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Abstract—Traditional coordination services for distributed ap-
plications do not scale well over wide-area networks (WAN):
centralized coordination fails to scale with respect to the in-
creasing distances in the WAN, and distributed coordination
fails to scale with respect to the number of nodes involved.
We argue that it is possible to achieve scalability over WAN
using a hierarchical coordination architecture and a smart token
migration mechanism, and lay down the foundation of a novel
design for a flexible-consistent coordination framework, called
WanKeeper. We implemented a prototype of WanKeeper based
on the ZooKeeper API and deployed it over WAN as a proof
of concept. Our evaluation in the context of BookKeeper and
Shared Cloud-backed File System (SCFS) use cases shows that
WanKeeper provides multiple folds improvement in write/update
performance in WAN compared to ZooKeeper.

Keywords-Coordination; Distributed systems; Wide-area net-
works; Scalability

I. INTRODUCTION

Coordination of concurrent execution is one of the chal-
lenging problems for large-scale distributed systems. For em-
barrassingly parallel data processing applications, coordina-
tion is relatively straightforward, since there are either no
dependencies between tasks, or the dependencies are coarse-
grained, and simple abstractions like MapReduce [1] or barrier
synchronization [2], [3] suffice for coordination. However,
a fine-grained coordination service is needed for large-scale
cloud-computing and web-services applications that require
tighter synchronization, such as, online transaction processing
systems, distributed file systems, social network applications,
and graph processing applications. For these applications,
coordination plays a pivotal role particularly in leader election,
group membership, cluster management, service discovery,
resource/access management, and consistent replication of the
master nodes in services.

In recent years, with the race towards providing lower-
latency, higher-availability, and yet ever-more features for
applications, coordination over wide-area (across clusters and
datacenters) has gained greater importance. WAN coordination
has also become important for database applications and
NewSQL datastores [4], [5]. The challenges of big data storage
and processing over wide-area has caused the demand in
WAN:-scale distributed filesystems to grow recently [6]-[8].

Existing coordination systems are designed to support
either tightly coupled applications in local area (such as
ZooKeeper [9], Chubby [10], Tango [11], and Calvin [12])
or loosely coupled applications in wide-area (such as
EPaxos [13]). ZooKeeper and Chubby cannot deal with write-
intensive scenarios across wide-area very well as both depend
on a centralized primary process (a.k.a., leader) to serialize all

operations and updates [14]. Tango provides in-memory data
structures by building over a durable, fault-tolerant shared log
and suffers from end-to-end latency of appends to the shared
log in a wide-area setting [11]. EPaxos decreases the fast-
path quorum size compared to the generalized Paxos, reducing
latency and the overall number of messages exchanged, and is
suitable for coordination in wide-area where a small number
of nodes are involved, but its scalability is limited [13]. To the
best of our knowledge, there is no existing coordination service
for tightly-coupled systems (components highly dependent on
each other) which can scale across WANs especially for write-
intensive application scenarios.

We present a novel distributed coordination service, Wan-
Keeper, to achieve scalability over WAN. WanKeeper uses a
token broker architecture to eliminate the complexity and cost
of the fully-decentralized coordination solutions. The broker
gets to observe access patterns and improves locality of update
operations by migrating tokens when appropriate. To achieve
scalability in WAN deployments, WanKeeper uses hierarchical
composition of brokers, and employs the concept of token
migration to give sites locality of access and autonomy.
WanKeeper provides local reads at sites, and when locality
of access is present, it also enables local writes at the sites.

WanKeeper fills an important gap in the wide-area scalable
coordination of tightly-coupled consistency-critical distributed
applications including large-scale web services. We implement
a prototype of WanKeeper based on ZooKeeper codebase and
deploy it over WAN as a proof of concept. WanKeeper is
API-compatible with ZooKeeper, which makes it available to
ZooKeeper applications without any change. With two use
cases, BookKeeper [15] and Shared Cloud-backed File System
(SCFS) [16], we show that WanKeeper can be easily swapped
in place of ZooKeeper in these applications to provide WAN
scalability. Our evaluation shows that WanKeeper provides
many folds improvement in write/update performance in WAN
compared to ZooKeeper.

Our work has the following major contributions:

o WanKeeper introduces a hybrid framework that extends
centralized coordination by hierarchical composition and
token migration ideas, and provides the best of centralized
and decentralized coordination approaches.

o WanKeeper exploits access-locality to improve latency
and throughput of write/update operations. Our eval-
uation finds that WanKeeper provides many folds in-
crease in write/update performance in WAN compared to
ZooKeeper, while keeping the same read performance.

o WanKeeper provides linearizability per client and lin-
earizability per object across WAN, and provides lineariz-



ability across multiple objects within a datacenter. For
different clients across WAN, WanKeeper provides causal
consistency for multiple objects as in COPS [17]. This
tradeoff is taken to provide local updates and local reads
to minimize the latency across WAN. As we discuss in
the conclusion, by introducing read tokens, WanKeeper
can also be tuned to achieve linearizability for multiple
objects across WANS.

o WanKeeper provides knobs for tuning/improving perfor-
mance, including changing the primary site assignment
for coordination metadata, splitting tokens to allow some
decentralized coordination and relaxed consistency to
seep in, and incorporating adaptive and proactive learning
for migrating tokens in advance.

