Agenda

We've done

- Asymptotic Analysis
- Solving Recurrence Relations

Now

- Designing Algorithms with the Divide and Conquer Method

The Basic Idea

- Divide: Partition the problem into smaller ones
- Conquer: Recursively solve the smaller problems
- Combine: Use solutions to smaller problems to give solution to larger problem

Puzzle

Given an array $A[1, \ldots, n]$ of real numbers. Report the largest sum of numbers in a (contiguous) sub-array of A.

Merge Sort - The Canonical Example of D\&C

Given an array $A[1, \ldots, n]$ of numbers, sort it in ascending order

- Divide: $A[1, \ldots, n / 2], A[n / 2+1, \ldots, n]$
- Conquer: Sort $A[1, \ldots, n / 2]$, sort $A[n / 2+1, \ldots, n]$
- Combine: from two sorted sub-array, somehow "merge" them into a sorted array (see posted demo)
- Running time:

$$
T(n)=2 T(n / 2)+\Theta(n) \Rightarrow T(n)=O(n \lg n)
$$

- The key is the $\Theta(n)$-merge step.

Counting Inversions: Problem Definition

- Input: an array $A[1 . . n]$ of distinct integers
- Output: the number of pairs (i, j) such that $i<j, A[i]>A[j]$
- Applications: numerous
- Voting theory
- Collaborative filtering
- Sensitivity analysis of Google's ranking function
- Rank aggregation for meta-searching on the Web
- Non-parametric statistics (Kendalls' Tau function)
- Brute force: $O\left(n^{2}\right)$
- Can we do better?

Divide and Conquer

- Divide: $A_{1}=A[1, \ldots, n / 2], A_{2}=A[n / 2+1, \ldots, n]$
- Conquer: $a_{i}=$ number of inversions in $A_{i}, i=1,2$
- Combine: $a=$ number of "inter-inversions," i.e.

$$
a=\#\{(i, j) \mid i \leq n / 2, j>n / 2, A[i]>A[j]\}
$$

Return $a_{1}+a_{2}+a$.

- Main question: how to combine efficiently?
- Obvious approach: the combine step takes $\Theta\left(n^{2}\right)$

$$
T(n)=2 T(n / 2)+\Theta\left(n^{2}\right) \Rightarrow T(n)=\Theta\left(n^{2}\right)
$$

- Non-obvious: the combine step takes $\Theta(n)$ (see demo)

$$
T(n)=2 T(n / 2)+\Theta(n) \Rightarrow T(n)=\Theta(n \lg n)
$$

Multiplying Large Integers: Problem Definition

- Let i and j be two n-bit integers, compute $i j$.
- Straightforward multiplication takes $\Theta\left(n^{2}\right)$
- Naive D\&C:

$$
\begin{gathered}
i=a 2^{n / 2}+b \\
j=x 2^{n / 2}+y \\
i j=a x 2^{n}+(a y+b x) 2^{n / 2}+b y
\end{gathered}
$$

Running time:

$$
T(n)=4 T(n / 2)+\Theta(n) \Rightarrow T(n)=\Theta\left(n^{2}\right)
$$

Observation

Addition and shift take $\Theta(n)$, hence we want to reduce the number of (recursive) multiplications

(Smart) Divide and Conquer

- Want: compute three terms $a x, b y, a y+b x$ using less than 4 multiplications.
- Observation:

$$
\begin{aligned}
P_{1} & =a x \\
P_{2} & =b y \\
P_{3} & =(a+b)(x+y)=(a y+b x)+a x+b y \\
a y+b x & =P_{3}-P_{1}-P_{2}
\end{aligned}
$$

- Immediately we have a D\&C algorithm with running time

$$
T(n)=3 T(n / 2)+\Theta(n) \Rightarrow T(n)=\Theta\left(n^{\log _{2} 3}\right)=\Theta\left(n^{1.59}\right)
$$

Matrix Multiplication: Problem Definition

- \mathbf{X} and \mathbf{Y} are two $n \times n$ matrices. Compute $\mathbf{X Y}$.
- Straightforward method takes $\Theta\left(n^{3}\right)$.
- Naive D\&C:

$$
\begin{aligned}
& \mathbf{X Y}=\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{S} & \mathbf{T} \\
\mathbf{U} & \mathbf{V}
\end{array}\right] \\
&=\left[\begin{array}{ll}
\mathbf{A S}+\mathbf{B U} & \mathbf{A T}+\mathbf{B V} \\
\mathbf{C S}+\mathbf{D U} & \mathbf{C T}+\mathbf{D V}
\end{array}\right] \\
& T(n)=8 T(n / 2)+\Theta\left(n^{2}\right) \Rightarrow T(n)=\Theta\left(n^{3}\right)
\end{aligned}
$$

