
Agenda

We’ve done
Asymptotic Analysis
Solving Recurrence Relations

Now
Designing Algorithms with the Divide and Conquer Method

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 1 / 51

The Basic Idea

Divide: Partition the problem into smaller ones
Conquer: Recursively solve the smaller problems
Combine: Use solutions to smaller problems to give solution to
larger problem

Puzzle
Given an array A[1, . . . , n] of real numbers. Report the largest sum of
numbers in a (contiguous) sub-array of A.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 3 / 51

Merge Sort – The Canonical Example of D&C

Given an array A[1, . . . , n] of numbers, sort it in ascending order

Divide: A[1, . . . , n/2], A[n/2 + 1, . . . , n]
Conquer: Sort A[1, . . . , n/2], sort A[n/2 + 1, . . . , n]
Combine: from two sorted sub-array, somehow “merge” them into
a sorted array (see posted demo)

Running time:

T(n) = 2T(n/2) + Θ(n)⇒ T(n) = O(n lg n)

The key is the Θ(n)-merge step.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 4 / 51

Counting Inversions: Problem Definition

Input: an array A[1..n] of distinct integers
Output: the number of pairs (i, j) such that i < j, A[i] > A[j]
Applications: numerous

Voting theory
Collaborative filtering
Sensitivity analysis of Google’s ranking function
Rank aggregation for meta-searching on the Web
Non-parametric statistics (Kendalls’ Tau function)

Brute force: O(n2)
Can we do better?

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 6 / 51

Divide and Conquer

Divide: A1 = A[1, . . . , n/2], A2 = A[n/2 + 1, . . . , n]
Conquer: ai = number of inversions in Ai, i = 1, 2

Combine: a = number of “inter-inversions,” i.e.

a = #{(i, j) | i ≤ n/2, j > n/2, A[i] > A[j]}

Return a1 + a2 + a.
Main question: how to combine efficiently?

Obvious approach: the combine step takes Θ(n2)

T(n) = 2T(n/2) + Θ(n2)⇒ T(n) = Θ(n2)

Non-obvious: the combine step takes Θ(n) (see demo)

T(n) = 2T(n/2) + Θ(n)⇒ T(n) = Θ(n lg n)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 7 / 51

Multiplying Large Integers: Problem Definition

Let i and j be two n-bit integers, compute ij.
Straightforward multiplication takes Θ(n2)
Naive D&C:

i = a2n/2 + b

j = x2n/2 + y

ij = ax2n + (ay + bx)2n/2 + by

Running time:

T(n) = 4T(n/2) + Θ(n)⇒ T(n) = Θ(n2).

Observation
Addition and shift take Θ(n), hence we want to reduce the number of
(recursive) multiplications

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 9 / 51

(Smart) Divide and Conquer

Want: compute three terms ax, by, ay + bx using less than 4
multiplications.
Observation:

P1 = ax

P2 = by

P3 = (a + b)(x + y) = (ay + bx) + ax + by

ay + bx = P3 − P1 − P2

Immediately we have a D&C algorithm with running time

T(n) = 3T(n/2) + Θ(n)⇒ T(n) = Θ(nlog2 3) = Θ(n1.59)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 10 / 51

Matrix Multiplication: Problem Definition

X and Y are two n× n matrices. Compute XY.
Straightforward method takes Θ(n3).
Naive D&C:

XY =
[

A B
C D

] [
S T
U V

]
=

[
AS + BU AT + BV
CS + DU CT + DV

]
T(n) = 8T(n/2) + Θ(n2)⇒ T(n) = Θ(n3)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 12 / 51

Smart D&C: Strassen’s Algorithm

Idea: reduce the number of multiplications to be < 8. E.g.,

T(n) = 7T(n/2) + Θ(n2)⇒ T(n) = nlog2 7 = o(n3)

Want: 4 terms (in lower-case letters for easy reading)

as + bu

at + bv

cs + du

ct + dv

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 13 / 51

Strassen’s Brilliant Insight

p1 = (a− c)(s + t) = as + at− cs− ct
p2 = (b− d)(u + v) = bu + bv− du− dv
p3 = (a + d)(s + v) = as + dv + av + ds
p4 = a(t − v) = at− av
p5 = (a + b)v = bv + av
p6 = (c + d)s = cs + ds
p7 = d(u− s) = du− ds