The paper is organized as follows. Section II describes
the design of WanKeeper. Section III presents our prototype
implementation. Section IV evaluates the results from our
prototype implementation. Finally, Section V compares and
contrasts WanKeeper with related work.

II. WANKEEPER DESIGN

Fully-decentralized coordination often hurts scalability for
not embarrassingly parallel applications. In such applications,
the servers need to communicate/coordinate with many other
servers, which incurs high communication costs. In the worst
case, fully-decentralized coordination entails quadratic (IN?)
communication costs with respect to the number of nodes
(N) involved [18]. For this reason, many distributed systems
use centralized coordination, since it is often not a bottleneck
for scalability [10], [19], [20]. Modern off-the-shelf servers
can serve millions of requests per second without the CPU
becoming a bottleneck, and can store billions of records with-
out the RAM becoming a bottleneck. It is often the network
latency and bandwidth limitations that become an issue with
a centralized server, and that is mostly due to a misuse of
the coordination service. In such cases, it helps to separate
the data plane from the control plane in order to forward
the data-intensive operations to be served by embarrassingly
parallel workers. When coordination involves exchanging short
control packets/requests, the centralized server can go a long
way without choking [9], [10], [20].

On the other hand, decentralized coordination helps for
reducing the network latency and enables deployments over
WAN. Unfortunately, centralized coordination lacks a mech-
anism for reaping access locality, and the network latency to
the central coordinator constitutes a big problem over WAN.
The biggest handicap of centralized coordination systems like
Chubby [10] and ZooKeeper [9] is that they cannot scale to
WAN deployments due to their dependency on the centralized
leader to serialize all operations and updates.

WanKeeper provides a novel hybrid framework that extends
centralized coordination by using hierarchical composition and
token migration ideas and offers the best of both centralized
and decentralized coordination approaches. In the following
subsections, we discuss these two extensions.
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A. WanKeeper Hierarchical Brokers

WanKeeper architecture is simple by design. The token
broker is the most significant component of the WanKeeper
architecture. The broker’s task is to serialize and serve the
servers’ lock requests, while ensuring freedom from deadlocks
and starvation. If tokens for all the records/objects needed
for an operation are present at the server, the operation is
executed at that server without involving communication to
the broker for coordination. If an operation involves items for
which tokens are not present in this server, the server forwards
the operation-request to the broker. Since the broker acts as a
hot cache of tokens for recently accessed records by operation-
requests, those missing tokens (for popularly accessed records)
are likely to be available at the broker, and the operation
is executed at the broker. If not, the broker starts recalling
the tokens from the corresponding servers. As those tokens
become available, the broker holds on to them and performs
the operation.

It is easy to compose brokers in a hierarchical fashion.
Figure 1 illustrates the hierarchical composition of WanKeeper
brokers and interactions between the broker and servers. We
deploy each level-1 WanKeeper broker in a datacenter oversee-
ing the servers in that datacenter, and on top we designate one
of the sites as level-2 broker, overseeing the level-1 brokers.
Here each level-1 broker is responsible for a partition of the
record/key space. The level-1 broker will not directly serve
requests for records outside its assigned partition (unless the
broker has received tokens for them from level-2 broker), and
will need to coordinate with the level-2 broker using a similar
protocol that manages coordination of the servers with the
level-1 broker. Using hierarchical composition, WanKeeper
can manage extremely large key spaces which may not fit
into the memory of a single broker. Moreover, the hierarchical
composition of brokers combined with the token migration
idea enables scalable across-datacenter/WAN coordination.

B. Token Migration

Maintaining all the tokens at the broker is not desirable
because it kills all the access locality for the servers. On
the other extreme, if the broker migrates all the tokens to



the servers, latency is incurred when a server forwards an
operation-request to the broker; now the broker needs to collect
back all the tokens from the corresponding servers to perform
the operation-request.

In order to find the sweetspot in this tradeoff spectrum, we
categorize types of records hosted at the broker as follows: (1)
records that receive across-server accesses; (2) records that
receive repetitive access from the same server. It is best to
maintain tokens for rype-1I records (records that keep receiving
across-server accesses) in the broker. And it is best to migrate
the tokens for frype-2 records to the requesting server to
improve access locality and avoid the overhead of repetitive
requests from that server to the broker.