Smart D\&C: Strassen's Algorithm

- Idea: reduce the number of multiplications to be <8. E.g.,

$$
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right) \Rightarrow T(n)=n^{\log _{2} 7}=o\left(n^{3}\right)
$$

- Want: 4 terms (in lower-case letters for easy reading)

$$
\begin{aligned}
& a s+b u \\
& a t+b v \\
& c s+d u \\
& c t+d v
\end{aligned}
$$

Strassen's Brilliant Insight

$$
\begin{aligned}
& p_{1}=(a-c)(s+t)=\mathbf{a s}+\mathbf{a t}-\mathbf{c s}-\mathbf{c t} \\
& p_{2}=(b-d)(u+v)=\mathbf{b u}+\mathbf{b v}-\mathbf{d u}-\mathbf{d v} \\
& p_{3}=(a+d)(s+v)=\mathbf{a s}+\mathbf{d v}+a v+d s \\
& p_{4}=a(t-v)=\mathbf{a t}-a v \\
& p_{5}=(a+b) v=\mathbf{b v}+a v \\
& p_{6}=(c+d) s=\mathbf{c s}+d s \\
& p_{7}=d(u-s)=\mathbf{d u}-d s
\end{aligned}
$$

The rest is simply ... magical

$$
\begin{aligned}
a s+b u & =p_{2}+p_{3}-p_{5}+p_{7} \\
a t+b v & =p_{4}+p_{5} \\
c s+d u & =p_{6}+p_{7} \\
c t+d v & =p_{3}+p_{4}-p_{1}-p_{6}
\end{aligned}
$$

Quick Sort: Basic Idea

- Input: array A, two indices p, q
- Output: same array with $A[p, \ldots, q]$ sorted
- Idea: use divide \& conquer
- Divide: rearrange $A[p, \ldots, q]$ so that for some r in between p and q,

$$
\begin{aligned}
& A[i] \leq A[r] \forall i=p, \ldots, r-1 \\
& A[r] \leq A[j] \forall j=r+1, \ldots, q
\end{aligned}
$$

Compute r as part of this step.

- Conquer: Quicksort($A[p, \ldots, r-1])$, and Quicksort($A[r+1, \ldots, q]$)
- Combine: Nothing

Quicksort: Pseudo code

Quicksort (A, p, q)
1: if $p<q$ then
2: $\quad r \leftarrow \operatorname{Partition}(A, p, q)$
3: Quicksort($A, p, r-1)$
4: Quicksort($A, r+1, q$)
end if

Rearrange $A[p . . q]$: partitioning

	i	p, j							q		
\ldots		3	1	8	5	6	2	7	4		\ldots
		p, i	j						q		
\ldots		3	1	8	5	6	2	7	4		\ldots
		p	i	j					q		
\ldots		3	1	8	5	6	2	7	4		\ldots
		p	i		j				q		
\ldots		3	1	8	5	6	2	7	4		\ldots
		p	i			j			q		
\ldots		3	1	8	5	6	2	7	4		\ldots
		p	i				j		q		
\ldots		3	1	8	5	6	2	7	4	\ldots	
\ldots		3	1	2	5	6	8	7	4		\ldots
\ldots		3	1	2	5	6	8	7	4		\ldots
\ldots		3	1	2	4	6	8	7	5		\ldots

Partitioning: pseudo code

The following code partitions $A[p . . q]$ around $A[q]$
Partition (A, p, q)
1: $x \leftarrow A[q]$
2: $i \leftarrow p-1$
3: $\mathbf{f o r} j \leftarrow p$ to q do
4: if $A[j] \leq x$ then
5: $\quad \operatorname{swap} A[i+1]$ and $A[j]$
6: $\quad i \leftarrow i+1$
7: end if
8: end for
9: return i

Question

How would you partition around $A[m]$ for some m : $p \leq m \leq q$?

Worst case running time

- Let $T(n)$ be the worst-case running time of Quicksort.
- Then $T(n)=\Omega\left(n^{2}\right)$ (why?)
- We shall show $T(n)=O\left(n^{2}\right)$, implying $T(n)=\Theta\left(n^{2}\right)$.

$$
T(n)=\max _{0 \leq r \leq n-1}(T(r)+T(n-r-1))+\Theta(n)
$$

$T(n)=O\left(n^{2}\right)$ follows by induction.

