possess a significant actuation capability [3, 35]. How-
ever, as WSNs become increasingly more integrated with
actuation capabilities, they have the potential to play a ma-
jor role in our lives fulfilling the proactive computing vi-
sion [34]. Future wireless sensor/actor networks (WSANs)
will be instrumental in process control systems (such as vi-
bration control of the assembly line platforms or coordi-
nation of regulatory valves), multi-robot coordination ap-
plications (such as robotic highway construction markers
[10], where robot-cones move in unison to mark the high-
way for the safety of workers), and in resource/task alloca-
tion in multimedia WSNs (such as video-based coordinated
surveillance/tracking of suspected individuals in an urban
setting).

WSANs need a radically different software than WSNs
do. In contrast to WSNs, where a best-effort (eventual con-
sistency, loose synchrony) approach is sufficient for most

applications and services, consistency and coordination are
essential requirements for WSANs because in many WSAN
applications the nodes need to consistently take a coordi-
nated course of action to prevent a malfunction. For exam-
ple, in the factory automation scenario inconsistent opera-
tion of regulator valves may lead to chemical hazards, in the
robotic highway markers example a robot with an inconsis-
tent view of the system may enter in to traffic and cause an
accident, and in the video tracking scenario failure to coor-
dinate the handoff consistently may lead to losing track of
the target.

Due to the heavy emphasis WSANs lay on consistency
and coordination, we believe that concurrent execution, or
more accurately, nondeterministic execution due to concur-
rency will be a major hurdle in programming of distributed
WSANs. Since each node can concurrently change its state
in distributed WSANs, unpredictable and hard-to-reproduce
bugs may occur frequently. Even though it is possible to
prevent these unintentional and unwanted nondeterminis-
tic executions by tightly controlling interactions between
nodes and access to the shared resources [8,14,18], if done
inappropriately, this may deteriorate a distributed system
into a centralized one and destroy concurrency, which is
necessary for providing real-time guarantees for the system.

To enable ease of programming and reasoning in
WSANs and yet allow concurrent execution, we propose
a transactional programming abstraction and framework,
namelyTRANSACT: TRANsactional framework for Sen-
sor/ACTor networks.TRANSACT enables reasoning about
the properties of a distributed WSAN execution as inter-
leaving of single transactions from its constituent nodes,
whereas, in reality, the transactions at each of the nodes
are running concurrently. Consequently, under the TRANS-
ACT framework, any property proven for the single threaded
coarse-grain executions of the system is a property of the
concurrent fine-grain executions of the system. (This con-
cept is known as “conflict serializability” [12] in databases
and as “atomicity refinement” [5, 27] in distributed sys-

1

tems.) Hence, TRANSACT eliminates unintentional nonde-
terministic executions and achieves simplicity in reasoning
while retaining the concurrency of executions.

TRANSACT is novel in that it provides an efficient and
lightweight implementation of a transactional framework in
WSANs. Implementing transactions in distributed WSANs
domain diverges from that in the database context sig-
nificantly, and introduces new challenges. In contrast to
database systems, in distributed WSANs there is no cen-
tral database repository or an arbiter; the control and sensor
variables, on which the transactions operate, are maintained
distributedly over several nodes. As such, it is infeasible
to impose control over scheduling of transactions at dif-
ferent nodes, and also challenging to evaluate whether dis-
tributed transactions are conflicting. On the other hand, we
observe that singlehop wireless broadcast has many useful
features for facilitating distributed transaction processing.
Firstly, broadcasting is atomic (i.e., for all the recipients of
a broadcast, the reception occurs simultaneously), which is
useful for synchronizing the nodes in singlehop for build-
ing a structured transaction operation. Secondly, broadcast-
ing allows snooping of messages without extra overhead,
which is useful for conflict detection in a decentralized man-
ner. By exploiting the atomicity and broadcast properties
of singlehop wireless communication in WSANs, TRANS-
ACT overcomes this challenge and provides a lightweight
implementation of transaction processing. Since imposing
locks on variables and nodes may impede the performance
of the distributed WSAN critically, TRANSACT implements
an optimistic concurrency control solution [21]. Thus, the
transactions in the TRANSACT framework is free of dead-
locks (as none of the operations is blocking) and livelocks
(as at least one of the transactions needs to succeed in order
to cancel other conflicting transactions).

TRANSACT enables ease of programming for WSANs
by introducing a novelconsistent write-allparadigm that
enables a node to update the state of its neighbors in acon-
sistentandsimultaneousmanner. Building blocks for pro-
cess control and coordination applications (such as, leader
election, mutual exclusion, cluster construction, recovery
actions, resource/task allocation, and consensus) are easy
to denote using TRANSACT (see Figure 3). In this paper we
use the resource/task allocation problem as a running ex-
ample in our analysis, implementation, and simulation sec-
tions. This problem is inherent in most WSANs applica-
tions, including the process control, multi-robot coordina-
tion, and distributed video-based tracking applications we
discussed above. We primarily focus on singlehop coordi-
nation applications in this paper—albeit, in a multihop net-
work setting. We discuss how to leverage on the singlehop
transactions in TRANSACT to provide support for construct-
ing multihop coordination applications in Section 2.4.

Outline of the paper. We present the TRANSACT

framework in Section 2. In Section 3 we investigate
conflict-serializability of TRANSACT and also analyze the
frequency of having conflicting transactions among a set
of concurrent transactions. In Section 4, using Tmotes
and TinyOS, we give an implementation of the TRANSACT

framework for solving the resource/task allocation prob-
lem. In Section 5 we present simulation results, using
Prowler [33], over a multihop network for the resource/task
allocation problem. Finally, we discuss related work in Sec-
tion 6, and conclude in Section 7.

