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Abstract
Auditability is a key requirement for providing scalabil-
ity and availability to distributed systems. Auditability
allows us to identify latent concurrency bugs, dependen-
cies among events, and performance bottlenecks. Our
work focuses on providing auditability by combining two
key concepts: time and causality. In particular, we pre-
scribe hybrid logical clocks (HLC) which offer the func-
tionality of logical clocks while keeping them close to
physical clocks. We propose that HLC can enable effec-
tive detection of invariant predicate violations and latent
concurrency bugs, and provide efficient means to correct
the state of the distributed system back to good states.

1 Introduction

For developing high availability, high reliability, and
high performance distributed systems, it is important to
improve auditability, which enables identifying perfor-
mance bottlenecks, dependencies among events, and la-
tent concurrency bugs. High auditability also helps for
ease-of-programming and ease-of-extensibility, as well
as security and accountability.

Current software systems still rate poorly on the au-
ditability scale. Logging system messages, assertions,
and exceptions are common approaches to providing
some auditability. While those approaches are fine when
used on a single computer system, concurrency makes
reasoning about distributed systems tricky, and renders
those naive logging-based approaches insufficient for au-
ditability of distributed systems.

Two critical concepts for auditability of a system are
time and causality. However, these concepts have tra-
ditionally been considered individually (rather than to-
gether), and there is a gap between how these concepts
are utilized in theory and practice. The theory of dis-
tributed systems shunned the notion of time and con-
sidered asynchronous systems, whose event ordering is
captured by logical clocks [17]. The practical distributed
systems employed NTP synchronized clocks to capture

time but did so in ad hoc undisciplined ways, thereby al-
lowing the possibility that one event can causally affect
another event even though both of them appear to have
occurred at the same (local physical) time.

While there have been many ad hoc point solutions
to employing NTP clocks [19] to improve performance
in distributed systems [1, 8, 18], there has been no effort
to address the underlying root research problem of devis-
ing a principled general theory of synchrony-aware clock
components and integrated system primitives to achieve
high auditability for large scale distributed systems with
widely varying link/communication characteristics. By
leveraging hybrid logical clocks (HLC) as a basic build-
ing block, we aim to enable the design of highly au-
ditable distributed systems.

Hybrid logical clock (HLC) [16] combines the the-
oretical underpinnings of causality and the practicality
of physical clocks by identifying how logical clocks
can be improved and tuned based on the availability
of NTP synchronization. The principle guiding HLC
design is “uncertainty resilience”. HLC is designed
to be always wait-free/nonblocking and correct (albeit
with reduced performance/efficiency) even when time
synchronization has degraded or is not available. In
other words, HLC provides survivability and resilience to
time-synchronization errors and can make progress, and
capture causality information even when time synchro-
nization has degraded or is not available. HLC enables
highly auditable systems since HLC can efficiently pro-
vide global consistent-state snapshots without needing to
wait out clock synchronization uncertainties and without
requiring prior coordination.

In order to enable highly available distributed sys-
tems, we leverage the high auditability support pro-
vided by HLC to design fault-tolerance components that
detect and correct distributed system state corruptions,
based on the centralized oversight/override principle. In
distributed systems, many problems are hard to solve
with local information, but become significantly easy
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if you can peek at global system state. Our proposed
synchrony-aware detector/corrector components enable
the audit of distributed system state in the background
and upon detecting a fault will interfere to instate the sys-
tem state to an appropriate legitimate state.

2 Efficient distributed snapshots with HLC

To implement HLC [16], each node j maintains times-
tamp of the form 〈pt. j, l. j,c. j〉, where pt. j corre-
sponds to the physical clock of process j, l. j denotes
the maximum physical clock value that j is aware of.
The value of c. j captures the length of the maximum
causal chain that is of the form (e1,e2, ..,ek) such that
e1 hb e2,e2 hb e3, · · · ,ek−1 hb ek and ek is the latest
event on process j. 1 Given a system with a maximum
clock drift of ε , HLC guarantees that l. j is in the range
[pt. j, pt. j+ε]. Furthermore, the value of c. j is bounded,
because c. j is reset to 0 when l. j increases (which in-
evitably happens in the worst case when pt. j exceeds
l. j). Theoretically, the bound on c. j is proportional to
the number of processes and ε . Practically, we find
that c. j is always less than 10 even under different de-
manding experiment settings we deployed over AWS [3].
HLC provides causality information similar to that by
LC. In particular, if e hb f then HLC.e < HLC. f , where
HLC.e < HLC. f iff l.e < l. f ∨ (l.e = l. f ∧ c.e < c. f ). 2