The rest is simply ... magical

as + bu = p2 + p3 − p5 + p7

at + bv = p4 + p5

cs + du = p6 + p7

ct + dv = p3 + p4 − p1 − p6

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 14 / 51

Quick Sort: Basic Idea

Input: array A, two indices p, q

Output: same array with A[p, . . . , q] sorted
Idea: use divide & conquer

Divide: rearrange A[p, . . . , q] so that for some r in between p and q,

A[i] ≤ A[r] ∀i = p, . . . , r − 1
A[r] ≤ A[j] ∀j = r + 1, . . . , q

Compute r as part of this step.
Conquer: Quicksort(A[p, . . . , r − 1]), and Quicksort(A[r + 1, . . . , q])
Combine: Nothing

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 16 / 51

Quicksort: Pseudo code

Quicksort(A, p, q)
1: if p < q then
2: r ← Partition(A, p, q)
3: Quicksort(A, p, r − 1)
4: Quicksort(A, r + 1, q)
5: end if

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 17 / 51

Rearrange A[p..q]: partitioning

i p,j q
. . . 3 1 8 5 6 2 7 4 . . .

p,i j q
. . . 3 1 8 5 6 2 7 4 . . .

p i j q
. . . 3 1 8 5 6 2 7 4 . . .

p i j q
. . . 3 1 8 5 6 2 7 4 . . .

p i j q
. . . 3 1 8 5 6 2 7 4 . . .

p i j q
. . . 3 1 8 5 6 2 7 4 . . .
. . . 3 1 2 5 6 8 7 4 . . .
. . . 3 1 2 5 6 8 7 4 . . .
. . . 3 1 2 4 6 8 7 5 . . .

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 18 / 51

Partitioning: pseudo code

The following code partitions A[p..q] around A[q]
Partition(A, p, q)

1: x← A[q]
2: i← p− 1
3: for j← p to q do
4: if A[j] ≤ x then
5: swap A[i + 1] and A[j]
6: i← i + 1
7: end if
8: end for
9: return i

Question
How would you partition around A[m] for some m: p ≤ m ≤ q ?

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 19 / 51

Worst case running time

Let T(n) be the worst-case running time of Quicksort.
Then T(n) = Ω(n2) (why?)
We shall show T(n) = O(n2), implying T(n) = Θ(n2).

T(n) = max
0≤r≤n−1

(T(r) + T(n− r − 1)) + Θ(n)

T(n) = O(n2) follows by induction.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 20 / 51

Quicksort is “most often” quicker than the worst case

Worst-case partitioning:

T(n) = T(n− 1) + T(0) + Θ(n) = T(n− 1) + Θ(n)

yielding T(n) = O(n2).
Best-case partitioning:

T(n) ≈ 2T(n/2) + Θ(n)

yielding T(n) = O(n lg n).
Somewhat balanced partitioning:

T(n) ≈ T
(n

10

)
+ T

(
9

n
10

)
+ Θ(n)

yielding T(n) = O(n lg n) (recursion-tree).

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 21 / 51

Average-case running time: a sketch

Claim
The running time of Quicksort is proportional to the number of
comparisons

Let Mn be the expected number of comparisons (what’s the sample
space?).
Let X be the random variable counting the number of comparisons.

Mn = E[X] =
n∑

j=1

E[X | A[q] is the jth least number]
1
n

=
1
n

n∑
j=1

(
n− 1 + Mj−1 + Mn−j

)
= n− 1 +

2
n

n−1∑
j=0

Mj

Hence,

Mn =
2(n− 1)

n
+

n + 1
n

Mn−1,

which yields Mn = Θ(n lg n).

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 22 / 51

Randomized Quicksort

Randomized-Quicksort(A, p, q)
1: if p < q then
2: r ← Randomized-Partition(A, p, q)
3: Randomized-Quicksort(A, p, r − 1)
4: Randomized-Quicksort(A, r + 1, q)
5: end if

Randomized-Partition(A, p, q)
1: pick m at random between p, q
2: swap A[m] and A[q]
3: x← A[q]; i← p− 1
4: for j← p to q do
5: if A[j] ≤ x then
6: swap A[i + 1] and A[j]; i← i + 1
7: end if
8: end for
9: return i
c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 23 / 51

The Selection Problem: Definition

The ith order statistic of a set of n numbers is the ith smallest
number
The median is the bn/2cth order statistic
Selection problem: find the ith order statistic as fast as possible

Conceivable that the running time is proportional to the number of
comparisons.

Find a way to determine the 2nd order statistic using as few
comparisons as possible
How about the 3rd order statistic?

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 25 / 51

Selection in Worst-case Linear Time

Input: A[p, . . . , q] and i, 1 ≤ i ≤ q− p + 1

Output: the ith order statistic of A[p, . . . , q]
Idea: same as Randomized-Selection, but also try to guarantee a
good split.