2 TRANSACT Framework

Overview. In TRANSACT an execution of a nonlocal
method is in the form of a transaction. A nonlocal method
(which requires inter-process communication) is structured
asread[write−all], i.e., read operation followed, option-
ally, by awrite-all operation. Read operation corresponds to
reading variables from some nodes in singlehop, and write-
all operation corresponds to writing to variables of a set of
nodes in singlehop. Read operations are always compati-
ble with each other: since reads do not change the state,
it is allowable to swap the order of reads across different
transactions. A write-all operation may fail to complete
when a conflict with another transaction is reported. A con-
flict is possible if two overlapping transactions have pair-
wise dependencies. We achieve a distributed and local con-
flict detection and serializability by exploiting the atomicity
and snooping properties of wireless broadcast communica-
tion. If there are no conflicts, write-all succeeds by updat-
ing the state of the nodes involved in a consistent and si-
multaneous manner. When a write-all operation fails, the
transaction aborts without any side-effects: Since the write-
all operation—the only operation that changes the state—is
placed at the end of the transaction, if it fails no state is
changed and hence there is no need for rollback recovery at
any node. An aborted transaction can be retried later by the
caller application.

As outlined above, the key idea of concurrency control in
TRANSACT can be traced to the optimistic concurrency con-
trol (OCC) in database systems [21]. TRANSACT exploits
the atomicity and broadcast properties of singlehop wireless
communication to give an efficient decentralized implemen-
tation of OCC. Conflict detection and reporting mechanism
is decentralized in TRANSACT. Moreover, in TRANSACT

the commit for the write-all operation is time-triggered to
ensure that the write-all operation (if successful) is commit-
ted simultaneously at all the nodes involved in the trans-
action. The time-triggered commit mechanism leverages
on the atomicity of the write-all broadcast and achieves the
commit to occur simultaneously at all the nodes despite the
lossy nature of the communication channel. Finally, while
OCC insists on transactions to be order-preserving, TRANS-

2

ACT requires only conflict-serializability and hence allows
more concurrency. We discuss this in more detail in Sec-
tion 6.

2.1 Read and Write-all operations

Singlehop wireless broadcast communication provides
novel properties for optimizing the implementation of dis-
tributed transactions :
1. A broadcast is received by the recipients simultaneously
2. Broadcast allows snooping.

Property 1 follows from the characteristics of wireless
communication: the receivers synchronize with the trans-
mission of the transmitter radio and the latency in recep-
tion is negligible (limited only by the propagation speed of
light). As such Property 1 gives us a powerful low-level
atomic primitive upon which we build the transactions. Us-
ing Property 1, it is possible to order one transaction ahead
of another1, so that the latter is aborted in case of a conflict.
Using Property 1, we can define a transaction as a compo-
sition of an atomic read operation followed by an atomic
write operation, asTj = (Rj , Wj). Atomicity of read oper-
ation is satisfied by the atomicity of broadcast. Each node
involved in a read operation prepares its reply at the recep-
tion of the read broadcast. Atomicity of the write operation
is satisfied by a time-triggered commit taking the write-all
broadcast as a reference point.

We use Property 2, i.e., snooping, for detecting conflicts
between transactions without the help of an arbiter as we
discuss below.

Implementation of Read operation : Since read opera-
tions are compatible with other read operations, it is pos-
sible to execute read operations concurrently. Moreover,
exploiting the broadcast nature of communication the node
initiating the transaction can broadcast a read-request where
all variables to be read are listed.

Implementation of Write-all operation : The write-all
broadcast performs a tentative write (a write to a sandbox)
at each receiver. Each receiver replies back with a small
acknowledgmentmessage. If after the broadcast, the writer
receives aconflict-detectedmessage (we discuss how be-
low), the write-all operation fails, and the writer notifiesall
the nodes involved in the write-all to cancel committing.
This is done by a broadcasting of acancellationmessage,
and the writer expects acancel-ackfrom each node to avoid
an inconsistency due to loss of a cancellation message. The
cancellation process may be repeated a few times until the
writer gets a cancel-ack from each node involved in the

1Property 1 does not rule away collisions nor asserts that a broadcast
message should be reliably received by all the intended nodes; it just as-
serts that for all the nodes that receive the message, the reception occurs
simultaneously. We relegate the discussion of how we cope with message
losses and collisions to Section 2.3.

write-all (the above scheme can be used for avoiding colli-
sion of cancel-acks). The commit is time-triggered: If after
the write-all, the writer node does not cancel the commit,
the write-all is finalized when the countdown timer expires
at the nodes. Since write-all is received simultaneously by
all nodes, it is finalized at the same time at all the nodes –if
it completes successfully.

Detecting conflicts: The read operations are compatible
with respect to each other, so swapping the order of any two
concurrent read operations results into an equivalent com-
putation. A read operation and a write operation at differ-
ent and overlapping transactions to the same variable are
incompatible, so it is disallowed to swap the order of two
such operations. In such a case, a dependency is introduced
from the first to the second transaction. Similarly, two write
operations to the same variable are incompatible with each
other. For example in Figure 1 if a read-write incompatibil-
ity introduces a dependency fromt1 to t2, and a write-write
incompatibility introduces a dependency fromt2 to t1, then
we say thatt1 andt2 are conflicting. This is because, due
to the dependencies the concurrent execution oft1 andt2
do not return the same result as neither at1 followed byt2
nor at2 followed by t1 execution. In this case, sincet2 is
the first transaction to complete, whent1 tries to write,t1 is
aborted due to the conflict.

j

k
t2.write−all(l.x)

t1.read(l.x) t1.write−all(l.x)

read−write dependency

write−write dependency

Figure 1. Conflicting transactions

Formally, we denote a transactionTj by a tuple (Rj , Wj)
whereRj is the read-set ofTj andWj is the write-set forTj .
For any two transactionsTj andTk, we define the following
dependencies:

• Drw(Tj , Tk) ≡ Rj ∩ Wk 6= ∅ and executions ofTj

andTk overlap,

• Dww(Tj , Tk) ≡ Wj ∩Wk 6= ∅ and write-all broadcast
of Tj precedes that ofTk.