Unlike LC, however, HLC provides logical timestamps
that are close to physical timestamps. In fact since the
maximum drift between l and pt value is ε and there is
an uncertainty of ε in pt values due to clock drift. Thus,
being a scalar, HLC timestamps are backwards compat-
ible with NTP timestamps used in legacy applications.

Figure 1: Finding a consistent snapshot for t =10 using
HLC. The example considers ε = 10.

The key advantage of HLC is its resilience to synchro-
nization uncertainty. Specifically, it continues to satisfy

1 hb denotes the happened-before relationship [17].
2By taking the snapshot of every node at logical time t, the com-

bined snapshot is guaranteed to be consistent, because from this re-
quirement we have l.e= l. f ⇒ e|| f .

the constraint e hb f ⇒ HLC.e < HLC. f even if clock
drift increases substantially and the processes are not
aware of the drift. The only effect of such a drift is to
increase the drift between l and pt values and higher c
values. Hence, HLC can easily tolerate violation of drift
requirement. HLC is also self-stabilizing [12], i.e., if
clock values are perturbed or corrupted, they are restored
quickly so that causality detection will be correct in the
future.

Figure 2: Results from preliminary experiments

We have conducted experiments with HLC on Ama-
zon AWS [3] xlarge instances as well as simulations that
can stress the HLC by sending a large number of mes-
sages that are received very quickly. In all these in-
stances, the difference between the value of the logical
clock and the physical clock was bounded by the actual
clock drift. This ensures that logical clocks are substi-
tutable for physical clocks for virtually all applications.
Furthermore, the value of c, the extra storage required
HLC is very small. In our experiments with Amazon
xlarge instances, the maximum value of c was less than
10 (Figure 2(a) provides a brief summary of these exper-
iments. As shown in these experiments, with ε = 16ms,
66.96% of events had c value of 0, 19.40% of events had
c value of 1 and so on). With simulated clock drift where
some node intentionally violates clock synchronization
requirements, it was possible to have events where c
value was in 100s. However, the number of such events
is very small (less than 0.01%). As shown in Figure 2(b),
for 98% of events, the c value was less than 4.

Efficient snapshot taking using HLC. The distributed
snapshot problem is to return a globally consistent-state
of the distributed system by identifying pairwise concur-
rent local snapshots at every node. HLC simplifies the
design of snapshot primitive because a collection of lo-
cal snapshots taken at identical logical clock values are
guaranteed to be a consistent cut. (Note that since phys-
ical clocks are not perfectly synchronized it is not pos-
sible to get a consistent snapshot by just reading state at
different nodes at physical clock time t, but instead un-
certainty windows need to be waited out [13].)

Our snapshot primitive differs from previous ap-
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proaches [5,15,20] because in those approaches all snap-
shots are pre-planned (i.e., one can take a snapshot of the
system after the current point of execution), and require
substantial coordination among nodes. By contrast, our
synchrony-aware snapshot primitive enables one to ob-
tain a snapshot in the past by simply inputting the phys-
ical time at which the snapshot is desired to be taken.
By reducing the overhead of obtaining snapshots, HLC
improves adoption of snapshots for solving distributed
problems. The snapshot primitive serves as the build-
ing block for providing detectors and correctors we pro-
pose in subsequent sections. It also enables highly au-
ditable systems including synchrony-aware services for
debugging, assertion monitoring, automating unobtru-
sive backups, and checkpointing-and-recovery.

Comparison to TrueTime and Spanner. Spanner [7]
is Google’s scalable, multiversion, globally-distributed
database. Spanner evolved from a Bigtable-like ver-
sioned key-value store into a temporal multiversion
database with SQL-based query support. To support dis-
tributed transactions at global scale, Spanner leverages
on TrueTime (TT) API that exposes clock uncertainty.