The broker observes record access patterns at runtime so it
can differentiate between type-1 and type-2 records. A simple
rule for declaring a record to be of fype-2 may be as follows:
If r consecutive requests for a given record [ come from the
same server, then the broker migrates the token for [ to that
server. Of course this is not a permanent assignment. Later if
another server requests [, the master recalls /. In WanKeeper, r
is configurable to any positive integer. In practice, we identify
r = 2 as a good heuristic for reaping benefits of access locality,
and migrate the token for a record on 2 consecutive accesses
to the record.

The token gives the management rights on the record to
whoever has the token. When the token is migrated to a server,
that server gets the ownership of the corresponding record, and
does not need to contact the broker to access that record. If the
broker needs the token back, it recalls the token by sending a
termination of lease for the token. After the token is returned
to the broker, any server can still access the record, but to do
so it needs to contact the broker.

The tokens also help for fault-tolerance, and ensure that in
case the server crashes the record does not become unavailable
indefinitely. The lease can be renewed within the lease period,
with the renewal message piggybacked to other server-broker
communication. The brokers are made fault-tolerant using
a Paxos protocol, such as Zab [21], however, there can be
a network partition over WAN between the brokers/servers,
implications of which we discuss in the next subsection. For
consistent coordination, we require FIFO channels between
brokers/servers, which can be ensured by using TCP.

The proof of safety specification of mutual exclusion is
straightforward as in any token-based mutual exclusion algo-
rithm: There is one token per record/object, and it cannot be
created/destroyed, and it can belong to one broker/node at a
given time. The liveness/starvation-freedom proof is achieved
by projecting a total order on requests by the serialization
performed at the brokers: Nodes form queues on this order,
and waiting nodes raise on the order and make step by step
progress towards the critical section.

C. Consistency and Availability

Consistency constrains the order that reads and writes may
appear to occur. Strong consistency (a.k.a. linearizability)
defines a total ordering on all operations. Causal consistency

gives a partial order over operations so the clients see op-
erations in the order governed by the causality relation [22].
WanKeeper provides strong consistency for operations invoked
on a local WanKeeper site as those are serialized by a
single broker. Among operations invoked at any site of the
WAN system, WanKeeper provides causal consistency when
using write tokens only, linearizability when using Read/Write
tokens. Only the former semantic is discussed in this paper due
to space limit.

Consistency. In ZooKeeper, the ordering of write oper-
ations is serialized by its stable leader and commited by a
majority of servers. At the server side, each client’s requests
are handled sequentially. These semantics corresponding to
linearizable writes and sequentially consistent reads with the
possibility of stale reads from a minority of servers.

Both WanKeeper and ZooKeeper provides linearizability per
object and per client guarantee of FIFO execution of requests.
Consider two clients that perform Write and Read operations
on x concurrently as in the example below. Initially x = 0.

Client 1 (a) W(z,5)
Client 2 (c) W(z,7)

(b) R(x) = {5’ 7}
@ R(x)=17

Assume without loss of generality, operation (a) is accepted
before (c) (if client 1&2 are from same site, writes are
governed by a single leader, if they are from different sites, (c)
is accepted later at level-2 leader), then client 1 may observe
its own write x = 5 or a newer value x = 7 in (b). Both
WanKeeper and ZooKeeper guarantees that client 2 does not
observe an old value z = 5 in (d).

In order to provide local updates and local reads across
WANSs, WanKeeper provides causal consistency for multiple
objects across different clients at different WAN sites. Con-
sider Write and Read operations on two objects x and y as
shown below. Initially x = y = 0.

Client 1 (a) W(z,5) (b) R(z) =5
Client 2 (c) W(y,9) (d) R(y) =9 (e) R(z) =?

Assume that (a) is accepted before (c) in real time.
ZooKeeper enforces client 2 to read z = 5 in (e) because the
local server has seen the larger sequence number of (c). On
the other hand, in WanKeeper, if client 1 & 2 are in different
sites, and both site contains the token of = or y respectively,
operation (e) may return 0, as that is permitted under causal
consistency semantics. However, if (a) causally precedes (c) in
addition being earlier in real-time —that is, if (a) is serialized
by level-2 broker and makes it to the log of level-1 broker
serving client 2— then (e) will return 5 as per the causal-
consistency semantics.

While WanKeeper provides a weakened consistency se-
mantics, in practice WanKeeper still serves as a drop-in
replacement for any ZooKeeper client application. For a
ZooKeeper application that runs on multiple clients, rather
than presuming/presupposing an execution order across inde-
pendent clients, the clients use ZooKeeper to signal/coordinate



with each other. This introduces causality across client op-
erations, so WanKeeper’s causal consistency semantics can
ensure correct execution of the same client operations across
WANSs as well. In theory, the clients may be coordinating
via backchannels (e.g., directly messaging among themselves)
rather than using ZooKeeper to coordinate their operations.
However, when we surveyed ZooKeeper client recipes in
Apache Curator, we find that the clients, being well-formed
clients, never use backchannels for coordinating, and coordi-
nate through the fault-tolerant ZooKeeper coordination service.