We say that there is a conflict betweenTj andTk iff :

Drw(Tj , Tk)∧ Drw(Tk, Tj)

∨ Drw(Tj , Tk)∧ Dww(Tk, Tj)

That is, Tj and Tk conflict with each other if there is
a pairwise read-write dependency betweenTj andTk, or
there is a read-write dependency fromTj to Tk and a write-
write dependency fromTk toTj. When a conflict is detected

3

betweenTj and Tk, the transaction whose write-all post-
dates the other is informed about this conflict via aconflict-
detectedmessage, and is aborted.

conflict_msg

t1:write−all(l’.x)

t2:write−all(l.y,l’.x)

t1:read(l.y)

Execution order:

l’

k

l

j

t1:write−all t2:write−all

t2:write−all
t1:read

Figure 2. Snooping for detecting conflicts

To enable low-cost detection of conflicts, we exploit
snooping over broadcast messages. Figure 2 demonstrates
this technique. Herej is executing transactiont1 which
consists ofread(l.y);write−all(l′.x) operations that oper-
ate on its 1-hop neighbors,l andl′. Simultaneously, another
nodek within 2-hops ofj is executing transactiont2 which
write−all(l.y, l′.x). In this scenariol′ is the key. Whent1
readsl, l′ learns about the pendingt1 transaction via snoop-
ing. Whent2 writes tol′, l′ takes note of the simultaneous
write to l.y (since that information appears at the write-all
message) and notices the read-write dependency between
t1 andt2. Later, whent1 writes tentatively tol′.x, l′ no-
tices the write-write dependency betweent2 andt1. Thus,
l′ complains and abortst1. If there are multiple nodes writ-
ten byt1, the affected nodes may schedule transmission of
the conflict-messages in a collision-free manner by taking
the write-all broadcast as a reference point.

For some scenarios, dependency chains of length greater
than two are also possible. Thus, we also enforce acyclic-
ity for such dependency chains via aborting a transaction
if necessary. An example of a dependency chain of length
three with a cycle is:t1:(ready, write-all x), t1:(readz,
write-all y), and t3:(readx, write-all z). Catching such
cycles among transactions in singlehop is achieved by a
straightforward modification to the conflict detection rule
we described above. With the modification, the snoopers
search for any potentially long dependencies in their snoop-
ing table in order to detect conflicts as we discuss in Sec-
tion 3.1.

2.2 TRANSACT examples

In Figure 3, we give some examples of TRANSACT meth-
ods for different tasks to illustrate the ease of programming
in this model. Each method is written as if it will be exe-
cuted in isolation as the only thread in the system, so it is
straightforward to describe the behavior intended. For ex-
ample, in the leader election method, an initiatorj reads
the leader variables of all its singlehop neighbors, and on

bool leader election(){
X= read(“*.leader”); //read from all nbrs
if (X = {⊥}) then{

return write-all(“*.leader=”+ID);}
returnFAILURE; }

boolconsensus(){
VoteSet= read(“*.vote”);
if(|V oteSet| = 1) then //act consistently

return write-all(“*.decided=TRUE”);
returnFAILURE;}

bool resource allocation(candidateSet){
X= read(“∀x : x ∈ candidateSet : x.allocated”);
X ′= select a subset of{x|x.allocated = ⊥ ∧ x ∈ X}
if(X ′ 6= ∅) then

return write-all(“∀x : x ∈ X ′ : x.allocated=”+ID);
returnFAILURE;}

Figure 3. Sample methods in TRANSACT

finding that none of them has set a leader for themselves,
announces its leadership and sets their leader variables to
point to j. During concurrent execution another initiatork

may be executing in parallel toj, and isolation assumption
fails. However, since eitherj or k performs the write-all
before the other, TRANSACT aborts the other transaction re-
satisfying isolation assumption for these conflicting trans-
actions through conflict-serializability. E.g., ifj performed
write-all earlier thank, k’s write-all will trigger conflict de-
tections (read-write dependency fromk to j, followed by a
write-write dependency fromj to k) and cancellation ofk’s
transaction.

Similarly for the consensus method, the initiator–
assuming isolation– reads vote variables of the neighbors,
and on finding an agreement on the same vote, sets the de-
cided variable of all neighbors so that the vote is finalized.
If due to concurrent execution a nodek changes its vote dur-
ing a consensus method execution of an initiatorj, thenj’s
write-all will lead to a conflict-report fromk and abortion
of j’s transaction.

Finally, the resource allocation method is similar to the
leader election. The initiator reads availability of nodesin
the candidateSet, and selects a subset of the available nodes,
and recruits them for its task. Again TRANSACT ensures
that concurrent execution of this method at several initiators
do not lead to any data race conditions and inconsistencies.

TRANSACT methods return a boolean value denoting the
successful completion of the method. If the method exe-
cution is aborted due to conflicts with other transactions or
message losses, it is the responsibility of the caller applica-

4

tion to retry.

2.3 Fault-tolerance

Even when singlehop neighbors are chosen conserva-
tively to ensure reliable communication (we may consider
an underlying neighbor-discovery service to this end—
one that may potentially be implemented as a TRANSACT

method), unreliability in broadcast communication is still
possible due to message collisions and interference. Here,
we describe how TRANSACT tolerates unreliability in wire-
less communication via utilizing explicit acknowledgments
and eventually-reliable unicast.

Occasional loss of a read-request message or a reply to
a read-request message is detected by the initiator when it
times-out waiting for a reply from one of the nodes. Then,
the initiator aborts the transaction before a write-all is at-
tempted. In this case, since the initiator never attempted the
write-all, no cancellation messages are needed upon abort-
ing. Retrying the method later, after a random backoff, is
less likely to be susceptible to message collisions due to
similar reasons as in CSMA with collision avoidance ap-
proaches [1].

Similarly, loss of a write-all message is detected by the
initiator node when it times-out on an acknowledgment
from one of the nodes included in the write-all. The ini-
tiator then aborts its transaction by broadcasting a cancella-
tion message as discussed above in the context of conflict-
resolution.