We consider two main issues with Spanner’s TT-based
approach. Spanner’s TT-based approach discards the
tracking of causality information completely. Instead it
goes for an engineering solution of using highly-precise
dedicated clock sources to reduce the size of the uncer-
tainty windows to be negligible and order events using
wallclock time. When the uncertainty windows are over-
lapping TT cannot order events, and that is why in order
to ensure external consistency it has to explicitly wait-
out these uncertainty windows upto 7ms. Secondly, this
approach also requires access to GPS and atomic clocks
and customized time synchronization protocols to main-
tain very tightly synchronized time at each spanserver.

A major advantage of the HLC-based implementa-
tion over TT is that HLC is wait-free and allows higher
throughput. Since TT requires waiting-out uncertainty
windows for the transaction commit, ε determines the
throughput of read-write transactions on a tablet level.
The HLC-based implementation, on the other hand, does
not require waiting ε out, instead it records finer-grain
causality relations within this uncertainty window. HLC
also obviates the need for dedicated GPS or atomic clock
references, and can work with NTP servers that provide
an ε of several tens of milliseconds. (For a more de-
tailed comparison, including achieving external consis-
tency, please see [16].)

Due to these properties, our HLC clocks have recently
been adopted by CockroachDB [6], an opensource clone
of Google Spanner. An implementation of HLC in Go
is available at https://github.com/cockroachdb/
cockroach/tree/master/util/hlc

3 Detection

Debugging a distributed system is notoriously difficult
task, because of the concurrency issues involved. Con-
current execution yields intricate and unanticipated race
conditions. While providing complete assurance about
the given distributed program is challenging, the devel-
oper can often identify assertions that can be checked
to determine whether the program is still (likely to be)
working correctly. Unfortunately, even enforcing such
assertions have been difficult due to the distributed na-
ture of the system [21].

A simple strawman approach for assertion monitor-
ing is to represent the distributed system state as a mul-
tiversion database. In this approach, each update of a
variable (i.e., version) is recorded with its associated
timestamp on that node. HLC supports efficient and
consistent querying of such a distributed multiversion
database maintained over the nodes of the distributed
system. Recording every update of each variable can be,
of course, expensive. The tradeoffs between the over-
head of monitoring and the types of assertions to be
monitored should be investigated. For assertion predi-
cates that are stable or that remain valid for a sufficiently
long duration, an occasional periodic snapshot is enough.
However, for transient predicates such infrequent snap-
shots are not effective. To allow both, we propose the
two strategies below.

The first strategy is recency-sensitive snapshots. This
approach aims to provide a fine-grained support for more
recent state updates and a rough-grained support for
older state. The idea is to use a sliding window within
which ephemeral multiversion support is provided for
critical variables. Past the sliding window, snapshots are
retained only with rough granularity. The logic behind
this is that more recent state is more relevant for fault-
tolerance purposes than older state.

The second strategy is to take predicate triggered snap-
shots. The developer can provide some local predicates
that can act as triggers for storing of a local snapshot at
a node. The node then forwards this trigger state to the
detector and the detector performs an on-demand query
for that state with that timestamp. If the system em-
ploys recency-sensitive snapshots, then multiversion val-
ues would still be in the RAM of the other nodes, and the
detector’s query would be answered. Or else, the detec-
tor’s query would trigger taking/storing a snapshot of the
system.

To complement the above two strategies, it is also ben-
eficial to investigate selective global state monitoring as
in Google’s Dapper service. Google Dapper [22] is a dis-
tributed system tracer/logger/profiler service, which per-
forms sparse logging and fails to support global predi-
cate detection. The use cases for Dapper focus on in-
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ferring service dependencies and identification of per-
formance bottlenecks (long-tail latencies) and detecting
simple correctness problems. In addition, work on de-
tecting global predicates in distributed systems [14] has
identified conjunctive predicates as amenable to efficient
detection. Specifically, if the predicates are stable then
this approach would detect it in the time proportional to
the frequency of invoking the detector. If the predicate
is conjunctive in nature then detection can be invoked
only if the local predicate at some node evaluates to true,
thereby reducing unnecessary invocations of the detector.