Quicksort is "most often" quicker than the worst case

Worst-case partitioning:

$$
T(n)=T(n-1)+T(0)+\Theta(n)=T(n-1)+\Theta(n)
$$

yielding $T(n)=O\left(n^{2}\right)$.
Best-case partitioning:

$$
T(n) \approx 2 T(n / 2)+\Theta(n)
$$

yielding $T(n)=O(n \lg n)$.
Somewhat balanced partitioning:

$$
T(n) \approx T\left(\frac{n}{10}\right)+T\left(9 \frac{n}{10}\right)+\Theta(n)
$$

yielding $T(n)=O(n \lg n)$ (recursion-tree).

Average-case running time: a sketch

Claim

The running time of Quicksort is proportional to the number of comparisons

Let M_{n} be the expected number of comparisons (what's the sample space?).
Let X be the random variable counting the number of comparisons.

$$
\begin{aligned}
M_{n}=E[X] & =\sum_{j=1}^{n} E[X \mid A[q] \text { is the } j \text { th least number }] \frac{1}{n} \\
& =\frac{1}{n} \sum_{j=1}^{n}\left(n-1+M_{j-1}+M_{n-j}\right) \\
& =n-1+\frac{2}{n} \sum_{j=0}^{n-1} M_{j}
\end{aligned}
$$

Randomized Quicksort

Randomized-Quicksort(A, p, q)
1: if $p<q$ then
2: $\quad r \leftarrow$ Randomized-Partition (A, p, q)
3: Randomized-Quicksort $(A, p, r-1)$
4: Randomized-Quicksort $(A, r+1, q)$
5: end if
Randomized-Partition (A, p, q)
1: pick m at random between p, q
2: $\operatorname{swap} A[m]$ and $A[q]$
3: $x \leftarrow A[q] ; i \leftarrow p-1$
4: $\mathbf{f o r} j \leftarrow p$ to q do
5: \quad if $A[j] \leq x$ then
6: $\quad \operatorname{swap} A[i+1]$ and $A[j] ; \quad i \leftarrow i+1$
7: end if
8: end for
9: return i

The Selection Problem: Definition

- The i th order statistic of a set of n numbers is the i th smallest number
- The median is the $\lfloor n / 2\rfloor$ th order statistic
- Selection problem: find the i th order statistic as fast as possible Conceivable that the running time is proportional to the number of comparisons.
- Find a way to determine the 2nd order statistic using as few comparisons as possible
- How about the 3rd order statistic?

Selection in Worst-case Linear Time

- Input: $A[p, \ldots, q]$ and $i, 1 \leq i \leq q-p+1$
- Output: the i th order statistic of $A[p, \ldots, q]$
- Idea: same as Randomized-Selection, but also try to guarantee a good split.
- Find $A[m]$ which is not too far left nor too far right
- Then, split around $A[m]$

The idea is from: Manuel Blum, Vaughan Pratt, Robert E. Tarjan, Robert W. Floyd, and Ronald L. Rivest, "Time bounds for selection." Fourth Annual ACM Symposium on the Theory of Computing (Denver, Colo., 1972). Also, J. Comput. System Sci. 7 (1973), 448-461.

Linear-Selection: Pseudo-Code

Linear-Select (A, i)

1: "Divide" n elements into $\left\lceil\frac{n}{5}\right\rceil$ groups,

- ไn \rfloor groups of size 5 , and
- $\left\lceil\frac{n}{5}\right\rceil-\left\lfloor\frac{n}{5}\right\rfloor$ group of size $n-5\left\lfloor\frac{n}{5}\right\rfloor$

2: Find the median of each group
3: Find x : the median of the medians by calling Linear-Select recursively
4: Swap $A[m]$ with $A[n]$, where $A[m]=x$
5: $r \leftarrow \operatorname{Partition}(A, 1, n)$
6: if $r=i$ then
7: return $A[r]$
8: else
9: recursively go left or right accordingly
10: end if

Linear-Select: Analysis

- $T(n)$ denotes running time
- Lines 1 \& 2: $\Theta(n)$
- Line 3: $T\left(\left\lceil\frac{n}{5}\right\rceil\right)$
- Lines 4, 5: $\Theta(n)$
- Lines 6-10: at most $T(f(n))$, where $f(n)$ is the larger of two numbers:
- number of elements to the left of $A[r]$,
- number of elements to the right of $A[r]$
$f(n)$ could be shown to be at most $\frac{7 n}{10}+6$, hence

$$
T(n) \leq \begin{cases}\Theta(1) & \text { if } n \leq 71 \\ T\left(\left\lceil\frac{n}{5}\right\rceil\right)+T\left(\left\lfloor\frac{7 n}{10}+6\right\rfloor\right)+\Theta(n) & \text { if } n>71\end{cases}
$$