For the loss of a conflict-detected or cancellation mes-
sage we depend on the eventual reliability of unicast mes-
sages. Upon detection of a loss via timeout on an acknowl-
edgement, if a conflict-detected or cancellation message is
repeated a number of times, it should be delivered success-
fully to the intended recipient. It follows from the impos-
sibility of solving the “coordinated attack problem” [2, 11]
in the presence of arbitrarily unreliable communication that
the above assumption is necessary even for solving a most
basic consensus problem in a distributed system. We ar-
gue that such an eventually-reliable unicast assumption is
realistic under reasonable network loads as the MAC pro-
tocols [31, 38] can resolve collisions via carrier-sense and
back-offs. Our implementation and simulation results also
validate this assumption.

2.4 Discussion

Limitations. Due to the unreliable nature of wireless com-
munication, a streak of message losses may lead to an in-
consistency in TRANSACT. TRANSACT relies on acknowl-
edgments to ensure delivery of write and cancel messages.
For conflict detection messages multiple snooper nodes are
expected to help. Nevertheless, even with multiple repeti-

tions, delivery of these messages to some involved nodes
can fail, leading to inconsistencies. Similarly, a node fail-
ure that occurs during an active transaction can cause an in-
consistency through inducing persistent message loss. For
instance, failure of the initiator node after it broadcastsa
write-all may lead to an inconsistent commit.

When transactions involved in a dependency chain are
dispersed through a multihop region, it becomes difficult to
detect potential cycles. We note that the likelihood of cy-
cles over long dependency chains encompassing multiple
hop neighborhoods are quite low due to the short execu-
tion duration of our transactions. An effective detection al-
gorithm for multihop dependency chains requires network-
wide queries which would be extremely costly. In our cur-
rent work we are investigating the frequency of such chains
and possible remedies.

Multihop extensions to TRANSACT. It is easy to lever-
age on TRANSACT’s singlehop transactions to provide sup-
port for constructing multihop programs. To this end, our
strategy is to use TRANSACT to implement higher-level co-
ordination abstractions, such as Linda [4] and virtual node
architecture [9].

In Linda, coordination among nodes is achieved through
invocation of in/out operations using which tuples can
be added to or retrieved from a tuplespace shared among
nodes [4, 7, 29], however, maintaining the reliability and
consistency of this shared tuplespace to the face of concur-
rent execution ofin andout operations at different nodes is
a very challenging task. Through its serializable singlehop
transaction abstraction, TRANSACT can achieve consistent
implementation and maintenance of the tuplespace.

Virtual node architecture [9] is another high-level pro-
gramming abstraction for distributed nodes. It provides an
overlay network of fixed virtual nodes (VNs) on top of a
mobile ad hoc network to abstract away the challenges of
unpredictable reliability and mobility of the nodes. Each
VN is emulated by the physical nodes residing within a sin-
glehop of the VN’s region at a given time. The network of
VNs serve as a fixed backbone infrastructure for the mo-
bile ad hoc network and allows existing routing and track-
ing algorithms for static networks to be adopted for these
highly dynamic environments. Existing VN layer proposals
assume reliable communication channels and use a round-
robin approach to achieve consistent replication of the state
of the VN over the physical nodes [9]. Our TRANSACT

framework provides a lightweight singlehop transaction ab-
straction for implementing VNs consistently over realistic
communication channels.

5

3 Analytical Results

3.1 Transaction Serialization

A set of transactions are serializable if and only if their
dependency graph is acyclic [12]. In the TRANSACT frame-
work, depending on the arrival order of read and write op-
erations, incompatibilities create dependencies. In thissec-
tion we outline our approach for identifying these depen-
dencies in order to maintain serializability.

Consider two transactionsTi = (Ri, Wi) and Tj =
(Rj , Wj). Note that without any incompatibilities, these
transaction are always serializable. For investigating in-
compatibilities, without loss of generality we assumeRi

comes beforeRj . Then, we have the following execution
orders for the atomic read and write operations:

• Ri, Wi, Rj , Wj : In this case the dependencies between
transactions are irrelevant sinceTi completes beforeTj

and they are not actually concurrent.

• Ri, Rj , Wi, Wj : In this case if there is read-write in-
compatibility betweenTi andTj , we introduce a de-
pendency fromTi to Tj . If there is read-write incom-
patibility betweenTj andTi, we insert a depency from
Tj to Ti. Finally if there is write-write incompatibility
betweenTi andTj, we introduce a dependency from
Ti to Tj.

• Ri, Rj , Wj , Wi: This is only slightly different from
previous scenario. Read-Write incompatibilities corre-
spond to same dependencies. Write-Write incompati-
bility, on the other hand, causes a dependency to be
inserted fromTj to Ti.

The dependencies between all concurrent transaction
pairs are tracked through TRANSACT execution. We con-
struct the dependency graph with nodes as transactions and
directed edges to represent dependence relations. No trans-
action that would cause a cycle in this dependency graph is
allowed to commit.

3.2 Concurrency in Transactions

Since it is impossible to model all applications for
TRANSACT, we use a simple transaction model to analyze
the effect of concurrency in creating data race conditions
and conflicts. In our model a transaction reads from a ran-
dom subset of the TRANSACT variables and writes to a ran-
dom subset of its read-set. This model could be appropriate
for modeling some resource/task allocation problems.

Given n variables involved in two concurrent transac-
tions, we define three cases:

• Independent: The write-sets of these transactions are
distinct from the read-sets of the other. Essentially
these transactions are totally independent. We denote
probability of such transactions withPi(n).

• Dependent: These transactions have some kind of de-
pendency with each other due to incompatibilities.
We denote the probability of these transactions with
Pd(n).

• Conflicting: These transactions can not be run in paral-
lel because they have dependency to each other. No se-
rial ordering is possible for these kind of transactions.
The probability of these transactions isPc(n).