Multiple detectors. Our approach can also easily
support multiple detectors since detectors are read-only.
They can be used for hot detection where the users want
to check whether the current system state (or a very re-
cent one) satisfies the desired detection predicate. Our
HLC provides the necessary information for construct-
ing consistent global states for this detection. The de-
tectors can be also used for cold detection, where the
detectors are used to analyze past states of the system,
this can be achieved by using a multiversion database
(such as Spanner [7] or CockroachDB [6]) to store and
query past states. Thus, one of the open issues in this
context is identifying the frequency with which detector
should be invoked so that users can perform the desired
queries. Another open question in this context is whether
the multiple detectors can be aggregated to reduce their
overhead, especially for hot detection.

4 Correction

For correction we propose to employ distributed reset us-
ing HLC. Distributed reset [2] provides a clean-slate so-
lution to the correction problem. The goal of distributed
reset is to restore the system to a pre-determined state
(e.g., initial state, previous consistent state etc). Since all
processes cannot be reset simultaneously and we want
to avoid blocking of all processes to complete the re-
set, these protocols also identify when two processes can
safely communicate so that the uncorrected processes do
not re-corrupt the corrected processes.

With HLC, the problem of distributed reset can be sim-
plified. In particular, if a reset is requested at HLC time
t, the initiator can choose a HLC time t ′ > t and require
all nodes to reset when their HLC clock reaches t ′. Since
HLC refines logical clocks and respect the causality re-
lation, this ensures that the individual resets of all nodes
are (causally) concurrent even if they do not occur at the
exact same instant. Moreover, given that HLC is close
to physical clocks, the developer can bound the delay in
performing the reset.

The HLC-based distributed reset would scale time-
wise for very large scale distributed systems even over

wide-area networks (WANs) because it has constant time
cost that depends upon the delay involved in notifying
all processes to perform the reset. However, due to some
stragglers that do not meet NTP clock synchronization
or temporary partitioning of the network or network con-
gestion, problems may occur. And, if some nodes fail
to reset, it may be necessary to perform the reset again.
Also, resetting the entire system can be unacceptable
for very large distributed systems. Moreover, in a very
large scale distributed system since faults are more likely
to occur the number/frequency of distributed resets be-
comes an issue. As a result, the availability of correct
nodes may suffer due to problems in some nodes in the
system.

Resetting a subset of nodes. Resetting only the nodes
that are problematic/contaminated is a better solution,
but it is challenging to ensure a globally-consistent state
after a partial/subset reset of the distributed system. We
use the following approach to deal with this problem.

When the corrector notices a problem, say at T1, it
determines a subset/region of nodes to correct to fix the
problem. Then it freezes these nodes at time T2. The
freeze is in effect until the reset, so the frozen nodes don’t
change their states or communicate with any nodes. The
other (unfrozen) nodes are free to continue execution, but
of course, they will not receive an answer back from the
frozen nodes for a read or write request. It is as if those
nodes are just unavailable or are late to reply. (This is
done to isolate the nodes to be reset, so that their states
should not corrupt the other nodes. In other words, we
are curbing the spread of corruption.)

The corrector takes a snapshot also at time T2. When
the snapshot is available at the corrector, it determines
the exact state to put the frozen nodes at T2 so that their
states become consistent with the rest of the system at
T2. In other words, the corrector ensures that the entire
system has a consistent global state at T2. Of course by
the time the frozen nodes are reset, the rest of the nodes
are at T3. But this is acceptable since the resulting state is
still a globally consistent state. It is as if the frozen nodes
lagged a little in execution and their states and time is
still at T2 (but this time at a consistent state with the rest
of the system at T2). It is safe to assume this, since the
frozen nodes do not communicate with others between
time T2 to T3.

After the reset, the nodes that were reset will catchup
normally with the rest of the system in terms of time.
HLC is uncertainty resilient and will not lead to un-
safe comparisons and updates if the clock synchroniza-
tion lagged (in this case, artificially lagged due to reset
of those nodes). This approach reduces the number of
nodes that need to be reset at the cost of a more complex
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protocol and slightly increased latency for reset.

Multiple correctors. Since the detection is read only,
extending the detection scheme to multiple detectors was
straightforward. For extending to multiple correctors,
however, we need to provide coordination between cor-
rectors so that they do not interfere with each other.

