
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

An In-Network Querying Framework for Wireless
Sensor Networks

Murat Demirbas, Member, IEEE, Xuming Lu, Student Member, IEEE,
and Puneet Singla, Member, IEEE

Abstract—In contrast to traditional wireless sensor network
(WSN) applications that perform only data collection and aggre-
gation, new generation of information processing applications,
such as pursuit-evasion games, tracking, evacuation, and disas-
ter relief applications, require in-network information storage
and querying. Due to the resource limitations of WSNs, it is
challenging to implement in-network querying in a distributed,
lightweight, resilient and energy-efficient manner. We address
these challenges by exploiting location information and geometry
of the network and propose an in-network querying framework,
namely the Distributed Quad-Tree (DQT). DQT is distance
sensitive for querying of an event: the cost of answering a
query for an event is at most a constant factor (2

√
2 in our

case) of the distance “d” to the event. DQT construction is
local and does not require any communication. Moreover, due
to its minimalist infrastructure and stateless nature, DQT shows
graceful resilience to node failures and topology changes.
Since event-based querying is inherently limited to the antic-

ipated types of inquiries, we further extend our framework to
achieve complex range-based querying. To this end, we use a
multi-resolution algorithm, that is optimal with respect to least
square errors that models the data in a decentralized way. Our
model-based scheme answers queries with approximate values ac-
companied by certainty levels with increased resolution at lower
layers of the DQT hierarchy. Our analysis and experiments show
that our framework achieves distance-sensitivity and resiliency
for event-based querying, as well as greatly reducing the cost of
complex range querying.

Index Terms—Distributed Quad-Tree, Distance Sensitive In-
network Querying, Multi-resolution modeling, Wireless Sensor
Networks

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have been treated
mostly as data collection and aggregation networks. Ex-

amples of such are WSNs deployed for environmental monitoring
[32], [33] and military surveillance [1], [2]. As the WSN technol-
ogy matured, instead of serving as passive information gathering
mechanisms only, WSNs started to serve more as active infor-
mation processing tools. Examples of these are pursuer-evader
applications [8], smart building [6] etc., where mobile entities
query the WSN on the spot to learn about their surroundings. Here
latency and energy-efficiency become fundamentally important
due to the real-time requirements of the tasks and the resource
limitations of WSNs.
A major part of querying services is event querying. An

event querying is used for checking whether a predefined event
happened in a region. For instance, a soldier in a battlefield may

Murat Demirbas and Xuming Lu are with the Computer Science and
Engineering Department, SUNY at Buffalo, Buffalo, NY 14260. E-mail:
demirbas,xuminglu@cse.buffalo.edu
Puneet Singla is with the Department of Mechanical and Aerospace Engi-

neering, SUNY at Buffalo, Buffalo, NY 14260. E-mail: psingla@buffalo.edu

need to know the location of the nearest enemy tank. Latency
and energy-efficiency suffer drastically if these queries are always
routed to basestations for resolution; therefore an in-network
querying approach has been proposed and widely adopted in
the literature [13], [36]. To be deployable in practice, certain
requirements need to be satisfied by an in-network querying
service. First of all, the in-network querying service needs to
be distance-sensitive and also efficient for information storage.
Distance-sensitivity for querying implies that the cost of answer-
ing a query for an event should be at most a constant factor “s” of
the distance “d” to the event of interest in the network. Besides the
distance sensitivity requirement, the in-network querying service
should provide graceful resilience to the face of node failures. By
graceful resilience, we mean that the performance degradation of
querying should be commensurate with the severity of faults.
An event query is useful for checking whether an event

happened in a region, however, event-based querying is inherently
limited to the anticipated types of inquiries, and there is a need for
range-based querying [18], [25], such as querying for an object
that has similar features to those provided by the user. Range
query is defined as a query that requests all the objects falling
into a given range of interest. A range query can ask for joining,
counting, MIN/MAX, arbitrary data, and statistics problems.
Some examples of range querying are: find big red metallic
objects, or list all events whose temperature is above 60F in an
area. We call the first type “search” querying (includes joining,
MIN/MAX etc) and the second type “lookup” querying (includes
counting, statistics). In contrast to event-based querying, whose
indexing reduces to denoting whether a specified event exists in
that region or not, range-based querying poses a huge challenge
for efficiently and properly indexing of arbitrary data. Indexing
every sensor data (since the query can be about any arbitrary
value) is out of question due to energy and storage constraints. To
reduce the querying cost and yet also achieve efficient in-network
indexing, modeling the sensor data is quite useful. In WSNs,
sensed data from the environment is usually highly correlated
both in spatial and temporal domains. For example, a node’s
temperature is highly correlated with nearby nodes, therefore,
nearby nodes can be used for estimation with proper modeling.
To be deployable in practice, the modeling needs to be performed
in a decentralized, efficient, and lightweight manner.
Contributions: Our contributions for the in-network querying

problem are two folds: (1) achieving distance sensitivity and
resilience in event-based querying and (2) reducing the cost of
range querying through modeling.
Event-based querying. We present an efficient and robust in-

network querying infrastructure, namely Distributed Quad-Tree
(DQT) [10], suitable for real-world WSN deployments. DQT
overlays a quad-tree structure on a WSN and satisfies distance-
sensitive in-network event querying. DQT is a hierarchical struc-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

ture and hence is suitable for multi-resolution information repre-
sentation and querying. In contrast to extensive usage of quad-
trees in a centralized manner [12], DQT is completely distributed.
DQT maintains a minimalist structure, and in fact, DQT can be
considered as stateless. DQT achieves this feat by employing an
encoding technique that maps a quadtree over the deployment
area by exploiting the location information. The implication is
that the construction of DQT is local and does not require any
message exchanges. The stateless operation of DQT makes it
resilient to the face of node failures and topology changes. To
achieve resiliency while routing to clusterheads or neighbors in
the structure, DQT maps the DQT address of the destination to
the physical coordinates, and leverages on the resilience of a
geographic routing scheme (such as GPSR [22]) for delivering
the message. GPSR re-routes the information to the closest node
to the failure node, which we call the proxy node. The proxy node
pretends to be the target node and finds its neighbors through local
computation. Change of the shape of coverage holes only affects
the selection of proxy nodes, and has little influence on other
nodes.
Model-based range querying. To address the challenges of

indexing arbitrary data, we present a model-based range querying
framework, where the data is approximated by a set of weighted
basis functions. The goal is to provide a lossy and progressive
approximation model for answering range querying with mini-
mum increased storage. One advantage of our model is that it
does not require any prior knowledge of sensor data. To achieve
a lightweight modeling, we use a novel optimal multi-resolution
modeling algorithm. We apply the regression method to denote
data correlations and reduce dimensionality at the bottom levels.
We then take advantage of DQT hierarchy and perform global-
local optimization at different levels to achieve an optimal multi-
resolution modeling of the sensor data with least square errors,
and store the resulting coefficients in the corresponding level
clusterheads. Error covariance is propagated in the hierarchy and
is used for quantifying on the accuracy at higher levels. Although
the sensed data at the bottom layers may change, the higher
layers are updated infrequently, only when the data changes
are significant enough to trigger a modification of the higher
layer modeling parameters. Thus, energy-efficiency of indexing
is achieved in our framework. Our multi-resolution modeling is
also useful in data collection/aggregation and distributed data
exfiltrating to the basestation from WSN in an efficient manner.
To achieve usability despite the approximated values, we use

the concept of approximation certainty based on error models.
The certainty of a range query is defined as the probability of
the estimated value Xi being in the range of [ai, bi]. The higher
the probability of the approximation Xi being within [ai, bi], the
higher the certainty. If the result satisfies the user-defined certainty
thresholds, it is deemed acceptable and the query is answered
using models instead of diving deeply into the network to locate
the physical nodes to gather the data. Besides energy-efficiency,
another benefit of our model based querying is that the querying
results do not need to rely absolutely on the live sensor readings,
relaxing the requirement for very dense sensor coverage.
To validate our modeling and in-network querying algorithm,

we analyze our model using real sensornets data. We compare
the efficiency of model-based range querying with a naive range
querying algorithm and show that our model-based algorithm
greatly improves the querying efficiency and reduces querying

costs.
Outline. We describe the DQT model and assumptions in

Section 2. Encoding techniques and DQT construction are dis-
cussed in Section 3. Event querying is analyzed in Section 4
and our optimal multi-resolution model-based range querying is
presented in Section 5. The simulation results serve as empirical
validation of scalability, distance sensitivity, querying efficiency
and resilience of DQT, and are presented in Section 6. We discuss
related work at Section 7.