Find A[m] which is not too far left nor too far right
Then, split around A[m]

The idea is from: Manuel Blum, Vaughan Pratt, Robert E. Tarjan,
Robert W. Floyd, and Ronald L. Rivest, “Time bounds for selection.”
Fourth Annual ACM Symposium on the Theory of Computing (Denver,
Colo., 1972). Also, J. Comput. System Sci. 7 (1973), 448–461.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 26 / 51

Linear-Selection: Pseudo-Code

Linear-Select(A, i)
1: “Divide” n elements into d n

5e groups,
b n

5c groups of size 5, and
d n

5e − b
n
5c group of size n− 5b n

5c
2: Find the median of each group
3: Find x: the median of the medians by calling Linear-Select

recursively
4: Swap A[m] with A[n], where A[m] = x
5: r ← Partition(A, 1, n)
6: if r = i then
7: return A[r]
8: else
9: recursively go left or right accordingly

10: end if

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 27 / 51

Linear-Select: Analysis

T(n) denotes running time
Lines 1 & 2: Θ(n)
Line 3: T(d n

5e)
Lines 4, 5: Θ(n)
Lines 6-10: at most T(f (n)), where f (n) is the larger of two
numbers:

number of elements to the left of A[r],
number of elements to the right of A[r]

f (n) could be shown to be at most 7n
10 + 6, hence

T(n) ≤

{
Θ(1) if n ≤ 71
T(d n

5e) + T(b 7n
10 + 6c) + Θ(n) if n > 71

Induction gives T(n) = O(n)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 28 / 51

Fast Fourier Transform: Motivations

Roughly, Fourier Transforms allow us to look at a function in two
different ways
In (analog and digital) communication theory:

time domain FT−→ frequency domain

time domain FT−1

←− frequency domain
For instance: every (well-behaved) T-periodic signal can be written
as a sum of sine and cosine waves (sinusoids).

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 30 / 51

Fourier Series of Periodic Functions

x(t) =
1
2

a0 +
∞∑

n=1

an cos(2πnf0t) +
∞∑

n=1

bn sin(2πnf0t)

f0 = 1/T is the fundamental frequency.
Euler’s formulas:

a0

2
= f0

∫ t0+T

t0
x(t)dt

an

2
= f0

∫ t0+T

t0
x(t) cos(2πnf0t)dt

bn

2
= f0

∫ t0+T

t0
x(t) sin(2πnf0t)dx

Problem
Find a natural science without an Euler’s formula

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 31 / 51

Continuous Fourier Transforms of Aperiodic Signals

Basically, just a limit case of Fourier series when T →∞
Applications are numerous: DSP, DIP, astronomical data analysis,
seismic, optics, acoustics, etc.
Forward Fourier transform

F(ν) =
∫ ∞

−∞
f (t)e−2πiνtdt.

Inverse Fourier transform

f (t) =
∫ ∞

−∞
F(ν)e2πitνdν.

(Physicists like to use the angular frequency ω = 2πν)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 32 / 51

Discrete Fourier Transforms

Computers can’t handle continuous signals⇒ discretize it
Sampling at n places:

fk = f (tk), tk = k∆, k = 0, . . . , n− 1

DFT (continuous→ discrete, integral→ sum)

Fm =
n−1∑
k=0

fk(e−2πim/n)k, 0 ≤ m ≤ n− 1

DFT−1:

fk =
1
n

n−1∑
m=0

Fm(e2πik/n)m, 0 ≤ k ≤ n− 1

Fundamental Problem
DFT and DFT−1 efficiently

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 33 / 51

Another Motivation: Operations on Polynomials

A polynomial A(x) over C:

A(x) = a0 + a1x + a2x2 + · · ·+ an−1xn−1 =
n−1∑
j=0

ajxj.

A(x) is of degree k if ak is the highest non-zero coefficient. E.g,

B(x) = 3− (2− 4i)x + x2 has degree 2.

If m > degree(A), then m is called a degree bound of the
polynomial. E.g. , B(x) above has degree bounds 3, 4, . . .

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 34 / 51

Common Operations on Polynomials

A(x) = a0 + a1x + · · ·+ an−1xn−1

B(x) = b0 + b1x + · · ·+ bn−1xn−1

Addition

C(x) = A(x) + B(x) = (a0 + b0) + (a1 + b1)x + · · ·+ (an−1 + bn−1)xn−1

Multiplication

C(x) = A(x)B(x) = c0 + c1x + · · ·+ c2n−2x2n−2

cj =
k∑

j=0

ajbk−j, 0 ≤ k ≤ 2n− 2

These are important problems in scientific computing.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 35 / 51

Polynomial Representations

A(x) = a0 + a1x + . . . an−1xn−1.