If we design the correctors to operate on orthogonal
(i.e., independently resettable) set of nodes, this problem
is solved easily. In that case, part of the state of a node
may be frozen/reset at T2 and the other part of state keep
getting updated.

When correctors operate on same state space, we need
to investigate new approaches. A hierarchical correc-
tor setup is possible with a fish-eye like consistency,
gradient-state approach. The rest of the system may pro-
vide a rough granularity state at T2 to reset this site to be
in consistent with. The insight here is that it is easy to
achieve consistency with respect to fewer/rougher state
from the rest of the system.

Another approach for allowing multiple correctors is
to enable the correctors to communicate to figure out how
to achieve eventual consistency by considering cumula-
tive joints of the states of the nodes they are responsible
for.

Note that, even with multiple correctors, concurrent
overlapping resets is not a problem since they are pre-
vented by our distributed reset mechanism. Consider
multiple resets such as a subset reset at T2, a subset reset
at T3, and a subset reset at T4. In order to have a reset at
T3, the nodes being reset at T2 need to reach T3 first. So,
while T2 is being reset, we cannot have a subset reset at
T3. In other words, such concurrent resets can increase
the time for completion but cannot cause unanticipated
behavior.

5 Related work and extensions

Crash-only software. The crash-only software [4] pro-
poses that computer programs should handle failures by
simply restarting, without attempting any sophisticated
recovery. To make components crash-only, the approach
requires that all important non-volatile state be kept in
dedicated crash-only state stores (e.g., databases), leav-
ing applications with just soft-state program logic.

The crash-only software approach is more suitable for
loosely coupled components, since components should
be able to tolerate not receiving a response from a com-
ponent that is resetting/crash-recovering. The crash-only
software approach deals with component-nonlocal fail-
ures by iteratively performing resets on a larger subsys-
tem. If a previous reset of a smaller subsystem fails,
the approach includes more components to reset the next
time, hoping that a larger subsystem reset (and in the

worst case the entire system reset) will fix the correct-
ness problem.

Eidetic distributed systems. In [11], authors have in-
troduced the notion of eidetic systems, i.e., systems that
can recall any past state that existed on that computer, in-
cluding all versions of all files, the memory and register
state of processes, interprocess communication, and net-
work input. An eidetic computer system can explain the
lineage of each byte of current and past state.

The results in [11] are designed for single processor
machines and do not account for issues in distributed sys-
tems. HLC provides two critical properties in the con-
text of extending this work to distributed systems: HLC
ensures that any causal effect (where one node is depen-
dent upon the state of another node) is captured correctly,
and HLC ensures that clocks of different nodes are close
to each other. A key difficulty with this extension is
that the eidetic system already suffers a significant in-
crease in the cost of querying. Also, although the storage
cost of the eidetic system on a single node is relatively
low (1TB/year), it may increase substantially with a dis-
tributed system (with only a handful nodes) due to the
fact that there is substantially more non-determinism in
these systems.

Hot & Cold detection, and Root-cause analysis. To
perform hot detection, only very recent (i.e., hot) state is
needed. This state can be cached on the nodes ad hocly to
be forwarded to the detector(s), and does not need to be
stored. To perform cold detection, older state from nodes
also need to be queried. The cold state can be stored by
employing a multiversion database (such as Spanner [7]
or CockroachDB [6]).

Although hot and cold detection is enough for
the purposes of any global-state predicate detection
and correction, a more detailed root-cause analysis is
needed in order to assign blame and identify the pro-
cess/user/node/component that is responsible for the vi-
olation. To this end, we can adopt a storage system as
implemented in the eidetic systems paper [11]. To de-
termine root-cause, the eidetic system runs a backward
query, which proceeds in a tree-like search fanning out
from one or more target states. After tracking down the
root-cause for the violation, an eidetic system can per-
form a forward query, to figure out which data are con-
taminated with this faulty information and fix them. This
allows for a fine-grained correction with a chisel rather
than the rough-grained correction with the reset ham-
mer. On the other hand, forward queries are involved and
already slow (around 100sec) even on a single system.
Therefore they would be more appropriate for forward-
correction of small critical data/configuration corrup-
tions.
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