II. MODEL
We assume that the WSN motes sit on a two dimensional plane

and their coordinates (x,y) are made available to themselves1.
We assume a connected network and availability of geographic
routing such as greedy perimeter stateless routing (GPSR [22]).
There may exist some coverage holes in the network, but the
network remains connected (i.e., no isolated regions). Our ana-
lytical results for event querying in DQT are proved in Section
V in the absence of holes in the network, and in Section VII via
simulations we show how they hold up in the presence of holes
in the network.
As we describe in the next section, the network is divided into

grid cells while embedding a DQT over the network. A level 1 box
in DQT constitutes the smallest cell area in the DQT structure.
We assert that all motes inside a level 1 box are within one
hop distance, which put constraints on the least number of levels
needed. In our terminology, a mote refers to a physical wireless
sensor node, while a “node” refers to a virtual DQT node, such
as a level 1 box. The cost of querying an event is measured as
the number of hops traveled from the querying node to a node
that holds an advertisement about the event. The cost of range
querying is the overall number of hops traversed from the start
querying node until results come back from all corresponding
nodes.

III. DQT STRUCTURE AND CONSTRUCTION
For constructing DQT, we employ an encoding trick first

described in [10]. Each partition divides a region into 4 sub-
regions, which are encoded as 0,1,2,3 corresponding to NW,
NE, SW and SE partitions. As such, each level 1 box in the
structure is assigned an ID which uniquely identifies a region.
The length of an ID is equal to the number of levels. We use
this addressing scheme to preserve the location information of a
node. Due to the way we construct level 1 nodes, this scheme is
independent of the number of nodes (there may be multiple nodes
in the same level 1 box), but relies on the partition levels. Fig.1
illustrates the addresses of the nodes in a partitioned region with
3 partition levels. Similar to the centralized quad-tree, DQT is a
hierarchical structure. In each level of partition, a node is assigned
as clusterhead of the corresponding region. The clusterhead at
each partition is statically assigned to be the closest node to
the geographic center of the entire region. For example, in level
1 partition, node 003 is selected as clusterhead for 00 region,
because it is closer to center than nodes 000, 001 and 002.
Similarly, node 033 is selected as level 2 clusterhead. Hence,
the node closest to the center of the entire network in each sub-
partition is selected as the parent node of that sub-partition. The
benefit of such a selection is to avoid backward links. For instance,

1Our framework is easily extensible to 3-D space

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

Fig. 1. Node addressing and hierarchical structure

in Fig.1, node 000 propagates the query to its root node 033 by
first contacting parent node 003, then 003’s parent 033. A DQT
node may belong to different levels in the hierarchy depending
on its location. If a node is a member at level k, it is also a
member at all levels less than k. We denote a node p’s parent
as p.parent and children as p.child. The neighboring nodes are
called siblings, which are denoted as p.sibling.
This structure is quite simple and adaptable to multidimen-

sional sensor readings, such as (temp,light,humidity), since the
construction of DQT does not rely on sensor values. The addresses
of the clusterhead and neighboring clusterheads at each level for
a given node are easily derivable arithmetically using the node’s
DQT address. By exploiting the location information DQT avoids
a costly bottom-up construction in fact no extra communication
cost is introduced for DQT construction as we describe next two
subsections..

A. Mapping from localization to DQT addressing
Each node in DQT can calculate the DQT address of the level

1 partition it resides in from its x,y coordinates easily as we
describe next. In our discussion, we let each level 1 partition to be
a square(w = l), even though slight difference between the width
and length will not affect any results. The construction does not
rely on the shape and node distribution, yet a uniform distribution
will lead to better load balancing. For a WSN deployment as
in Fig.2, we take the maximum bounding rectangle with two
endpoints (x

′

s, y
′

s) at NW corner and (x
′

e, y
′

e) at SE corner. Then
we calculate (xs, ys) and (xe, ye) denoting the corner of the DQT
overlay as follows (if |x

′

s − x
′

e| is larger than |y
′

s − y
′

e|):

ys = y
′

s +
|x

′

s − x
′

e|−| y
′

s − y
′

e|
2

ye = y
′

e − |x
′

s − x
′

e|−| y
′

s − y
′

e|
2

and xs = x
′

s, xe = x
′

e. Basically, we transform a bounding
rectangle to a bounding square by using the longer edge of the
rectangle (Similar construction is used when |x

′

s − x
′

e| is smaller
than |y

′

s−y
′

e|). Consequently, the number of levels (i) of the DQT
structure is:

i = log2(
|ye − ys|

l
)

Fig. 2. Mapping from irregular shapes to squares

And the DQTID of a node(x,y) can be calculated as:

DQTID =
[
∣

∣

∣

x − xs

w

∣

∣

∣
(binary)

]

+
[
∣

∣

∣

y − ys

l

∣

∣

∣
(binary)

]

∗ 2

The mapping calculates the X and Y address separately, and
then adds them together. Inside the bracket we use binary number
system, while outside we consider these numbers as if decimal
numbers. We can verify this formula from Fig.1. For instance,
given node 033’s location (assume the DQTID is not known), we
get X address 011 and Y address 022 (011*2 in the equation).
Hence the DQTID is 033 by adding 011 and 022. The reason that
the second term in the DQT address calculation is multiplied by
2 is because Y addresses pace by 2 for every increment in DQT
addressing scheme. Given this mapping, any node can locally
compute its DQT address based on its coordinates (x,y).
Besides the DQT address, each node also maintains its (x,y)

coordinate address. This location information is used in GPSR
message routing for querying and advertising. Since GPSR only
requires single hop information, which has already been cached as
level one neighbors in our structure, it is very suitable for WSNs.
When the coverage has irregular holes, local optimal path can be
reached using right hand rules in GPSR. By adopting the above
encoding trick and assigning DQT addresses for DQT nodes, we
next discuss the construction of the DQT structure.