Coefficient representation: a vector a

a = (a0, a1, . . . , an−1)

Point-value representation: a set of point-value pairs

{(x0, y0), (x1, y1), . . . , (xn−1, yn−1)}

where the xj are distinct, and yj = A(xj),∀j

Question
How do we know that a set of point-value pairs represent a unique
polynomial? What if there are two polynomials with the same set of
point-value pairs?

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 36 / 51

Uniqueness of P-V Representation, First Proof

Fundamental Theorem of Algebra (Gauss’ Ph.D thesis) A degree-n
polynomial over C has n complex roots
Corollary A degree-(n− 1) polynomial is uniquely specified by n
different values of x

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 37 / 51

Uniqueness of P-V Representation, Second Proof

Proof. 
1 x0 x2

0 . . . xn−1
0

1 x1 x2
1 . . . xn−1

1
...

...
... . . .

...
1 xn−1 x2

n−1 . . . xn−1
n−1




a0
a1
...

an−1

 =


y0
y1
...

yn−1


The matrix is called the Vandermonde matrix V(x0, . . . , xn−1), which
has non-zero determinant

det(V(x0, . . . , xn−1)) =
∏
p<q

(xp − xq).

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 38 / 51

Pros and Cons of Coefficient Representation

Computing the sum A(x) + B(x) takes Θ(n),
Evaluating A(xk) take Θ(n) with Horner’s rule

A(xk) = a0 + xk(a1 + xk(a2 + · · ·+ xk(an−2 + xkan−1) . . .)

(we assume + and ∗ of numbers take constant time)
Very convenient for user interaction
Computing the product A(x)B(x) takes Θ(n2), however

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 39 / 51

Pros and Cons of Point-Value Representation

Computing the sum A(x) + B(x) takes Θ(n),
Computing the product A(x)B(x) takes Θ(n) (need to have 2n
points from each of A and B though)
Inconvenient for user interaction

Problem
How to convert between the two representations efficiently?

Point-Value to Coefficient: interpolation problem
Coefficient to Point-Value: evaluation problem

Problem
How to multiply two polynomials in coefficient representation faster
than Θ(n2)?

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 40 / 51

The Interpolation Problem

Given n point-value pairs (xi, A(xi)), find coefficients a0, . . . , an−1

Gaussian elimination helps solve it in O(n3) time.
Lagrange’s formula helps solve it in Θ(n2) time:

A(x) =
n−1∑
k=0

yk

∏
j6=k(x− xj)∏

j6=k(xk − xj)

Fast Fourier Transform (FFT) helps perform the inverse DFT
operation (another way to express interpolation) in Θ(n lg n)-time.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 41 / 51

The Evaluation Problem

Given coefficients, evaluate A(x0), . . . , A(xn−1)
Horner’s rule gives Θ(n2)
Again FFT helps perform the DFT operation in Θ(n lg n)-time

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 42 / 51

The Polynomial Multiplication Problem

Input: A(x), B(x) of degree bound n in coefficient form
Output: C(x) = A(x)B(x) of degree bound 2n− 1 in coefficient form

1 Double degree bound: extend A(x)’s and B(x)’s coefficient
representations to be of degree bound 2n [Θ(n)]

2 Evaluate: compute point-value representations of A(x) and B(x) at
each of the 2nth roots of unity (with FFT of order 2n) [Θ(n lg n)]

3 Point-wise multiply: compute point-value representation of
C(x) = A(x)B(x) [Θ(n)]

4 Interpolate: compute coefficient representation of C(x) (with FFT
or order 2n) [Θ(n lg n)]

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 43 / 51

Reminders on Complex Numbers

C = {a + bi | a, b ∈ R}
wn = 1⇒ w is a complex nth root of unity
There are n of them: ωk

n, k = 0, . . . , n− 1, where ωn = e2πi/n is the
principal nth root of unity
In general, ωj

n = ωj mod n
n .

Lemma (Cancellation lemma)
ωdk

dn = ωk
n, n ≥ 0, k ≥ 0, and d > 0,

In particular, ωm
2m = ω2 = −1.

Lemma (Summation lemma)

Given n ≥ 1, k not divisible by n, then
∑n−1

j=0 (ωk
n)

j = 0.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 44 / 51

Discrete Fourier Transform (DFT)

Given A(x) =
∑n−1

j=0 ajxj, let yk = A(ωk
n), then the vector

y = (y0, y1, . . . , yn−1)

is the Discrete Fourier Transform (DFT) of the coefficient vector
a = (a0, a1, . . . , an−1).
We write

y = DFTn(a).