In order to calculate these probabilities we first calcu-
late the probability of incompatibilities. The probability of
a Read-Write incompatibility (PRW (n)) depending on the
number of shared variables can be calculated as follows:

PRW (n) =

∑n

j=1

∑n

i=j

(

n
i

)(

i
j

)

2
n
−2

n−j

2n−1
∑n

j=1

∑n

i=j

(

n

i

)(

i

j

)

Here we choose a non empty subset (corresponding to
first read set

(

n

i

)

) and then chose a non empty subset of this
read-set (corresponding to the first write-set

(

i
j

)

). For this
subset ofj elements we calculate the intersection probabil-
ity with another random subset corresponding to the second
read-set.

Similarly Write-Write incompatibility can be derived.
This time we also need to choose the second write-set so
the expression is a bit longer:

PWW (n) =

∑n

j=1

∑n

i=j

∑n

k=1

∑n

l=k

(

n
i

)(

i
j

)(

n
l

)(

l
k

) (n

k)−(n−j

k)
(n

k)
∑n

j=1

∑n

i=j

∑n

k=1

∑n

l=k

(

n
i

)(

i
j

)(

n
l

)(

l
k

)

Using these probabilities,Pi(n) can be calculated as fol-
lows:

Pi = (1 − PWW)(1 − PRW)2

While calculatingPd we need to consider arrival time
of write messages. We assume this is also random with uni-
form distribution. Thus only50% of Write-Write incompat-
ibilities cause a conflict with a Read-Write incompatibility:

Pd = PWW (1 − PRW)2 + 2(1 − PWW)(1 − PRW)PRW +

PWW (1 − PRW)PRW

The conflict probability is given by:

Pc = PWW P 2

RW +PWW (1−PRW)PRW +(1−PWW)P 2

RW

Figure 4 summarizes the predictions of this model. With
a single resource there will definitely be conflicts and with

6

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Number of Shared Variables

P
ro

ba
bi

lit
y

Independent
Dependent
Conflict

Figure 4. Probabilities of being indepen-
dent/dependent/conflicting given the number
of shared variables between two transactions

increasing number of variables we first observe less con-
flicts (around 3 and 4 variables) and with more variables
conflict probability approaches to 1. With this model inde-
pendent transactions have very low probability and conflicts
are common.

Figure 5 on the other hand shows the predicted probabil-
ity of conflicts and incompatibilities given the probability of
intersection. Even with relatively low probabilities having
independent transactions has low probability and conflicts
are highly probable.

4 Implementation Results

We developed an implementation of TRANSACT over
T-mote Invent and T-mote Sky motes [26] in the form of
a TinyOS component, called TRANSACT. The TRANS-
ACT component keeps the state of the ongoing transactions
and abstracts communication and state maintenance details
from the application developer by exporting an interface
with split phase semantics [17]. Our TRANSACT implemen-
tation is close to 1500 lines of NesC code, and is available at
http://ubicomp.cse.buffalo.edu/transact.

Test application. In order to test the reliability and fea-
sibility of transactions in our TRANSACT implementation,
we also implemented a resource/task allocation application
similar to the one we presented in Section 2.2.

In this application, nodes try to obtain control of shared
resources for their individual tasks. We call the nodes that
try to initiate transactionsinitiatorsand the nodes that main-
tain the variables asresources. Initially, each initiator is as-
signed a random subset of the resource nodes to read, and

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Probability of Intersections

P
ro

ba
bi

lit
y

Independent
Dependent
Conflicting

Figure 5. Probabilities of being indepen-
dent/dependent/conflicting given the proba-
bility of sharing an element between read or
write sets of two transactions

a random subset of their read-sets to write to—in order to
allocate those resources. Initiators cannot complete their
tasks with partial resources. The application code is aware
of the transaction status and the failed transactions are re-
peated until success is reported by TRANSACT. That is, an
initiator keeps retrying until it can allocate the resources it
requested.

Experiments. We use a total of 12 motes. One of these
motes is reserved for synchronization and book keeping and
referred to as thebasestation. We developed a custom Java
application to automate the starting of the experiments and
collecting of the results through serial communication with
the basestation. Each data point in our graphs is calculated
over 50 runs of the corresponding configuration. At the end
of each run we check the variables in the resource nodes for
correctness. We call a run successful if the resultant values
in the resource motes are the correct and consistent values.

We synchronize the initiators through a synchronization
message broadcasted from the basestation, and this way
start all the transactions at the same instant. Since all nodes
are within singlehop, the MAC layer is able to prevent mes-
sage collisions via carrier-sensing and backoff in relatively
low contention configurations, however message losses be-
come common as we increase the number of initiators and
resources to stress-test our TRANSACT implementation. We
experiment with fairly large number of initially synchro-
nized concurrent transactions to provide a worst-case sce-
nario performance analysis for TRANSACT.

Figure 6 shows the settling times (the time between the
first and last message transmitted in a run) using various

7

0

1

2

3

4

5

6

7

8

9

1 2 3 4

Number of Initators

T
im
e
 (
s
e
c
o
n
d
s
)

1 resource

2 resources

4 resources

7 resources

Figure 6. Settling time

configurations of the resource allocation application. In this
figure, the bars represent median duration of 50 runs and
error bars correspond to 80% confidence interval. An im-
portant observation from the figure is the general increase in
the settling time with the increasing number of initiators.As
the number of concurrent transactions are increased, more
conflicts and collisions are reported, leading to aborted and
retried transactions, and hence, an increased settling time.

From Figure 6 we observe that increasing the number
of resources—while keeping everything else constant— af-
fects the settling time in a manner predicted by our analysis
in Section 3.2. We find that having a single resource leads
to the worst completion time for the 3 and 4 initiator cases.
This result is due to the following. Since no transaction is
allowed to have empty read or write sets, when there is a
single resource, this causes all the transactions to read from
and write to the same resource. As there is no concurrency
possible among these conflicting transactions, we observe a
performance loss. When using 2 or 4 shared resources, con-
flicts among initiators are less likely, so the settling timefor
2 and 4 resources are less than that with a single resource
even though more nodes are involved in a transaction in the
2 and 4 resources case. This result is very consistent with
the probability of conflicting transactions presented in Fig-
ure 4.