B. DQT Local Construction
DQT uses local construction instead of bottom-up construction

to reduce communication cost during initial construction. A static
and local scheme that uses the address of the box suffices for
calculating every level clusterheads and neighbors at N, S, E, W,
NE, NW, SE and SW. In the following we discuss how to find
the clusterhead and neighbors.
The clusterhead validate algorithm provides the relation of

DQT address to its clusterhead. We find that in NW region
of the map, nodes with DQT-address “3” at level i and lower
positions (denoted as p.address(i*)) become the clusterheads at
the corresponding level. Similarly, in NorthEast partition, nodes
with DQT-address “2” at level i become the clusterheads. In
Fig.3, p.address(h) is the highest bit of the DQT-address, which
determines the region of a node. This algorithm guarantees the
clusterheads at each level are closer to the map center than any
children (except for itself).
To find the neighbors, we again make use of the location

information. We use node p and node q to represent the originator
and its neighbor. First we use p’s location information and
increase its coordinates x, y value by a level i box lateral length
to find a neighbor node in each direction. If either of x or y value
exceeds the range of the map, we ignore that neighbor. For each of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

Fig. 3. Clusterhead validate algorithm

these nodes, we find their level i clusterheads. These clusterheads
are node p’s level i neighbors. For instance, given a node 20l at
level 2, we can find its neighbor at north direction by following
two steps: (1) Reduce Y value by a level two box length, then
we can locate the node 021 through the new (x,y) coordinates;
(2). Find the clusterhead for node 021 at level 2, which is 023.

IV. EVENT QUERYING IN DQT
Before discussing querying in detail, we show how events are

indexed in DQT.

A. Indexing of event information

Fig. 4. Node 003’s indexing structure

In any hierarchical structure as with DQT, some multilevel
boundary nodes are far away from each other in the structure,
while actually they are placed nearby in the network. High latency
maybe introduced if the search follows the path of the tree
structure strictly. For example in Fig.1, node 011 and 100 are
neighbors. A query from node 011 to node 100 may route to
higher level clusterheads such as node 013 and node 033. Our
solution is to use sibling links to nearby intermediate nodes. A
sibling link is the link between a node and its neighbors in each
direction (so each may at most have 8 sibling neighbors). The
sibling links only exist between nodes on the same level in the
structure. Fig.4 illustrates the point of view of an intermediate
node 003 in DQT structure. The nodes with “#” are level 1 sibling
nodes, the nodes with “##” are level 2 sibling nodes. A node at
level i maintains the event information of its cluster, as well as the
event information of its neighbors. When an event is detected at a
level 1 node p, p contacts its immediate parent node at level 1. The
parent node updates its record for that child. Node p also contacts
its sibling nodes to update their records accordingly. Recursively,
the update operation is executed till the top level. This is similar to
the information storage scheme discussed in [13] and the sibling
links in Stalk [9].

B. Event Querying

Our discussion of event query includes, but is not limited to
Nearest Neighbor(NN) query (NN query is defined as, finding the
data object which is closest to the querying object given a set of
objects). In WSNs, a query can be started at any location. The
initiator of a query is the node where the query is entered into
the system. The query point is the node for which we want to get
the result. Query point by default is the same node as initiator of
query but it may be specified to be any point in the network.
Our algorithm prevents the propagation of searching to higher

levels if it can be answered locally. Through taking advantage of
the spatiality information, both the query efficiency and latency
are greatly improved. Our query strategy is to start the query at the
query point using local information because the node may belong
to multiple levels and therefore hold multi-layer information
locally. If no result is obtained, the query is propagated to the
parent recursively. In this way, the querying message remains
atomic without making multiple copies into the network. At some
level the event information is reached, the query is then stopped
and returned to the originator.
What if the query point is at another location? That means the

initiator of the query and the query point belongs to two different
nodes. First the query is passed to the query point from the
initiator of the query using GPSR routing scheme, and then this
querying process is started from the query point. The following
results are in the absence of faults. In the simulation section,
however, the results are achieved in the presence of faults.
Lemma 1. DQT spends O(i) space to store an event upto level

i.
Proof. An event is indexed at most in 9 nodes (including

the detecting node) at each level. Hence, the space needed for
indexing an event upto level i is at most O(i).
Theorem 1. The total space needed for DQT is less thanO(nh),

where n is the total number of level 1 nodes and h is the height of
the DQT structure.
Proof: According to Lemma 1, level 1 nodes use up 9∗n. Since

any node at level i has at most 4i children, level i nodes need
9n
4i ∗ 4i in all. Thus the total space needed for DQT is:

h
∑

i=1

(
9n

4i
∗ 4i) = 18nh = O(nh)

Lemma 2. The distance between a level i and its neighbors is at
most 2i ∗

√
2 hops2

Proof: According to the partition rule of quad-tree, a level i
node is the clusterhead of a 2i ∗ 2i area. The distance between
a level i node and its neighbors is either 2i (for N, S, E, W
neighbors) or 2i∗

√
2 (for NE, NW, SE, SW neighbors) depending

on the direction. Since the clusterhead is one of its neighbors at
level i, so the distance between a level i node and its clusterhead
is also less than 2i ∗

√
2 hops, which is the diagonal distance of

a level i partition.
Lemma 3. The overhead of an event reporting in DQT is O(D)

in a uniform distribution, where D is the diameter of the field.
Proof: According to Lemma 2, the distance from level i-1 node

to its parent node (level i) is 2i−1 ∗
√

2 hops. Thus the overhead

2The result is based on the assumption that width equals to length for each
level 1 box

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

Fig. 5. Distance stretch factor s analysis

of an event reporting is less than:
log

4
n

∑

i=1

8
√

2(2i−1) = O(
√

n)

In case, sensor nodes are uniformly distributed,
√

n = D. Hence
the overhead of an event reporting in DQT is O(D).
Theorem 2. The distance stretch factor s for spatial query in

DQT is 2
√

2 in worst case, when the query point is the same node
as the query initiator. In another words, an event d hops away can
be achieved by the querying node within d ∗ 2

√
2 hops.

Proof: A query from an intermediate level node does not
constitute the worst case. The reason is that the clusterhead nodes
holds multi-levels information locally and this local cache can be
used to answer queries. So, lets consider a query from a bottom
level node that reaches a level j clusterhead. We define the query
cost as the number of hops from the query point to the node that
holds the result.
In Fig.5, d1 is the distance from querying node Q to highest

level of node M that the query is propagated; d is the distance
from Q to P, where P is the destination node that node Q is
querying. Distance stretch factor s is defined as s = d1/d.
According Lemma 2, the distance from level i-1 node to its

parent node (level i) is 2i−1 ∗
√

2 hops. Since the backward links
are avoided in going-up phase, the total distance from level 1 to
level j can be calculated as (1+21 +22 + · · ·+2j−1)∗

√
2, which

is overall d1 =
√

2 ∗ (2j − 1) hops. Since P and Q are not i-1
level neighbors, the distance d ≥ 2j−1. The equivalence is true
when P and Q are located exactly on the opposite borders of a
level i-1 box. Hence:

s = d1/d ≤
√

2 ∗ (2j − 1)/2j−1 < 2
√

2

Based on the result on case 1 and case 2 analysis, we conclude that
our structure is distance sensitive with a distance stretch factor
2
√

2.

C. Fault tolerance

DQT is fault tolerant due to several reasons. First, any leaf
node failure is masked without causing any update operation and
structure change. This is because, for a dense sensor network,
each level 1 partition contains several nodes and all nodes in the
same partition share a common DQT ID. Moreover, since DQT

Fig. 6. Shifting the square of DQT field helps to balance the load.

structure is stateless, the nodes do not need to maintain a state of
its own, they act on behalf of other nodes in the level 1 box.
Second, DQT can handle coverage holes nicely. Only if all the

motes inside a level 1 partition fail, a hole may be formed in
DQT. In the case of failures of motes in an area, GPSR delivers a
message addressed to a box in that area to a mote on the boundary
of the hole. Since DQT is stateless, the recipient mote easily
acts as a proxy on behalf of the intended destination ID, and
determines the next step in the query or advertisement operation
by simply plugging the destination ID into the corresponding pro-
cedures for the DQT operation. (Proxy checks the destination ID
and realizes the message is not intended for itself, then proxy uses
destination ID to calculate the next steps required for routing the
message). This way, failures of motes in an area degrade the
performance of DQT operations proportional to the size of the
area. Essentially, the degradation is equal to that of routing stretch
in GPSR due to the holes. DQT preserves correct functionality
unless the network is partitioned, and even then, functionality is
satisfied within each partition.