Induction gives $T(n)=O(n)$

Fast Fourier Transform: Motivations

- Roughly, Fourier Transforms allow us to look at a function in two different ways
- In (analog and digital) communication theory:
- time domain $\xrightarrow{F T}$ frequency domain

- For instance: every (well-behaved) T-periodic signal can be written as a sum of sine and cosine waves (sinusoids).

Fourier Series of Periodic Functions

$$
x(t)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(2 \pi n f_{0} t\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(2 \pi n f_{0} t\right)
$$

$f_{0}=1 / T$ is the fundamental frequency.
Euler's formulas:

$$
\begin{aligned}
\frac{a_{0}}{2} & =f_{0} \int_{t_{0}}^{t_{0}+T} x(t) d t \\
\frac{a_{n}}{2} & =f_{0} \int_{t_{0}}^{t_{0}+T} x(t) \cos \left(2 \pi n f_{0} t\right) d t \\
\frac{b_{n}}{2} & =f_{0} \int_{t_{0}}^{t_{0}+T} x(t) \sin \left(2 \pi n f_{0} t\right) d x
\end{aligned}
$$

Problem

Find a natural science without an Euler's formula

Continuous Fourier Transforms of Aperiodic Signals

- Basically, just a limit case of Fourier series when $T \rightarrow \infty$
- Applications are numerous: DSP, DIP, astronomical data analysis, seismic, optics, acoustics, etc.
- Forward Fourier transform

$$
F(\nu)=\int_{-\infty}^{\infty} f(t) e^{-2 \pi i \nu t} d t
$$

- Inverse Fourier transform

$$
f(t)=\int_{-\infty}^{\infty} F(\nu) e^{2 \pi i t \nu} d \nu
$$

(Physicists like to use the angular frequency $\omega=2 \pi \nu$)

Discrete Fourier Transforms

- Computers can’t handle continuous signals \Rightarrow discretize it
- Sampling at n places:

$$
f_{k}=f\left(t_{k}\right), \quad t_{k}=k \Delta, \quad k=0, \ldots, n-1
$$

- DFT (continuous \rightarrow discrete, integral \rightarrow sum)

$$
F_{m}=\sum_{k=0}^{n-1} f_{k}\left(e^{-2 \pi i m / n}\right)^{k}, 0 \leq m \leq n-1
$$

- DFT^{-1} :

$$
f_{k}=\frac{1}{n} \sum_{m=0}^{n-1} F_{m}\left(e^{2 \pi i k / n}\right)^{m}, 0 \leq k \leq n-1
$$

Fundamental Problem
 DFT and DFT ${ }^{-1}$ efficiently

Another Motivation: Operations on Polynomials

- A polynomial $A(x)$ over \mathbb{C} :

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}=\sum_{j=0}^{n-1} a_{j} x^{j}
$$

- $A(x)$ is of degree k if a_{k} is the highest non-zero coefficient. E.g,

$$
B(x)=3-(2-4 i) x+x^{2} \text { has degree } 2 .
$$

- If $m>\operatorname{degree}(A)$, then m is called a degree bound of the polynomial. E.g. , $B(x)$ above has degree bounds $3,4, \ldots$

Common Operations on Polynomials

$$
\begin{aligned}
A(x) & =a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1} \\
B(x) & =b_{0}+b_{1} x+\cdots+b_{n-1} x^{n-1}
\end{aligned}
$$

Addition

$$
C(x)=A(x)+B(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n-1}+b_{n-1}\right) x^{n-1}
$$

Multiplication

$$
\begin{gathered}
C(x)=A(x) B(x)=c_{0}+c_{1} x+\cdots+c_{2 n-2} x^{2 n-2} \\
c_{j}=\sum_{j=0}^{k} a_{j} b_{k-j}, \quad 0 \leq k \leq 2 n-2
\end{gathered}
$$

These are important problems in scientific computing.

Polynomial Representations

$$
A(x)=a_{0}+a_{1} x+\ldots a_{n-1} x^{n-1}
$$

Coefficient representation: a vector a

$$
\mathbf{a}=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)
$$

Point-value representation: a set of point-value pairs

$$
\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\}
$$

where the x_{j} are distinct, and $y_{j}=A\left(x_{j}\right), \forall j$

Question

How do we know that a set of point-value pairs represent a unique polynomial? What if there are two polynomials with the same set of point-value pairs?