In order to provide more context for the settling time du-
rations of our transactions we like to mention that a message
transmission takes around 3msecs on CC2420 radios with-
out any CSMA backoffs. Thus a fastunreliableread of a
single resource followed by a write operation takes at least
10msecs to complete. Note that this bare-bones best-case
time do not allow any parallelism among multiple initiators.
In our experiments we fix the transaction durations to a very
conservative length throughout all the configurations in or-
der to accommodate concurrent transactions. Also as we
have mentioned above, our performance results are meant
to be worst-case completion times with fairly large num-
ber of initially synchronized concurrent transactions, which

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4

Number of Initators

S
u
c
c
e
s
s
 R
a
te

1 resource

2 resources

4 resources

7 resources

Figure 7. Consistency rates of transactions

leads to several conflicts and collisions.
Another important parameter we investigate in our ex-

periments is the consistency of the transactions in TRANS-
ACT. We verify the consistency of transactions by querying
the resulting resource states after each run via the basesta-
tion. Figure 7 shows these results. With a few exceptional
cases where a sequence of critical conflict or cancel mes-
sages are lost, TRANSACT provides consistency and relia-
bility across different number of initiators and resources.

5 Simulation Results

In order to perform larger-scale experiments, we
implemented TRANSACT over the WSN simulator
Prowler [33], which simulates the radio transmis-
sion/propagation/reception delays of Mica2 motes,
including collisions in ad-hoc radio networks, and
the operation of the MAC layer. We have modified
Prowler to account for the transmission rates of the
faster Tmote CC2420 radios (instead of the default
Mica2 CC1000 radios), so that our simulation results
are closely aligned with our Tmotes implementation
results. Our simulation code for TRANSACT is about
1500 lines of distributed/per-node code, and is available at
http://ubicomp.cse.buffalo.edu/transact.

Our experiments are performed on a 10x10 grid of 100
nodes, where each node has 8 neighbors. Each data point in
our graphs is calculated over 50 runs of the corresponding
configuration. At the beginning of each run, the initiator
nodes are randomly selected to perform aresource alloca-
tion task, by reading from a random set of their neighbors
and then writing to some random subset of their read-sets.
Our simulations stress-test TRANSACT by iterating through
an increasing number of initiators in the network (from 5
initiators upto 20 initiators denoted along the X-axis). All
the initiators start their transactions in the beginning ofthe
run, with only the CSMA mechanism to arbitrate between
their messages. An aborted transaction is retried by the ini-
tiator.

8

Protocol Writes Acks Consistent Writes Conflict-Serializabilty
unreliable × × ×
ev-reliable

√ × ×
reliable

√ √ ×
locking

√ √ √
TRANSACT

√ √ √

Table 1. Transactional protocols we consider

In our simulations, we compare TRANSACT with 4 other
transactional protocols:Reliable, eventually reliable, unre-
liable, and locking. The first 3 protocols gradually leave out
more mechanisms of TRANSACT and provide lesser guaran-
tees for transaction executions.Reliableprotocol waives the
conflict-detection mechanism in TRANSACT, but may still
cancel a transaction if write-acks are not received from all
participants. Ev-reliable forgoes the transaction cancella-
tion from thereliable, and replaces this with re-transmission
of the write-all in case of missing write-acks.Unreliable
waives even the write-ack mechanism of ev-reliable type,
and performs a bare-bones write operation. Finally, for the
locking protocol, we implemented a version ofstrict two-
phase locking[12]. In addition to the release of the locks
by the initiator upon a commit, we also implemented leases
on the locks to prevent any indefinite locking of a resource
in case therelease-lockmessages get lost. These five proto-
cols are summarized in Table 1.

5 7 9 11 13 15 17 19
0

1

2

3

4

5

6

7

8

9

10

of initiators

S
et

tli
ng

 ti
m

es
 (

se
c)

unreliable
ev_reliable
reliable
transact
locking

Figure 8. Settling time of various transac-
tional protocols

Figure 8 shows the settling times (the time between the
first and last message transmitted in a run) for each protocol.
Unreliableis naturally the fastest. As the reliability require-
ments of the transaction protocols increase, we observe a
corresponding increase in the settling times. The conflict
serializability mechanism of TRANSACT imposes only a lit-

tle overhead overreliable, whereas the overhead associated
with the lockingprotocol is huge. This is because TRANS-
ACT allows more concurrency thanlocking as we discuss
in Section 3.2. While TRANSACT can execute dependent
transactions in parallel (provided that they are not conflict-
ing), locking can execute only independent transactions in
parallel. Since Figure 4 shows that the probability of in-
dependent transactions are very low for the resource/task
allocation application, locaking protocol ends up executing
transactions one after the other rather than in parallel. Thus,
as the number of initiators increase settling time for locking
increases quickly.

In Figure 8, as the contention due to the number of ini-
tiators increase, the settling times for all of the protocols
are affected. With 20 initiators almost all nodes in the
network are involved in transactions, either as participants
or as snoopers. Since only the CSMA mechanism arbi-
trates among these concurrent initiators, message losses due
to hidden terminal problems become common occurrences
in this multihop setting. We observe that hidden terminal
problems start to degrade the performance seriously for the
reliable, TRANSACT, andlockingprotocols, as we increase
the number of initiators in the network.