D. Load balancing
Static hierarchical configuration and clusterhead election lead

to unbalanced energy consumption at various levels. High level
nodes are more frequently utilized and prone to depleting. Load
balancing can be achieved by shifting the square periodically,
such that the sensor motes acting as clusterheads can be rotated
in some extent.
Fig.6 shows how shifting the square can be used to improve

load balancing. In practice, the network can be programmed to
shift the field perhiodically in DQT construction, e.g., up-down
shifting and left-right shifting. Through this manner, clusterheads
at all levels are alternated among their neighboring nodes. DQT
pays no extra costs for such alternation since the DQT is main-
tained as stateless.

V. RANGE QUERYING
In this section we discuss range querying algorithms for DQT.

We compare two types of range querying algorithms: naive range
querying and model based range querying.

A. Naive Range Querying
We describe a naive algorithm to solve the range querying

problem. The straightforward strategy to resolve range queries

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

is only to make use of the geometric information. Suppose the
query range is enclosed within points (x1, y1) and (x2, y2). First
we calculate the span of each direction Sh and Sv:

Sh = log2(
∣

∣

∣

x2 − x1

w

∣

∣

∣
) + 1

Sv = log2(
∣

∣

∣

y2 − y1

l

∣

∣

∣
) + 1

where w and l are the width and length of level 1 box. Then we
can easily see that horizontal constraint is within two level-Sh

regions, and vertical constraint is within two level-Sv regions.
Overall, the constrained area lies within two level MAX (Sh, Sv)
neighbors. Thus the query is directly propagated to a level MAX
(Sh, Sv) node covering that area. The algorithm is shown in
Fig.7. The idea is to find the least level node which can cover
range constraints and then send the query to that node using
GPSR protocol. The reason for using a top-down brute force
search algorithm to answer a range query in Fig.7 is that we
cannot prune any nodes inside the specified area without having
some information about the values of those nodes. In naive range
querying the network does not keep any information about the
sensor values in a region, and this is exactly the problem that the
model based range querying is trying to address.

Fig. 7. Algorithm for naive range query

B. Model based range querying
In this section we first present the range querying algorithm

for modeled DQT data. Then, in the following subsections, we
discuss how to efficiently model sensor data and approximate
data with certainty and error bounds. Similar to the naive range
querying, in the model-based approach the query is also forwarded
to the least level clusterhead that covers the range constraints.
However, unlike naive range querying, lower level nodes are
not contacted to acquire data unless the model is insufficient.
The difference between model based range querying algorithm
and naive range querying algorithm is the if statement in Fig.8,
which is used to determine whether or not to send queries
to lower levels. For this purpose, we use certainty associated
with approximation variation as stopping criteria. For a given
atomic query problem (complex range query is composed by
atomic queries), the certainty C(Xi − ε, Xi + ε) is calculated as
probability of P (Xi ∈ [Xi − ε, Xi + ε]). A query whose certainty
level is already satisfied by the modeled data stops exploring
further, hence the communication cost and energy consumption
are reduced.

C. Sensor data modeling
An important aspect in model based query is the accurate

mathematical representation of the physical field measured by
the WSN since a high fidelity model of the measured physical
field is generally not available as priori and has to be constructed
in real-time. Let us assume that we have m data collections

Fig. 8. Answering the range querying with modeled data

(x1, y1), (x2, y2), · · · , (xm, ym). For the simplest mathematical
representation, the mapping from the input variable x to the
measurable variable y can be approximated by a linear algebraic
equation of the following form:

yi ≈ a0h0(xi)+a1h1(xi)++anhn(xi), i = 1, 2, · · · , m (1)

So the problem of finding the appropriate mathematical model
will reduce to the estimation of unknown parameters (ai) from
certain data measurements. When the approximation implicit in
Eq. (1) is satisfactory, we have a linear algebraic estimation prob-
lem. Since n < m, the coefficients vector compressed the original
data by n

m ratio. An estimated value of unknown coefficients
alpha = {a0, a1, · · · , am}T can be found by minimizing the the
vertical offset between measured values and estimated values.

α̂ = (HT
H

−1)HT
Y (2)

where Y ∈ Rm is a vector of measured values of signal f(xi)
at m distinct points and Hij = hi(xj) is an m × n matrix
of independent basis functions. Note that relationship of Eq. 1
represents just the approximation of the actual (true) input-output
process and is suspectable to any modeling and sensor errors.
The process of globally approximating an unknown physical

process by means of least-square methods provides a clean and
optimal solution given a set of observation. However, collecting
every child’s data is expensive and the computation is too com-
plex for distributed sensor nodes, especially for large networks.
Instead, since the regression usually includes a specified tolerance
of error, it is possible to represent DQT data in an efficient manner
so that the approximation accuracy toward some certain interests
such as Root Mean Square (RMS) error meets the specified
criterion at a certain level. A key question regarding the proper
selection of a mathematical model of a physical process is “How
irregular is the variations of the model over space and time?”
A global best fit as described above should be sufficient if the
variations in physical process are smooth globally. In the presence
of localized distortions, a more judicious selection of the mapping
approach is required. Furthermore, many advanced approximation
methods such as Artificial Neural Networks, Wavelets etc. provide
both a qualitative and a theoretical motivation for using a linear
combination of a large number of nonlinear functions to approxi-
mate irregular phenomena but in actuality, they offer no guarantee
on accuracy in practice for a reasonable dimensionality. In the
next section, we briefly discuss a multi-resolution approximation
framework to approximate the unknown physical process while
considering the aforementioned issues, i.e., computational and
communication cost constraints. The main goal of the proposed
approach is to reduce computational complexities by creating

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

a multi-resolution structure and then processing the query data
at different resolutions. We utilize coarse and fine represen-
tations to capture global and local characteristics respectively.
This decomposition is natural and is feasible because the global
characteristics are expected to be in the lower end of the spatial
frequency spectrum and the local characteristics are expected to
be in the upper end of the spatial frequency spectrum.

D. Global-local multi-resolution algorithm

Fig. 9. Global-Local multi-resolution process

Multi-resolution approximation is an iterative process hier-
archically decomposing the input-output approximation and is
an important property for any approximation algorithm. Spline
approximations [4], Wavelets [7] and Finite Element Methods
(FEM), are most commonly used multi-resolution algorithms.
Although global-local separation of concern leads to immensely
improved approximation algorithms; the main drawback of con-
ventional multi-resolution algorithms is that one can not use
different basis functions to obtain different local approximation
without introducing discontinuity across the boundary of different
local regions for a specific multi-resolution algorithm. For exam-
ple, in the case of wavelet based approximation, one should use
same wavelet function at different resolution levels and similarly,
in case of B-spline, one is restricted to use only polynomial
basis functions in various intervals. Ideally one may like to
choose these basis functions, based on prior knowledge about
the problem or based solely upon local approximability using
Sparse approximation methods. While such freedom provides can
greatly improve the approximability, it generally prevents the ba-
sis functions from constituting a conforming space; i.e., the inter-
element continuity of the approximation is not ensured. Hence,
there is a need of rigorous methods to merge different independent
local approximations to obtain a desired order globally continuous
approximation and this is the main feature of the proposed multi-
resolution algorithm. At the heart of our approach is a recently
developed powerful method for blending independently derived
local approximations into consistent global approximations [29]–
[31].
In DQT, each level 1 cluster-head performs regression based on