Thus we argue that in practice for any well-formed
ZooKeeper client, the client semantics remain unchanged
when substituting WanKeeper and running across WANs. That
being said we also introduced Read/Write tokens as part of
fractional token idea in our technical report, where WanKeeper
consistency semantics can be strengthened to provide lineariz-
ability if needed.

Availability. While CAP theorem [23] states that a system
cannot maintain strong consistency and availability in the
presence of partitions, the CAC theorem [24] provides a tighter
bound and a possibility result. CAC theorem states that in
the asynchronous model with omission-failures and unreliable
networks, no consistency stronger than real-time causal consis-
tency (RTC) can be provided in an always-available, one-way
convergent system and RTC can be provided in an always-
available, one-way convergent system. An always available
system allows reads and writes to complete regardless of lost
messages (i.e., no operation can block indefinitely or return
an error signifying unavailability of data), and a one-way
convergent system guarantees that if node p can receive from
node ¢, then eventually p’s state reflects updates known to q.

Since causal consistency is a slightly relaxed property than
RTC, WanKeeper is able to provide causal consistency and
availability in a one-way convergent system as in COPS [17].
We compare WanKeeper with COPS in our related work.

III. IMPLEMENTATION

We implemented a prototype of WanKeeper leveraging
Apache ZooKeeper codebase to build upon. We keep Wan-
Keeper API compatible with ZooKeeper, which makes Wan-
Keeper available to ZooKeeper applications. Our WanKeeper
implementation extends the ZooKeeper implementation with
token migration and hierarchical composition. These features
allow us to deploy a ZooKeeper cluster at each site (say at
each AWS region) to serve as the level-1 broker and devote
one of these clusters to serve as the level-2 broker for the
entire system. At our WanKeeper deployment, we not only
offer read-locality at the sites, but also offer update-locality at
the sites when locality of access is present.

A. Overview of ZooKeeper

ZooKeeper [9] is one of the most widely used coordination
services for tightly-coupled systems. It offers a minimalist
and flexible coordination service, exposing a filesystem API—
sans locking, which punts the ball to the clients for achieving
coordination. The filesystem interface was chosen for its

familiarity to the developers, reducing the learning curve. The
interface enables developers to reason about consensus and
coordination as if they are working with a filesystem on a local
machine. ZooKeeper calls all data objects in the hierarchical
filesystem structure as znodes.

Under filesystem-like API, ZooKeeper maintains a repli-
cated state machine abstraction by employing fault-tolerant
distributed consensus. ZooKeeper uses a Paxos-variant proto-
col, namely Zab [21], to maintain a replicated state machine.
As such, ZooKeeper is tolerant to crash of a minority number
of replicas, and provides two ordering guarantees: (i) lineariz-
able writes: all requests that update the state of ZooKeeper
are serializable and respect precedence; and (ii) FIFO client
order: all requests from a given client are executed in the order
that they were sent by the client.

An important feature in ZooKeeper is the ability to set
watches on the data objects allowing the clients to receive
timely notifications of changes without requiring polling.
ZooKeeper also supports temporary or ephemeral storage that
persists only while the client is alive and sending heart-
beat messages. This mechanism allows the clients to use
ZooKeeper for failure detection and triggering reconfiguration
upon addition or removal of clients in the application.

ZooKeeper has been adopted widely for coordination of
tightly coupled tasks inside a datacenter/cluster, however,
ZooKeeper is not applicable for WAN coordination. Having
ZooKeeper replicas across WAN introduces excessive delays
for synchronous replication in Paxos consensus rounds ini-
tiated by the leader. ZooKeeper employed the concept of
observer servers to alleviate latencies in a WAN deployment.
An observer is a non-voting replica of a Paxos consensus
ensemble that learns the entire committed log but does not
belong to a quorum set. This way, observers help disseminate
data over a WAN without imposing latency penalties for the
Paxos consensus rounds initiated by the leader. Observers can
serve reads locally with a consistent view of some point in the
recent past. However, observers fail to help with reducing the
write latency from across WAN. Writes invoked from a region
still need to be routed across the WAN to be serialized by the
ZooKeeper leader. In our evaluation section, we compare our
WanKeeper implementation against ZooKeeper deployments
with and without observer support.

B. WanKeeper Prototype

Our prototype implementation of WanKeeper added more
than 2000 lines of code to the ZooKeeper project, which
encompassed 21 new files and 28 modified files. Most of the
modifications occurred in protocol message headers and re-
quest processor classes. We plan to make WanKeeper available
to the community as an open source project on GitHub [25].

WanKeeper includes four major components, as shown in
Figure 2. The Token Manager maintains a set of currently
possessed tokens, a map of token locations, configuration
of token migration policy, and interface of token operations.
The WAN Heartbeater has two purposes: (i) to maintain
the global view of all clusters and detect a level-2 leader
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failure; and (ii) to piggyback the current live client session
IDs in the heartbeat reply from level-1 cluster to level-2, so
that ephemeral znodes are maintained among clusters. WAN
Transport component handles all WAN communication.