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 45 / 51

Fast Fourier Transform

FFT is an efficient D&C algorithm to compute DFT (a transformation)
Idea: suppose n = 2m
1. Divide

A(x) = a0 + a1x + a2x + · · ·+ a2m−1x2m−1

= a0 + a2x2 + a4x4 + · · ·+ a2m−2x2m−2 +
x(a1 + a3x2 + a5x4 + · · ·+ a2m−1x2m−2)

= A[0](x2) + xA[1](x2),

where

A[0](x) = a0 + a2x + a4x2 + · · ·+ a2m−2xm−1

A[1](x) = a1 + a3x + a5x2 + · · ·+ a2m−1xm−1

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 46 / 51

FFT (continue)

By the cancellation lemma,

(ω0
2m)2 = ω0

m, (ω1
2m)2 = ω1

m, . . . , (ωm−1
2m)2 = ωm−1

m

(ωm
2m)2 = ω0

m, (ωm+1
2m)2 = ω1

m, . . . , (ω2m−1
2m)2 = ωm−1

m

We thus get two smaller evaluation problems for A[0](x) and A[1](x):

A(ωj
2m) = A[0]((ωj

2m)2) + ωj
2mA[1]((ωj

2m)2)

= A[0](ωj
m) + ωj

2mA[1](ωj
m)

= A[0](ωj mod m
m) + ωj

2mA[1](ωj mod m
m)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 47 / 51

FFT (continue)

From a = (a0, a1, . . . , a2m−1), we want y = DFT2m(a).
2. Conquer

a[0] = (a0, a2, . . . , a2m−2), a[1] = (a1, a3, . . . , a2m−1)

y[0] = DFTm(a[0]), y[1] = DFTm(a[1])

3. Combine y computed from y[0] and y[1] as follows.
For 0 ≤ j ≤ m− 1:

yj = A(ωj
2m) = A[0](ωj

m) + ωj
2mA[1](ωj

m) = y[0]
j + ωj

2my[1]
j .

For m ≤ j ≤ 2m− 1:

yj = A(ωj
2m) = A[0](ωj−m

m)+ωj
2mA[1](ωj−m

m) = y[0]
j−m+ωj

2my[1]
j−m = y[0]

j−m−ωj−m
2m y[1]

j−m.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 48 / 51

FFT – Pseudo Code

RECURSIVE-FFT(a)
1: n← length(a) // n is a power of 2
2: if n = 1 then
3: return a
4: end if
5: ωn ← e2πi/n // principal nth root of unity
6: a[0] ← (a0, a2, . . . , an−2), a[1] ← (a1, a3, . . . , an−1)
7: y[0] ← RECURSIVE-FFT(a[0]), y[1] ← RECURSIVE-FFT(a[1])
8: w← 1 really meant w← ω0

n
9: for k← 0 to n/2− 1 do

10: yk ← y[0]
k + wy[1]

k , yk+n/2 ← y[0]
k − wy[1]

k
11: w← wωn

12: end for
13: return y

T(n) = 2T(n/2) + Θ(n)⇒ T(n) = Θ(n lg n)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 49 / 51

Inverse DFT – Interpolation at the Roots

Now that we know y, how to compute a = DFT−1
n (y)?

1 ωn ω2
n . . . ωn−1

n

1 ω2
n ω4

n . . . ω
2(n−1)
n

...
...

... . . .
...

1 ωn−1
n ω

2(n−1)
n . . . ω

(n−1)(n−1)
n




a0
a1
...

an−1

 =


y0
y1
...

yn−1


Need the inverse V−1

n of Vn := V(1, ωn, ω
2
n . . . , ωn−1

n)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 50 / 51

Inverse DFT – Interpolation at the Roots

Theorem
For 0 ≤ j, k ≤ n− 1,

[V−1
n]j,k =

ω−kj
n

n
.

Thus,

aj =
n−1∑
k=0

[V−1
n]j,kyk =

n−1∑
k=0

ω−kj
n

n
yk =

n−1∑
k=0

yk

n
(ω−j

n)k

aj = Y(ω−j
n), Y(x) =

y0

n
+

y1

n
x + · · ·+ yn−1

n
xn−1

We can easily modify the pseudo code for FFT to compute a from y in
Θ(n lg n)-time (homework!)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 431/531 Algorithm Analysis and Design 51 / 51