its direct children’s values. High level models only give general
ideas of the distribution of sensor values. At lower levels, the
model becomes more and more detailed and precise and thus,
provides better approximation of the actual physical process. We
denote the node space at the lowest level as Ω, the node space at
second level Ω2, the third level Ω4, · · · and so on. A power of
two is used in the node space labeling because each higher level
potentially covers 4 times as many nodes as the previous level.
In the DQT hierarchy, a parent node is divided into four

quadrants that are completely decoupled from each other as shown

in Fig. 9. Let us assume that F1(x, y), F2(x, y), F3(x, y), and,
F4(x, y) are four independent local models for each of the four
quadrants at the granularity level Ω1. These preliminary local
approximations Fi(x, y) are completely arbitrary, as long as they
are smooth and represent the local behavior of unknown physical
process well. Since these local models are completely arbitrary,
there is no guarantee of inter-quadrant continuity. Although the
discontinuities at the quadrant boundaries do not affect any
event querying and range querying of discrete nodes, they lead
to estimation ambiguities at the quadrant boundaries which is
not desirable. We address the inter-element continuity problems
directly using recently developed means for blending indepen-
dently derived local approximations into consistent global ap-
proximations [29], [31]. Given the local approximations Fi(x, y)
and special weighting function w(x, y), the weighted average
approximation is defined as:

F (x, y) =

4
∑

i=1

wi(x, y)Fi(x, y) (3)

The weighting function w(x, y) is used to blend or average the
four adjacent preliminary local approximations Fi(x, y), i =
1, 2, 3, 4 and a generic expression for the weighting functions can
be obtained by imposing the following boundary value problem,
as discussed in detail in [29], [31]:
1) The first derivative of the weighting function must have an

dth-order osculation with w(0, 0) = 1 at the centroid of its
respective local approximation.

2) The weighting function must have an (d + 1)th-order zero
at the centroid of its neighboring local approximations.

3) The sum of all neighboring weighting functions must be
unity over the entire closed interval between their corre-
sponding adjacent local functional approximations.

If weighting function is assumed to be polynomial in an inde-
pendent variable, then adopting the procedure listed in [29], [30]
the weight function for first order continuity can be shown to be
simply:

w(x, y) = (1 − x̄2(3 − 2x̄))(1 − ȳ2(3 − 2ȳ))

In [29], generalized expressions for these weight functions have
been developed for desired order of continuity d. A fundamental
theoretical result [29] thus obtained states that if the local ap-
proximations are un-biased estimations of the input-output data,
then: (i) the final blended approximation is un-biased, (ii) the
variance of the blended approximation is substantially smaller
than the variance of any of the averaged approximation, (iii) the
mathematical structure of the averaged approximation can be
varied as appropriate to optimally capture the local geometry, and
finally, (iv) the blending weight functions guarantee the global
piecewise continuous nature of the approximation.
Finally, to find the expression for a coarser model while

minimizing the approximation error on the global model at Ω2,
we define the following cost function:

J =
1
2

∫ y2

y0

∫ x2

x0

4
∑

i=1

[F (x, y) − wiFi(x, y)]2dxdy (4)

where wI is the special averaging function associated with ith

quadrant and the global model at Ω2 granularity is assumed to be

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

a linear combination of l pre-defined basis functions:

F (x, y) =

l
∑

j=0

bjφj(x, y)

where l is restricted to be less than the number of coefficients
required to represent local approximation at finer level, i.e., Ω1.
Further, if basis functions hj are chosen to be orthogonal to each
other, then the coefficients bj can be computed efficiently.

E. Sequential Processing
There are many engineering application problems which needs

to be solved in an iterative manner in real-time by successively
approximating the input-output data. It is desirable that cluster-
heads update their models upon receipt of new corresponding data
subset. Linear sequential regression technique such as Kalman
filter [5] can be used to handle this problem.
Let us assume that Yk−1 is the past observed data that follows

the assumed measurement model Yk−1 = Hk−1αk−1, and Yk

is the new observed data, then we can use the following Kalman
update equations for computing the new estimation of αk:

αk = [I − KkHk]αk−1 + KkYk

Kk = PkH
T
k

P
−1
k = P

−1
k−1 + H

T
k Hk

Kk is the Kalman gain matrix and P is the state covari-
ance matrix. This method can be applied recursively to make
model corrections in real time. This also hints to a good way
of incorporating temporal information into our framework to
estimate past, current, and future trends. The temporal model
may use either distinct sample at each interval or spatial models
at each interval. The former method requires more space since
each node keeps some history samples while the latter one only
stores model information. A learning phase can be trained to
estimate the best sampling intervals. If the temporal model is
known or even partially known, it can be useful in reducing the
modeling complexity or making sampling interval more adaptive.
For example, if it is highly likely that during t ∈ [t1, t2],
temperature happens to change drastically, the models can be
updated more frequently to reflect real time fluctuations. In [34],
a theoretical result is given between approximation error and
updating frequency.

F. Stopping criteria
We presented the adaptive refinement process in above section

without discussing the stopping criteria. Suppose at level i the
stopping criteria is ηi, then we have η1 ≥ η2 ≥ · · · ≥ ηl, where l
represents the maximum number of levels.If ηi already satisfies
the query, the querying process stops at level i.
If the sample is small, then we assume T = (ε − µ)/(σ/

√
n)

follows t-distribution. T-distribution is a special case of normal
distribution. When the sample size is large, it becomes Gaus-
sian distribution. The probability density function (PDF) of t-
distribution is already known [23]. If the certainty is 90% and the
value T is within the interval [-A, A], we say with 90% certainty:

−A <
ε − µ

σ/
√

n
< A

⇔ µ − Aσ√
n

< ε < µ +
Aσ√

n

For example, given a sample of 9 elements with variance equals
1 and mean 5, we can determine that at 90% certainty (A= 1.397)
the interval is:

[5 − 1.397
1√
9
, 5 + 1.397

1√
9
] = [4.53, 5.47]

Finally, we are able to define our stopping criteria as the certainty
with certain approximation variation. If the approximation cer-
tainty level with certain variation is satisfied, the querying process
terminates.

G. Further Discussion
With multimedia capability being more and more available at

the sensor nodes, WSNs are becoming capable of performing ob-
ject classification, image segmentation, motion analysis etc. There
has been some work in Wireless Multimedia Sensor Networks
(WMSNs) such as Cyclops [27] and multimedia QoS routing
[22]. Our model provides a general and application independent
framework to perform multimedia in-network processing. To
avoid transmitting large amounts of raw data to the sink, the
multimedia raw data can be filtered and extracted of semantically
useful information and stored in multi-dimensional vectors. Many
feature extraction techniques, such as color histogram and gray
scale [19], vector approximation [16], shape indexing [3] etc., can
be used to represent and index images. If images are represented
in high dimensional vectors, dimension reduction techniques (e.g
PCA) can be applied to reduce the dimensionality. Again we may
use regression based techniques to model the multi-dimension
scalar data at various levels by a set of weighted basis functions.
This also provides a high efficiency distributed compression
and multi-resolution fusion scheme, since multimedia data is
highly correlated. In such a framework, multimedia queries can
be evaluated at different levels and only when demanded the
raw image data will be transmitted to the initiator. This greatly
reduces the transmission of redundant information and increases
the lifetime of the system.