We extend ZooKeeper’s Request Processor Chain as
shown in the top part of Figure 2. At the head of the
chain, a worker/master request processor examines the current
request accessing paths, making decisions based on query
results from TokenManager. In the case of a level-1 cluster
leader, its worker request processor checks if it has all to-
kens for a submitted operation/transaction' and submits the
operation/transaction to the local committing pipeline, if some
tokens are missing then it forwards the request to a level-2
cluster for serialization. In addition, the processor performs
the following steps atomically: moves the token from owner
set to out-going set if there is a pending revoke-token-request
from level-2, marks the current request with related tokens
before pushing down the chain. Therefore, the replicate request
processor, can send the tokens with the committed request to
be replicated to the remote cluster.

C. Applications of WanKeeper

There are many applications that use ZooKeeper as their
coordination service solution in the cluster environment. We
show that WanKeeper can be swapped in place of ZooKeeper
to provide WAN scalability for those applications.

As one example, we consider BookKeeper [15]. In our
evaluation section, we show how by swapping WanKeeper
with ZooKeeper for coordination requirements of BookKeeper,
we enable WAN scalability and multi-writer support for
BookKeeper. Such a WAN-enabled BookKeeper service has
many uses in large-scale web services. Twitter has recently
developed DistributedLog [26] service/abstraction on top of
BookKeeper to ensure the same sequence is made available

1ZooKeeper provides a transaction API that wraps multiple read/update
operations together for atomic execution.

to each Manhattan [27] (Twitter’s eventually-consistent key-
value store) replica, so the replicas do not diverge. While
DistributedLog supports geo-replicated logs to provide across-
datacenter durability/availability, the log-ownership in Dis-
tributedLog is mostly static. The ownership can switch, but
only on failures, as flapping the ownership introduces la-
tency penalty. Our work reduces this latency by dynamically
adapting to the access locality, and enabling local-updates in
BookKeeper across multiple-regions.

As another example, we consider metadata services (MDS)
for distributed filesystems. MDS serialize and serve file open,
write, close operations. GFS [19] used Chubby [10] as its
fault-tolerant MDS. Recently ZooKeeper was provided as the
MDS for parallel file systems Lustre [28] and PVES [29] to
provide reliability and read-scalability across clusters (but not
at the WAN level) [30]. Also recently the Shared Cloud-based
File System (SCFS) used ZooKeeper as the MDS to provide
a multi-cloud backed WAN-shared filesystem [16]. In our
evaluation section, we show how we enable WAN scalability
for SCFS by swapping WanKeeper with ZooKeeper as the
MDS. This technique would also apply for WAN-scaling of
other distributed and parallel file systems.

WanKeeper also has applications in WAN-scalability to
causal consistent geo-replication in distributed data stores, and
causal consistent messaging and social network systems. We
relegate this discussion to our related work section.

IV. EVALUATION

We evaluate WanKeeper performance directly using Yahoo!
Cloud Serving Benchmark (YCSB) in Section IV-A, and then
in the context of BookKeeper use case in Section IV-B and
for the SCFS use case in Section IV-C.

A. WanKeeper Performance Evaluation

We compare the performance of WanKeeper with that of
ZooKeeper in a WAN environment using YCSB [31] bench-
mark, and measure the overall throughput and per-operation
latency. We deploy our experiments over three AWS [32]
regions: Virginia, California, and Frankfurt. We designate
Virginia to be the leader-deployment site in ZooKeeper and
the level-2 site in WanKeeper, since the ping tests identify
Virginia as the middle of the three sites. In our experiments,
we use EC2 medium Linux instances, which have two EC2
compute units and 4 GB of RAM each.

Effects of varying Read/Write ratio. To examine the
effects of read/write request ratio on throughput and latency,
we use the YCSB DB interface benchmark client with the
synchronous ZooKeeper Java client API, and at most 1000
outstanding requests as the default configuration. Each YCSB
workload contains 1000 records, and 10K operations with
varying proportions of Read/Write requests. All workloads
have a request randomly choosing a record according to
the Zipfian distribution: f(k;s, N) = (1/k*)/(320_, (1/n%)),
where s is the constant parameter characterizing the distribu-
tion, IV is the number of records. As the frequency parameter
k indicates, some records will be hot — accessed frequently —
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while most records will be cold — accessed occasionally. The
experiments in Figures 3 and 4 are performed with a single
client, deployed in the California site, connecting to the local
level-1 server of WanKeeper, or the local follower, or observer
server of ZooKeeper.

Figure 3a shows that WanKeeper improves throughput by
10X compared to ZooKeeper for the 50% write workload,
and 3X for the 5% of write workload. ZooKeeper with
observer gets a slightly better write throughput compared
to plain ZooKeeper, but still much slower than WanKeeper.
The improvement occurs because the tokens for hot records
gradually migrate from Virginia site to the California site, and
WanKeeper is then able to perform local writes on them.