5 7 9 11 13 15 17 19
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

of initiators

A
ve

ra
ge

 #
 o

f c
on

fli
ct

s
in

 a
 r

un

actual
detected
aborted

Figure 9. Conflict detection in TRANSACT

Figure 9 demonstrates the effectiveness of TRANSACT

in detecting conflicting transactions. In order to construct

9

this graph, we have generated extensive logs for read, write,
cancel, snooping operations at the nodes, and later ran a
script on the simulation logs from each node to determine
the actual number of conflicts, and use this as a reference
to compare with the number of conflict detections reported
by the snoopers. As seen in the bar graphs, the conflicts
detected and aborted by TRANSACT are close to the ac-
tual number of conflicts. The difference between the actual
and detected number of conflicts is due to loss of messages
which drops the effectiveness of snoopers’ conflict detec-
tion abilities. The difference between the number of con-
flicts detected and aborted is due to the loss of the conflict-
notification and writeall-cancel messages.

5 7 9 11 13 15 17 19
0

1

2

3

4

5

6

of initiators

A
ve

ra
ge

 #
 o

f i
nc

on
si

st
en

t w
rit

es
 in

 a
 r

un

ev_reliable
reliable
transact

Figure 10. Inconsistent writes

Figure 10 shows the average number of inconsis-
tent writes. Thanks to the cancel mechanism,reli-
able and TRANSACT protocols achieve very few write-
inconsistencies compared toev-reliable. Write inconsis-
tency inev-reliableprotocol arises due to the loss of write
message at some participants. Inreliable and TRANSACT,
a write inconsistency may be only due to the failure to abort
a write operation before its commit timer expires.

6 Related Work

Concurrency control in TRANSACT diverges from that in
the database context significantly as we discuss in the Intro-
duction. Recently, there has been a lot of work on transac-
tion models for mobile ad hoc networks [6, 23–25, 30, 32],
however, these work all assume a centralized database and
an arbiter at the server, and try to address the consistency of
hidden read-only transactions initiated by mobile clients.

Software transactional memory (STM) [15] is a con-
current programming scheme with multiple threads. In
STM conventional critical sections for controlling accessto

shared memory are replaced by transactions. In TRANS-
ACT, there is no shared memory as the variables are dis-
tributed among nodes.

Although TRANSACT is closer to an optimistic concur-
rency control (OCC) approach than a locking approach,
there are significant differences between the semantics of
transactions in TRANSACT and that in OCC protocols of
database systems. TRANSACT relaxes the order preserving
properties of OCC and provides more concurrency. For ex-
ample, in Figure 5, TRANSACT allows transactions labeled
as dependent to be executed concurrently as they still can be
ordered in a conflict-free serialization schedule. OCC pro-
tocols on the other hand introduce some order among trans-
actions through explicit transaction numbers [21], which
prevents approximately half of the dependent transactions
in Figure 5 from executing concurrently.

Several programming abstractions have been proposed
for sensor networks [13, 28, 36, 37]. Kairos [13] allows a
programmer to express global behavior expected of a WSN
in a centralized sequential program and provides compile-
time and runtime systems for deploying and executing the
program on the network. Hood [37] provides an API
that facilitates exchanging information among a node and
its neighbors. In contrast to these abstractions that pro-
vide best-effort semantics (loosely-synchronized, eventu-
ally consistent view of system states), TRANSACT focuses
on providing a dependable framework for WSANs with
well-defined consistency and conflict-serializability guaran-
tees.

A cached sensor transform (CST) that allows simulation
of a program written for interleaving semantics in WSNs
under concurrent execution is introduced in [16]. CST ad-
vocates a push-based communication model: Nodes write
to their own local states and broadcast so that neighbors’
caches are updated with these values. This is not directly
equivalent to writing neighbor’s state, due to complications
arising from concurrency and not being able to directly hear
writes from 2-hop neighbors to a 1-hop neighbor. CST im-
poses a lot of overhead for updating of a continuous en-
vironmental value (e.g., a sensor reading changing with
time) due to the cost of broadcasting the value every time
it changes. In contrast to the CST model, TRANSACT uses
pull-based communication, and hence it is more efficient
and suitable for WSANs. CST targets WSN platforms and
supports only a loosely-synchronized, eventually-consistent
view of system states. TRANSACT is more amenable for
control applications in distributed WSANs as it guarantees
consistency even in the face of message losses and provides
a primitive to write directly and simultaneously to the states
of neighboring nodes.

10

7 Concluding Remarks

We presented TRANSACT, a transactional, optimistic
concurrency control framework for WSANs. TRANSACT

provides ease of programming and reasoning in WSANs
without curbing the concurrency of execution, as it enables
reasoning about system execution as a single thread of con-
trol while permitting the deployment of actual execution
over multiple threads distributed on several nodes. TRANS-
ACT offers a simple and clean abstraction for writing robust
singlehop coordination and control programs for WSANs,
which can be used as building blocks for constructing multi-
hop coordination and control protocols. We believe that this
paradigm facilitates achieving consistency and coordination
and may enable development of more efficient control and
coordination programs than possible using traditional mod-
els.

In future work, we plan to employ TRANSACT for imple-
menting a multiple-pursuer/multiple-evader tracking appli-
cation over a 200 node WSN, using several iRobot Roomba-
Create robots interfaced with the motes [22] as pursuers
and evaders. Using TRANSACT, we will implement the
consistency critical components of the in-network tracking
service, such as evader association and handoff, updating
of the distributed tracking directory/structure, and mainte-
nance and recovery of the tracking structure in the face of
node failures and displacements. In addition, the pursuer
robots will utilize TRANSACT to implement collaborative
stalking and cornering of an evader, as well as group mem-
bership and intruder assignment among the pursuers.

We also plan to integrate verification support to TRANS-
ACT in order to enable the application developer to check
safety and progress properties about her program. Since
TRANSACT already provides conflict serializability, the bur-
den on the verifier is significantly reduced. Hence, for veri-
fication purposes it is enough to consider asingle-threaded
coarse-grain executionof a system rather than investigating
all possible fine-grain executions due to concurrent threads.
Another advantage TRANSACT provides is the simplistic
format of the methods, which facilitates translation between
TRANSACT methods and existing verification toolkits, such
as model checkers [19,20].

8 Acknowledgements

We thank Gustavo Alonso for shepharding our paper.
This work was partially supported by NSF Career award

#0747209.