VI. SIMULATIONS AND SAMPLE DATA ANALYSIS
We investigate the performance characteristic of DQT using the

ns-2 wireless network simulator. Our simulations and numerical
analysis mainly focus on event querying and range querying.
The settings for event querying simulation are as follows: 256
nodes are uniformly distributed in a 2-dimensional square of
3200m × 3200m. The distance between each node is 200m, and
the transmission range is set to be 250m. Therefore the average
degree is about 4 in the field except some border nodes. That
is, not all the level 1 neighbors are reachable via single hop.
The geographic location of each node is available, and is used
to construct the DQT structure in initial phase. The height of the
DQT tree is 4, with 4 roots at the top level. The cost of querying
an event is measured as the number of hops from the querying
node to the node that holds an advertisement about the event.

A. Stretch factor in event querying
We have proved in Theorem 2 that the stretch factor in worst

case is 2
√

2. We calculate the average distance stretch factor
through 100 runs of each experiment. In each round, a query/sink

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

Fig. 10. Stretch factor s and s’ with varied query distance

node pair is randomly chosen. We use two measurements s and
s’, where s is the ratio of the DQT querying cost to the hops
between the query and the event node and s’ is the ratio of the
DQT querying cost to the GPSR routing cost. The value of s
shows the ratio to ideal cost, whereas s’ shows the ratio of routing
a message from the querying point to the event. We found the
average s is around 0.6 and s’ is around 0.5 in the absence of
faults. The reason that s is much smaller than 2

√
2 is that the

worst case scenarios only occupy a small percentage of all cases.
Our scheme has a considerably smaller stretch factor compared
to the DSIB scheme, which has an average value 0.9~1. As an
event has been indexed in the structure, it is not surprising that
the average stretch factor can be even much less than 1.
Fig.10 illustrates the average stretch factor s and s’, as well

as their standard deviations where the event and querying pairs
are randomly selected with varied distance between the query
node and event node. For nearby pairs, the s and s’ is close to 1,
since either GPSR or DQT makes little difference. The average
stretch factor s decreases with the increase of the distance of
query/event pairs. But we also find, that when the distance is
close to the diameter of the map (such as 2800m or 3200m), s
and s’ slightly increase again. We call this phenomenon border
effect. The reason is that when the pair of nodes approach the
borders of the maps, they are less likely to be connected through
their common neighbors.

B. Fault tolerance
A single mote failure will not change the DQT structure and

the query operation. To evaluate the performance of DQT, node
failure in the structure is simulated. Failures may cause the
following two cases in event querying. Case 1: Failures happen
before the event advertisement. When a target node of event
advertisement fails, the event is published to proxy node by
default, which is the closest node to the failure node. The failure
of advertising destination node will not affect the query result in
theory, since it can reach the proxy node. Case 2: The event
has already been published in the structure before the failure
happens. When a node with event advertisement dies, queries to
this node are passed to its parent node. In this case, the event is
still reachable unless all the nodes along the querying path were
dead. We will further discuss the performance of each case in
simulation part.

Fig. 11. Query success rate for case 1 and case 2

Fig. 12. Stretch factor with node failure: Case 1

We keep the same topology and setting in our experiment as
before. Our first experiment on the DQT is the query success rate
with node failure. We randomly remove a certain percentage of
nodes, say from 2% to 20%. Note that, for case 1, the event
still publishes in proxy node when the destination node fails.
Theoretically there is no failure for querying, unless GPSR fails
to forward along the path or the network is isolated. In case 2,
the query is extended to the parent node when a node with event
advertisement fails. A query may fail when all event nodes along
the querying path fail. Fig.11 shows that for case 1, query success
rate can drop down to 95% when 20% of nodes fail. However, for
case2, the DQT scheme itself may fail besides the GPSR routing
failure. The failure rate goes up to 15% in case 2. The result may
vary in real environment due to the increase of GPSR failure and
link asymmetry. Increasing the degree of nodes or node density
is helpful in improving the query success rate.
From the stretch factor point of view, case 2 is also worse than

case 1. Fig.12 and Fig.13 illustrate the stretch factor with varied
possibilities of node failure for case 1 and case 2. In both cases,
DQT works fairly well within 10% failure of nodes. With the
increase in the failure rate, the stretch factor s gets worse quickly
for both cases, because the query circumvents the holes (due to
the failure), which increases the cost of searching rapidly. Case
1 performs better than case 2 because in the occurrence of holes,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

Fig. 13. Stretch factor with node failure: Case 2

case 2 circumvents the hole and query its parent; while in case
1, the event is achievable through a proxy node. The s’ remains
relatively small since the same overhead applies for GPSR to
overcome the coverage holes. The results also indicate that the
degradation of performance is smooth overall.

C. Sample Data Analysis for range querying
To verify the range querying algorithms in modeled DQT,

we use sample dataset from PRISM group [35]. PRISM is an
analytical model that uses point data and a digital elevation
model (DEM) to generate grid estimates of monthly and annual
average daily maximum/ minimum temperatures. The resolution
of this sample data is 0.0417decimal degrees both in Latitude
and Longitude, which is about 4km. The map total covers a
region 256x256 km2. Although the dataset is at a significantly
larger scale than usual sensor networks, the data exhibits spatial-
temporal correlations, providing a useful case study in testing our
algorithm.
We first form a 64x64 grid dataset using average Max tem-

perature set in January 2006. We assume these 64x64 grid data
form bottom level framework. As stated in the previous sections,
we know that at level 1 there are 32x32 nodes, level 2 has
16x16 nodes. We start regression process at level 2 nodes (thus
each regression contains 16 data observations). Every higher level
model is derived of its local models using global-local multi-
resolution algorithm. We analyze the data in second order spatial
model. The approximation results are illustrated in Fig.14 at
various levels. From these figures, we expect that at lower levels,
the approximation is very close to real data.
Another lightweight implementation of multi-resolution model

is to carry out regression process (instead of global-local algo-
rithm) at each level by mapping node space from low level to
high levels, which we call average mapping based distributed re-
gression. Of course, various mapping methods could be applied; a
simple way is to calculate the average value in this region and take
it as the value at the center point, which is stored at clusterheads.
We compare the performance of global-local algorithm with this
average mapping scheme in Fig.15 with 80%, 90% and 95%
certainty levels. The approximation error accumulated quickly at
high levels. It shows that at bottom levels (such as level 2 and
level 3), the variances are close for both schemes; however, at
high levels, variances in average mapping scheme accumulates

1.21
1.215

1.22
1.225

1.23

0.46
0.465

0.47
0.475

0.48

0

2

4

6

8

10

(a) Level 2

1.21
1.215

1.22
1.225

1.23

0.46
0.465

0.47
0.475

0.48

2

4

6

8

10

12

(b) level 3

1.21
1.215

1.22
1.225

1.23

0.46
0.465

0.47
0.475

0.48

2

4

6

8

10

12

(c) Level 4

1.21
1.215

1.22
1.225

1.23

0.46
0.465

0.47
0.475

0.48

0

2

4

6

8

10

(d) Level 5

Fig. 14. Hierarchical multi-resolution plots at level 2,3,4,5 respectively

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

DQT Level

Es
tim

at
io

n
Va

ria
nc

e
%

avg mapping 80% cer
avg mapping 90% cer
avg mapping 95% cer
Global−local 80% cer
Global−local 90% cer
Global−local 95% cer

Fig. 15. Mean approximation variance(global-local algorithm)