For 100% read requests, WanKeeper has a slightly lower
throughput than ZooKeeper due to the overhead of marshalling
in first request processor and marshalling between WanKeeper
level-1 and level-2 for heartbeats and keeping track of live
sessions. The same reason causes WanKeeper 0.1ms slower
of average read latency in upper plot in Figure 3b.

Figure 3b shows that WanKeeper has significantly lower
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write latency compared to ZooKeeperboth with and without
observers. ZooKeeper with observer has lower write latency
compared to the plain ZooKeeper, because the observer is
a non-voting replica and does not participate in the Virginia
leader’s Paxos commit operations. In Figure 3b, the average
write latency increases as the percentage of write requests
decreases, because less number of writes imply a reduced
chance of token migration to the local WanKeeper server.

Figure 4 is the cumulative distribution function (CDF)
graph of the write request latency for 50% and 100% write
ratio workloads. The figure shows that in WanKeeper, 80%
and 90% of writes have a latency of a couple milliseconds,
as those operations are committed locally due to acquired
tokens. In contrast, all writes in ZooKeeper with observers
require a WAN access to the leader site, and most writes with
ZooKeeper require 2 round-trip times due to voting.

Effects of multiple-site access and access locality. To
evaluate the effects of multi-site access, we use two clients
deployed in California and Frankfurt sites respectively.

In Figure 5, we compare throughput under a 50% write
workload in four different setups. ZK represents the plain
ZooKeeper setup, and ZK with observer is the setup where
the ZooKeeper servers in California and Frankfurt are non-
voting observer replicas. WanKeeper also has two setups: (1)



Two clients overlapping accessed data

Throughput (ops/sec)

Overlapping percentage

Fig. 6: Varying data contention between two sites

in WK Cold all tokens are at the higher level site (Virginia)
at the beginning of the test, so it takes some time to migrate
the tokens based on access pattern; (2) in WK Hot, each site
holds half of the tokens at the beginning of the test. In all
four setups the two clients only access their own designated
partition of the data, with no overlap between data accessed by
the clients. We find that ZooKeeper with observers reduces the
write latency to one RTT when using observers in WAN, so
it doubles the throughput compared to the plain ZooKeeper
setup. WanKeeper provides significantly higher throughput
compared to both ZooKeeper setups by allowing writes to
be committed locally. As expected, WK Hot results in higher
throughput than WK Cold, as it starts in a setup that enables
all writes to be local. In the case of WK Cold, the token
migration occurs gradually based on consecutive accesses.

To investigate the impact of record access contention on
throughput, we experiment with varying percentage of overlap-
ping data access patterns using 100% write workload in both
clients, as shown in Figure 6. The figure shows that ZooKeeper
exhibits constant throughput in both clients since it lacks the
notion of a local commit. WanKeeper provides a smooth slope
of gradually declining throughput as the client data access
contention rise to 100% overlap. Even with 100% overlap
WanKeeper still provides 20% more throughput compared to
ZooKeeper with observers by leveraging random locality in
the access sequences.

B. BookKeeper Benchmark

Apache BookKeeper [15] is a popular log replication service
employed in building replicated state machines. BookKeeper
ensures that each replica state machine will see the same
entries, in the same order. BookKeeper log replication has been
adopted for providing high-availability/durability to the HDFS
Namenode (the component of Hadoop Distributed File Sys-
tem [33] that manages the file system metadata). BookKeeper
has also been adopted for building Twitter DistributedLog [26]
which is employed for providing consistency to Twitter’s
distributed/replicated key-value database, Manhattan [27]. Fi-
nally, BookKeeper serves as the middleware for building
Apache Hedwig distributed publish-subscribe system [34].

BookKeeper focuses on efficient storage and retrieval of
log segments, called ledgers, and employs ZooKeeper for

coordination of the ledger metadata, which includes the ensem-
ble composition of ledgers, write quorum size, ledger status,
and the last entry successfully written to a closed ledger.
BookKeeper also relies on ZooKeeper ephemeral znodes and
watches for achieving availability of the ledger servers —
bookies.

Since BookKeeper removes ZooKeeper out of the criti-
cal path of data replication, and employs ZooKeeper only
for maintaining the configuration metadata, it achieves high-
performance reads even for clients reading across different
datacenters. However, BookKeeper fails to support high-
performance writes across different datacenters, because
ZooKeeper constitutes a bottleneck for coordinating multiple
writers to a log across WAN and serializing their ledgers.
When BookKeeper clients write to ZooKeeper across WAN,
this inserts delays for every switch of the log writer. By
swapping ZooKeeper with WanKeeper, we show that we can
achieve local writes and maintain high throughput across WAN
deployments of BookKeeper.