References

[1] Wireless lan medium access control(mac) and physi-
cal layer (phy) specification. IEEE Std 802.11, 1999.

[2] E. A. Akkoyunlu, K. Ekanadham, and R. V. Hu-
ber. Some constraints and tradeoffs in the design of
network communications.SIGOPS Oper. Syst. Rev.,
9(5):67–74, 1975.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. A survey on sensor networks.IEEE Com-
munications Magazine, 2002.

[4] N. Carriero and D. Gelernter. Linda in context.Com-
mun. ACM, 32(4):444–458, 1989.

[5] K. M. Chandy and J. Misra.Parallel Program Design.
Addison-Wesley Publishing Company, 1988.

[6] I. Chung, B. K. Bhargava, M. Mahoui, and L. Lilien.
Autonomous transaction processing using data depen-
dency in mobile environments.FTDCS, pages 138–
144, 2003.

[7] P. Costa, L. Mottola, A. Murphy, and G. Picco.
Teenylime: transiently shared tuple space middleware
for wireless sensor networks. InMidSens ’06: Pro-
ceedings of the international workshop on Middleware
for sensor networks, pages 43–48, 2006.

[8] E. W. Dijkstra. Cooperating sequential processes.
pages 65–138, 2002.

[9] S. Dolev, S. Gilbert, L. Lahiani, N. Lynch, and
T. Nolte. Timed virtual stationary automata for mobile
networks.9th International Conference on Principles
of Distributed Systems (OPODIS), 2005.

[10] S. Farritor and S. Goddard. Intelligent highway safety
markers.IEEE Intelligent Systems, 19(6):8–11, 2004.

[11] J. Gray. Notes on data base operating systems. Tech-
nical report, IBM, 1978.

[12] J. Gray and A. Reuter.Transaction Processing : Con-
cepts and Techniques. Morgan Kaufmann Publishers,
1993.

[13] R. Gummadi, O. Gnawali, and R. Govindan. Macro-
programming wireless sensor networks usingkairos.
In DCOSS, pages 126–140, 2005.

[14] P. B. Hansen, editor.The origin of concurrent pro-
gramming: from semaphores to remote procedure
calls. Springer-Verlag, 2002.

[15] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer.
Software transactional memory for dynamic-sized
data structures. pages 92–101, Jul 2003.

[16] T. Herman. Models of self-stabilization and sensor
networks.IWDC, 2003.

11

[17] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for network
sensors.ASPLOS, pages 93–104, 2000.

[18] C. A. R. Hoare. Monitors: an operating system
structuring concept.Commun. ACM, 17(10):549–557,
1974.

[19] G.J. Holzmann.The Spin Model Checker, Primer and
Reference Manual. Addison-Wesley, 2003.

[20] G.J. Holzmann. Spin and promela online ref-
erences. http://spinroot.com/spin/Man/
index.html, November 2004.

[21] H. T. Kung and John T. Robinson. On optimistic meth-
ods for concurrency control.ACM Trans. Database
Syst., 6(2):213–226, 1981.

[22] T. E. Kurt. Hacking Roomba. John Wiley, 2006.

[23] K.-Y. Lam, M.-W. Au, and E. Chan. Broadcast of
consistent data to read-only transactions from mobile
clients. In2nd IEEE Workshop on Mobile Computer
Systems and Applications, 1999.

[24] V. C. S. Lee and K.-W. Lam. Optimistic concurrency
control in broadcast environments: Looking forward
at the server and backward at the clients.MDA, pages
97–106, 1999.

[25] V. C. S. Lee, K.-W. Lam, S. H. Son, and E. Y. M. Chan.
On transaction processing with partial validation and
timestamp ordering in mobile broadcast environments.
IEEE Trans. Computers, 51(10):1196–1211, 2002.

[26] Moteiv. http://www.moteiv.com/.

[27] M. Nesterenko and A. Arora. Stabilization-preserving
atomicity refinement.13th International Symposium
on Distributed Computing (DISC), 1999.

[28] R. Newton and M. Welsh. Region streams: functional
macroprogramming for sensor networks. InDMSN
’04: Proceeedings of the 1st international workshop
on Data management for sensor networks, pages 78–
87, 2004.

[29] G. P. Picco, A. L. Murphy, and G.-C. Roman. Lime:
Linda meets mobility. InICSE ’99: Proceedings of the
21st international conference on Software engineer-
ing, pages 368–377, 1999.

[30] E. Pitoura. Supporting read-only transactions in wire-
less broadcasting. In9th Int. Workshop on Database
and Expert Systems Applications, page 428, 1998.

[31] J. Polastre, J. Hill, and D. Culler. Versatile low power
media access for wireless sensor networks. InSen-
Sys ’04: Proceedings of the 2nd international confer-
ence on Embedded networked sensor systems, pages
95–107, 2004.

[32] J. Shanmugasundaram, A. Nithrakashyap,
R. Sivasankaran, and K. Ramamritham. Effi-
cient concurrency control for broadcast environments.
In SIGMOD ’99, pages 85–96, 1999.

[33] G. Simon, P. Volgyesi, M. Maroti, and A. Ledeczi.
Simulation-based optimization of communication pro-
tocols for large-scale wireless sensor networks.IEEE
Aerospace Conference, pages 255–267, March 2003.

[34] D. Tennenhouse. Proactive computing.Commun.
ACM, 43(5):43–50, 2000.

[35] M. Tubaishat and S. Madria. Sensor networks : An
overview.IEEE Potentials, 2003.

[36] M. Welsh and G. Mainland. Programming sensor net-
works using abstract regions. InNSDI, pages 29–42,
2004.

[37] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler.
Hood: a neighborhood abstraction for sensor net-
works. InMobiSys, pages 99–110, 2004.

[38] W. Ye, J. Heidemann, and D. Estrin. An energy-
efficient mac protocol for wireless sensor networks. In
INFOCOMM, pages 1567–1576, 2002.

12