1 2 3 4
100

200

300

400

500

600

700

800

900

Range

Q
ue

ry
in

g
co

st

model based querying
naive querying

Fig. 16. Lookup querying cost comparison

more sharply than global-local algorithm. The reason is that
average-mapping only considers the mapped nodes and loses the
information of nearby nodes. The benefit is that average mapping
scheme requires less computation and storage overheads. At level
2, we can expect 3% variance with 90% certainty in average of
all nodes in both schemes, while at top level the average variance
is accumulated up to 25% for global-local mapping algorithm and
60% for average mapping algorithm in our sample. If we allow
10% of approximation variance with 90% certainty, level 3 would
be enough for answering queries using global-local algorithm. For
each specific level, higher certainty leads to larger approximation
variance. There are two possible ways to handle an unsatisfied
query: either by reducing the certainty requirement or by sending
the query to lower layers until the requirement is satisfied.
The cost of a range query depends on each query and it

varies greatly for different instances. We measure the cost as the
overall number of hops for a query from being initiated until
being answered. We give some concrete examples for two types
of range querying: lookup querying and searching. All queries
assume 10% approximation variance with 90% certainty. Fig.16
considers the following lookup querying instances. Instance 1a:
Find the temperatures at nodes 01320 and 23100. Instance 2a:
Find the Instance 2a: Find the temperatures at space ranges [Lon
(122.10,122.15): Lat (46.35,46.99)] and [Lon (123.18,123.23):

1 2 3 4
50

100

150

200

250

300

350

400

450

500

550

Range

Q
ue

ry
in

g
co

st

model based querying
naive querying

Fig. 17. Searching querying cost comparison

Lat (47.77,47.78)](Note: the range contains node 01320 and
23100). Instance 3a is the same query with doubly sized range
in instance 2a and instance 4a doubly sized range in instance 3a.
Fig.17 considers following search querying instances. Instance 1b:
Find the nodes whose temperatures are greater than 5.0 degree
in the range [Lon (122.10, 122.15): Lat (46.35, 46.41)]. Instance
2b, 3b, and 4b are the same querying with doubly sized range to
each prior. We compare the cost of model-based querying (as in
Fig.8) with naive querying scheme (as in Fig.7) by assuming the
query originator’s ID 00000.
We can see that model based querying strategy outperforms

naive querying algorithms in all scenarios. Model based querying
is efficient for lookup querying problems since it is not obligated
to send the query to every node in the range. For searching
problems, model based approach can filter nodes at high levels
in favor of models, thus performs more efficiently than naive
querying especially when the range constrains are not very tight.
For both types of querying problems, model based querying
is not as sensitive as naive querying to the change of range
constraints. The reason is that model based approach incorporates
spatial correlation in approximation while naive querying needs
to explore every node in the range.

VII. RELATED WORK
In this section, we study the related work on WSNs and

compare the differences with our proposed framework.
Storage and querying: Centralized querying has been the

common mode of querying in WSN. For this mode of operation,
the basestation acts as the point where the query is introduced
and results are gathered. For example, in TinyDB [26], queries
are first parsed at the basestation and disseminated into the WSN
to be executed. This centralized structure is not feasible for
distributed and self-organizing sensor networks since: (1) such a
basestation may not exist, (2) for in-network queries, a query may
be introduced from any node in the network and (3) propagating
the query to the base station can be costly.
Geographic Hash Tables (GHT) [28] gives a simple solution

for in-network event querying problem: GHT stores and retrieves
information by using a geographic hash function on the type of the
event. GHT can hash event information far away from the nearby
query nodes, and thus violate the distance sensitivity of querying.
The average cost of storing and querying in GHT is D/3, where

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

D is the diameter of the network. In general, information storage
and querying efficiency are inversely related pairs in optimization.
For example, directed diffusion [21] chooses to optimize the
information storage (O(1) cost) to the extent of querying (O(d2)
cost). Combs&needles optimizes querying O(1), to the extent of
information storage O(d2), or can achieve the vice versa.
Distance Sensitive Information Brokerage (DSIB) protocol

[13] achieves distance-sensitivity in a hierarchically partitioned
network by using a push-based approach: an event advertises to
neighbors as well as its parents at every level of the hierarchy.
DSIB does not require localization information and relies purely
on communication topology. To this end, DSIB introduces a costly
bottom-up construction and a special purpose routing algorithm.
In contrast to DSIB, DQT assumes localization information
and in turn is able to provide an efficient local construction.
Our another work Trail [24] achieves distance sensitive object
tracking, however, it only supports tracking-based applications
and is not capable of searching arbitrary data as well as range
querying. As a summary, we compare the performance of DQT
with that of other querying solutions in Table I.

TABLE I
INSERTION AND QUERYING PERFORMANCE COMPARISON.

Insertion Query
Flooding O(N) O(1)
Diffusion O(

√

N) O(
√

N)
GHT O(

√

N) O(
√

rN)
DSIB O(D) O(d)
Trail 14dlogd 38d

DQT 8
√

2D 2
√

2d
D-Diameter; N-Number of nodes;
d = distance from query point;
r-Number of discrete values

Data modeling: In many systems [35], [37], WSNs have been
studied from a database point of view, which has no way to
handle approximation queries. For instance, a querying toward
a location without a sensor simply returns no result. There is
no ambiguity of possible error associated with results. Toward
approximated query processing, substantial work have been done
in the AQUA [17] and CONTROL [20] projects. AQUA is based
on distinct sampling scheme to provide approximation results for
distinct value queries. AQUA is centralized and is not based on a
spatial algorithm, and hence is unable to exploit the correlations
of neighboring nodes. CONTROL provides an interactive method
for handling long running complex queries; a query usually starts
with a broad, big-picture querying and then is continually refined
based on feedback with certain certainty bounds. These central-
ized schemes do not help much in distributed sensor network
environment without proper aggregation algorithms.
Our model-based range querying algorithm is partly inspired by

BBQ [11], a WSN query processing framework that incorporates
statistic analysis on available sensor data both in spatial and
temporal domain. BBQ uses a time varying multivariate Gaussian
model and answers queries with probabilistic certainty. BBQ
provides a practical algorithm of optimizing querying execution
plan by selecting the best sensor readings to acquire and balance
the certainty as well as the communication and data acquisition
costs in the network. However, BBQ lacks the capability to handle
in-network querying, since such a complex optimization problem
needs to be handled by a basestation. Another constraint of BBQ
is that it assumes that the probabilistic distribution function (PDF)

is known. In contrast to BBQ, DQT enables in-network querying
and does not assume prior knowledge of sensor data.
DIMENSIONS [14], [15] provides a unified view of data

processing in WSNs, handling data storage, multi-resolution data
access and spatial-temporal pattern mining. In its wavelet model,
compressed data from lower levels are first decompressed at
higher level clusterheads, and recompressed with the jointed and
larger dataset, which requires higher computing capability and
complexity on hardware devices. Instead, we use a regression
based model, in which data can be constructed directly without
any wavelet encoding and decoding processes as in [15]. In
addition, our model needs constant extra space at each level,
storing the coefficients of basis functions. Model-based DQT
also differs from distributed kernel regression algorithm [19] in
that in kernel regression model, kernels are represented by a
normalized kernel weight function with predefined kernel regions.
Kernel regression is only effective for familiar and reachable
environments, and is not applicable for an unpredictable area.