In our experiments, we adopt the BookKeeper benchmark.
The benchmark is shipped with BookKeeper and is used for
measuring write throughput with one or more non-competing
writers. We modified the BookKeeper benchmark in order to
accommodate a geo-distributed iterating writers setup. We use
the deployment topology shown in Figure 7a, across three
AWS regions: California, Virginia, and Frankfurt. Each region
has its own set of bookies. The bookies communicate with
ZooKeeper observers in the same region as the bookies, or a
centralized ZooKeeper located in Virginia, or with WanKeeper
which has level-2 site also in Virginia. In case of centralized
ZooKeeper deployment without the observer, all bookies com-
municate with ZooKeeper quorum in Virginia. Virginia has no
BookKeeper writers, California has 3 writers, and Frankfurt
has 1 writer. By using 3 writers in one region, we model a
common access-locality pattern: the log has a home-region
where it receives most writes while allowing a writer from
another region.

All the 4 clients write to the same logical log and use
ZooKeeper or WanKeeper to coordinate their requests to
access to the log via requesting and acquiring a lock. After
acquiring the lock, each client adds region and ledger infor-
mation to a common metadata znode before proceeding with
writing entries to BookKeeper, as the BookKeeper protocol
dictates. Each writer has a fixed time allocated for its write
operations, including writing the log metadata, creating local
BookKeeper ledger, and actually writing to the log through
BookKeeper. After the allowed time is used, a client records
that it has finished writing by updating the log metadata with
finish-timestamp and the region and ledger of the finish-record,
and gives up its lock allowing the next writer to access the
log. We use the fixed allowed time for writing to the log as a
control parameter to study the effects of the writer switch rate
on the throughput.

Figure 7b shows the write throughput across all clients, for
both ZooKeeper and WanKeeper configurations, with respect
to varying write duration. The evaluation shows that central-
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ized ZooKeeper configuration is a major bottleneck for the
WAN BookKeeper deployment, especially when the writes are
frequent, as completion of every ZooKeeper operation requires
WAN communication. ZooKeeper with observers improves the
performance by allowing read operations to be performed lo-
cally without having to reach out to the centralized ZooKeeper.
WanKeeper further improves on the ZooKeeper with observers
by allowing not only local reads, but also enabling some local
write operations. For instance, with the write duration of 0.4s,
WanKeeper configuration provides 45% more throughput than
ZooKeeper with observers. As the write duration increases,
the coordination system become less of a bottleneck for Book-
Keeper writers, because ZooKeeper and WanKeeper operations
are infrequent and do not delay log writing as often.

C. SCFS Microbenchmark

SCFS [16] uses ZooKeeper as the metadata service and
also for coordinating multi-client access to multiple cloud
storage backends. Globally distributed SCFS clients remotely
connect to the ZooKeeper site for metadata update operations,
or use Observers at each site for local reads from the metadata
service, as shown in Figure 8. This of course implies that
metadata update operations suffer high latency when invoked
over WAN. We show that by swapping ZooKeeper with
WanKeeper, we can provide a latency and throughput boost
to SCFS clients over WAN, since file accesses typically have
high access locality.

In our experiments, clients in California and Frankfurt sites
share every file. We drive the SCFS clients using YCSB
microbenchmark of metadata updates. Figure 9a shows the
throughput and average latency at both sites, with ZooKeeper
with observers (ZKO) and WanKeeper (WK) in cold start
(i.e. no token at either site). With small overlaps in accesses
(< 10%), WanKeeper performs much better than ZooKeeper
since tokens migrate to both sites rapidly, enabling 90%
local operations. With larger overlaps (> 50%), WanKeeper
performance draws closer to ZooKeeper with observers, since
the tokens are more likely to stay at level-2, which results in
operations incurring 1 RTT over WAN.

Figure 9b shows the same experiment but with 80% of
operations updating 20% of data. Since there is a 20% hotspot
at both sites, even for 80% overlapped access, WanKeeper
performs 5 folds better than ZooKeeper with Observers.

Figure 9¢ shows how throughput varies during 20% hotspot
experiments in the case of 10% and 50% overlap. 10% access
contention implies that token conflicts are less likely, thereby
tokens migrate quicker, and throughput grows faster. Another
observation is that after the California site finishes the 10K
operations, the throughput at the Frankfurt site grows quickly
because now tokens migrate to Frankfurt faster in the absence
of contending requests from California.

V. RELATED WORK

As discussed in the introduction, existing coordination sys-
tems are designed to support either tightly coupled applications
in local-area [9], [11], [12], or loosely coupled applications in
wide-area [13]. To the best of our knowledge WanKeeper is the
first coordination service to support tightly-coupled systems to
scale across WANS, especially for write-intensive applications.

Distributed coordination has also been studied in the com-
puter architecture domain in the context of shared-memory
multiprocessors. To deal with cache coherence issues in that
domain, a token coherence protocol has been proposed [35].
Token coherence protocol enforces the coherence invariant by
counting tokens (requiring all of a block’s tokens to write and
at least one token to read). For deadlock prevention, the token
coherence protocol assumes a centralized arbiter.
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Distributed file systems are among the driving application
classes for distributed coordination. Most of the effort in
this area focus on the coordination of the access to the
Metadata Management Server (MDS) component of the file
system. Among the efforts on scaling distributed file systems
to wide-area, NFSv4 [36] uses centralized MDS with cen-
tralized locking, OpenAFS [37] uses distributed MDS with
delegated locking, and GPFS [38] uses distributed MDS with
distributed locking and centralized management where all
conflicting operations are forwarded to a designated node to
be serialized and resolved. Both AFS [39] and Coda [40]
used callback locking for distributed coordination of cache
coherency. In both systems, callbacks were maintained by a
single (preferred) server and a lost callback would cause a
client to continue using a cached copy of a file for a certain
period after the file was updated elsewhere.

WanKeeper has applications in causal consistency messag-
ing at WAN-scale. While Hedwig [34] provides a publish-
subscribe service across WAN, it does not provide any
causal consistency properties. By swapping Hedwig’s use of
ZooKeeper with WanKeeper, it is possible to provide causal
consistency for Hedwig at WAN scale.

PNUTS [41] is Yahoo!’s WAN asynchronous data replica-
tion architecture that achieves serializability of writes to each
record by employing record-level masters. PNUTS provides
per key serializability timeline consistency. WanKeeper pro-
vides a stronger consistency guarantee than PNUTS.

COPS [17], a WAN distributed storage system, considered
the problem of providing causal+ consistency across WAN.
In COPS, a put operation for a record is: i) translated to
put-after-dependencies based on the dependencies seen at this
site; ii) queued for asynchronous replication to other sites; iii)
returned success to the client at this point (early reply); and
iv) asynchronously replicated to other sites. Each operation
in COPS maintains dependencies for operations. Replication
dependencies are checked at each datacenter, and when they
are satisfied the value is updated there. WanKeeper pro-
vides causal consistency more efficiently than COPS, because
WanKeeper does not need to maintain, exchange, and check
dependency lists, which can grow very large in size. Also

while COPS needs a specialized transactional protocol and
introduces waits for read-only transactions, any local read
for a single item in WanKeeper is a read-only transaction.
For multi-item read transactions, the token mechanism and
hierarchical composition help WanKeeper to provide a more
efficient solution.

A recent paper, ZooNet [42] suggests a client-side only
modification to ZooKeeper for the problem of scaling
ZooKeeper to WAN deployments. ZooNet’s solution is fairly
simple: it achieves consistency by injecting sync requests
before remote partition reads to be synced. However, in
contrast to WanKeeper, ZooNet requires slow remote writes
across WANS, and does not support data partition migration,
transactions or watches.

VI. CONCLUDING REMARKS

WanKeeper shows that it is possible to achieve scalability
over WAN using a hierarchical coordination architecture and
a smart token migration mechanism to leverage locality of
access. Our prototype WanKeeper implementation, built on
the ZooKeeper codebase, shows multiple folds improvement
in WAN write latency and throughput compared to ZooKeeper.
By swapping WanKeeper with ZooKeeper, it is possible to
extend existing ZooKeeper applications to WAN deployments,
as we show in our BookKeeper and SCFS use cases.

In future work, we plan to investigate smarter token migra-
tion policies. The research challenges here are to identify the
most suitable speculative strategies to improve overall perfor-
mance. We will investigate (1) domain-specific observations
and heuristics for speculative token forwarding strategies and
(2) more sophisticated strategies involving machine learning
over lock access logs at the broker.

Using a single token per record restricts us into one of
two extremes: (1) if the lock has 1-site locality, we migrate
the token to that site, and (2) if the record sees across-
site access, the token resides at the broker. But there is a
middle-ground between these two extremes, where the record
is accessed only by the same k servers. In that case, requiring
all accesses to be mediated by the broker is not optimal for
small values of k: e.g., when a transaction involves only a



couple items, the 2-phase commit may perform better than
the broker approach. To explore this, we will investigate the
token splitting idea to allow the broker to send a fractional-
token to the k-servers involved for a record. The fractional-
tokens will contain the information about where the remaining
fractional-tokens for the record resides, so the server can start
a 2-phase commit transaction with those servers. We will
investigate the conditions under which the fractional-token
strategy helps to improve the performance, and investigate
dynamic adaptation strategies that will allow the broker to
revoke fractional tokens to combine them into one whole token
and migrate accordingly.

The fractional token idea is also useful for providing effi-
cient strongly-consistent read-only or read-mostly transactions.
In such a scheme, a record has K read-tokens associated
with it, where K is the number of sites in the WanKeeper
deployment. To read, it suffices that a site possesses 1 read-
token for that record. To write, a site should have all K read-
tokens for that record, or the write transaction is forwarded to
the level-2 broker. We will investigate tradeoffs in this strategy
to determine when this strategy provides the most benefits.
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