VIII. CONCLUDING REMARKS

We presented an in-network querying infrastructure, namely
distributed quad-tree (DQT) structure, suitable for use in real
world WSN deployments. DQT satisfies distance-sensitive event
querying as well as efficient information storage in network. DQT
construction is local and does not require any communication.
Moreover, due to its minimalist infrastructure and stateless nature,
DQT shows graceful resilience to node failures and topology
changes. In fact, it is possible to extend DQT to provide a location
service for mobile ad hoc networks. The idea is to retry a query
until it catches up with the mobile target. Even though a target
node may move during the query execution and leads to a miss,
the query when invoked from this new location closer to the target
node will have a better chance to catch up to the target node due
to the distance-sensitivity property in DQT.
Furthermore, to enable ad hoc on-the-fly querying of users,

we extended our framework to deal with the complex range
queries and the associate challenge of indexing arbitrary data
in the network. We presented a model based framework for
answering querying applications on a hierarchical DQT network.
The global-local multi-resolution algorithm used in our modeling
process is optimal in terms of Root Mean Square propagation
errors. In our framework, each node only holds the coefficients of
approximating functions, saving the cost of storage and achieving
an efficient way of data compression.
Our work has not touched the querying optimization problem

with multiple attributes, for which more correlations may get
involved. Our current work is on extending our framework to
address this problem in the context of similarity querying of image
sensors in WSNs. Finally, we will investigate applications of our
multi-resolution modeling framework in the distributed bound-
ary/shape detection and distributed change detection domains.

REFERENCES

[1] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, and H. Zhang et al. A line
in the sand: A wireless sensor network for target detection, classification,
and tracking. Computer Networks (Elsevier), 46(5):605–634, 2004.

[2] A. Arora, R. Ramnath, and E. Ertin et. al. Exscal: Elements of an
extreme scale wireless sensor network. 11th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications,
2005.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

[3] J. S. Beis and D.G. Lowe. Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces,. In CVPR, page 1000,
1997.

[4] C. D. Boor. A Practical Guide to Splines. Springer, 1978.
[5] J. L. Crassidis and J. L. Junkins. Optimal Estimation of Dynamic

Systems. Chapman & Hall/CRC, 2004.
[6] S. K. Das, D. J. Cook, A. Bhattacharya, E. Heierman, and J. Lin. The

role of prediction algorithms in the mavhome smart home architecture.
IEEE Wireless Communications (Special Issue on smart home), 9(6),
2002.

[7] I. Daubechies. Ten Lectures on Wavelets. Number 61 in CBMS-
NSF Regional Conference Series in Applied Mathematics. Society for
Industrial & Applied Math, Philadelphia, PA, 1 edition, 1992.

[8] M. Demirbas, A. Arora, and M. Gouda. Pursuer-evader tracking in
sensor networks. To appear in Sensor Network Operations, IEEE Press,
2006.

[9] M. Demirbas, A. Arora, T. Nolte, and N. Lynch. A hierarchy-based
fault-local stabilizing algorithm for tracking in sensor networks. 8th In-
ternational Conference on Principles of Distributed Systems (OPODIS),
pages 299–315, 2004.

[10] M. Demirbas and X.Lu. Distributed quad-tree for spatial querying in
wireless sensor networks. In Proc. IEEE International Conference on
Communication (ICC), June,2007.

[11] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong.
Model-driven data acquisition in sensor networks. In In Proc. of VLDB,
2004.

[12] R. Finkel and J.L. Bentley. Quad trees: A data structure for retrieval on
composite keys. acta informatica. In Acta Informatica, pages 1–9, 2007.

[13] S. Funke, L. J. Guibas, A. Nguyen, and Y. Wang. Distance sensitive
routing and information brokerage in sensor networks. In In Proceedings
DCOSS, 2006.

[14] D. Ganesan, D. Estrin, and J. Heidemann. Dimensions: Why do we need
a new data handling architecture for sensor networks? In In Proceedings
of the ACM Workshop on Hot Topics in Networks, pages 143–148, 2002.

[15] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and J. Heide-
mann. An evaluation of multi-resolution storage for sensor networks. In
In Proceedings of the First ACM Conference on Embedded Networked
Sensor Systems (SenSys 2003), pages 89–102, 2003.

[16] A. Gersho. Vector quantization and signal compression. In Kluwer
Academic Publishers, 1992.

[17] P. B. Gibbons. Distinct sampling for highly-accurate answers to distinct
values queries and event reports. In In Proc. of VLDB, 2001.

[18] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and S. Shenker.
Difs: A distributed index for features in sensor networks. First IEEE
Ineternational Workshop on Sensor Network Protocols and Applications,
May 2003.

[19] C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden. Dis-
tributed regression: an efficient framework for modeling sensor network
data. In In Proceedings of IPSN, 2004.

[20] J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber, C. Olston, V. Raman,
T. Roth, and P. J. Haas. Interactive data analysis with control. IEEE
Computer, 32(8):51–59, 1999.

[21] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva.
Directed diffusion for wireless sensor networking. IEEE/ACM Transs-
action on Networking, 11(1):2–16, 2003.

[22] B. Karp and H. T. Kung. Gpsr: greedy perimeter stateless routing
for wireless networks. In MobiCom: Proceedings of the 6th annual
international conference on Mobile computing and networking, pages
243–254, 2000.

[23] S. Kotz and S. Nadarajah. Multivariate t distributions and their
applications. In Cambridge University Press, 2004.

[24] V. Kulathumani, A. Arora, M. Demirbas, and M. Sridharan. Trail: A
distance sensitive network protocol for distributed object tracking. In
European conference on Wireless Sensor Networks (EWSN), 2007.

[25] X. Li, Y. J. Kim, R. Govindan, and W. Hong. Multi-dimensional range
queries in sensor networks. In Proceedings of the 1st international
conference on Embedded networked sensor systems, Los Angeles, Cali-
fornia, USA, pages 148–159, 2003.

[26] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The
dedign of acquisitional query processor for sensor networks. In ACM
SIGMOD, Int. Conf. on Management of Data, June 2003.

[27] M. Rahimi, R. Baer, O. Iroezi, J. Garcia, J. Warrior, D. Estrin, and
M. Srivastava. Cyclops: in situ image sensing and interpretation in
wireless sensor networks. In In SenSys, 2005.

[28] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and
S. Shenker. Ght: a geographic hash table for data-centric storage. In

WSNA ’02: Proceedings of the 1st ACM international workshop on
Wireless sensor networks and applications, pages 78–87, 2002.

[29] P. Singla. Multi-resoultion methods for high fidelity modeling and
control allocation in large scale dynamical systems. In Texas A&M
University, 2005.

[30] P. Singla and J. L. Junkins. Global local orthogonal mapping (glo-map)
in n-dimensions: Applications to i/o approximation. In 6th Conference
on Dynamics and Control of Systems and Structures in Space, 2004.

[31] P. Singla and J. L. Junkins. Multi-resolution methods for modeling and
control of dynamical systems. In CRC Press, 2008, In Press.

[32] R. Szewczyk, A. Mainwaring, J. Polastre, and D. Culler. An analysis of
a large scale habitat monitoring application. In Sensys, 2004.

[33] G. Tolle, J. Polastre, R. Szewczyk, N. Turner, K. Tu, P. Buonadonna,
S. Burgess, D. Gay, W. Hong, T. Dawson, and D. Culler. A macroscope
in the redwoods. In Proceedings of the Third ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2005.

[34] M. C. Vuran, O. B. Akan, and I .F. Akyildiz. Spatio-temporal correlation:
Theory and applications for wireless sensor networks. Elsevier Computer
Networks (COMNET) Journal, 45(3):245–259, 2004.

[35] M. Widmann and C. Bretherton. 50 km resolution daily precipitation
for the pacific northwest.

[36] Y. Yao and J. Gehrke. The cougar approach to in-network query
processing in sensor networks. ACM SIGMOD Record, 31(3):9–18,
2002.

[37] Y. Yao and J. E. Gehrke. Query processing in sensor networks. Pro-
ceedings of the First Biennial Conference on Innovative Data Systems
Research (CIDR 2003), 2003.