Uniqueness of P-V Representation, First Proof

Fundamental Theorem of Algebra (Gauss' Ph.D thesis) A degree-n polynomial over \mathbb{C} has n complex roots
Corollary A degree- $(n-1)$ polynomial is uniquely specified by n different values of x

Uniqueness of P-V Representation, Second Proof

Proof.

$$
\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{n-1} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
1 & x_{n-1} & x_{n-1}^{2} & \ldots & x_{n-1}^{n-1}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n-1}
\end{array}\right]
$$

The matrix is called the Vandermonde matrix $V\left(x_{0}, \ldots, x_{n-1}\right)$, which has non-zero determinant

$$
\operatorname{det}\left(V\left(x_{0}, \ldots, x_{n-1}\right)\right)=\prod_{p<q}\left(x_{p}-x_{q}\right) .
$$

Pros and Cons of Coefficient Representation

- Computing the sum $A(x)+B(x)$ takes $\Theta(n)$,
- Evaluating $A\left(x_{k}\right)$ take $\Theta(n)$ with Horner's rule

$$
A\left(x_{k}\right)=a_{0}+x_{k}\left(a_{1}+x_{k}\left(a_{2}+\cdots+x_{k}\left(a_{n-2}+x_{k} a_{n-1}\right) \ldots\right)\right.
$$

(we assume + and $*$ of numbers take constant time)

- Very convenient for user interaction
- Computing the product $A(x) B(x)$ takes $\Theta\left(n^{2}\right)$, however

Pros and Cons of Point-Value Representation

- Computing the sum $A(x)+B(x)$ takes $\Theta(n)$,
- Computing the product $A(x) B(x)$ takes $\Theta(n)$ (need to have $2 n$ points from each of A and B though)
- Inconvenient for user interaction

Problem

How to convert between the two representations efficiently?

- Point-Value to Coefficient: interpolation problem
- Coefficient to Point-Value: evaluation problem

Problem

How to multiply two polynomials in coefficient representation faster than $\Theta\left(n^{2}\right)$?

The Interpolation Problem

Given n point-value pairs $\left(x_{i}, A\left(x_{i}\right)\right)$, find coefficients a_{0}, \ldots, a_{n-1}

- Gaussian elimination helps solve it in $O\left(n^{3}\right)$ time.
- Lagrange's formula helps solve it in $\Theta\left(n^{2}\right)$ time:

$$
A(x)=\sum_{k=0}^{n-1} y_{k} \frac{\prod_{j \neq k}\left(x-x_{j}\right)}{\prod_{j \neq k}\left(x_{k}-x_{j}\right)}
$$

- Fast Fourier Transform (FFT) helps perform the inverse DFT operation (another way to express interpolation) in $\Theta(n \lg n)$-time.

The Evaluation Problem

Given coefficients, evaluate $A\left(x_{0}\right), \ldots, A\left(x_{n-1}\right)$

- Horner's rule gives $\Theta\left(n^{2}\right)$
- Again FFT helps perform the DFT operation in $\Theta(n \lg n)$-time

The Polynomial Multiplication Problem

Input: $A(x), B(x)$ of degree bound n in coefficient form
Output: $C(x)=A(x) B(x)$ of degree bound $2 n-1$ in coefficient form
(1) Double degree bound: extend $A(x)$'s and $B(x)$'s coefficient representations to be of degree bound $2 n[\Theta(n)]$
(2) Evaluate: compute point-value representations of $A(x)$ and $B(x)$ at each of the $2 n$th roots of unity (with FFT of order $2 n$) $[\Theta(n \lg n)]$
(3) Point-wise multiply: compute point-value representation of $C(x)=A(x) B(x)[\Theta(n)]$
(4) Interpolate: compute coefficient representation of $C(x)$ (with FFT or order $2 n)[\Theta(n \lg n)]$

Reminders on Complex Numbers

- $\mathbb{C}=\{a+b i \mid a, b \in \mathbb{R}\}$
- $w^{n}=1 \Rightarrow w$ is a complex nth root of unity
- There are n of them: $\omega_{n}^{k}, k=0, \ldots, n-1$, where $\omega_{n}=e^{2 \pi i / n}$ is the principal nth root of unity
- In general, $\omega_{n}^{j}=\omega_{n}^{j \bmod n}$.

Lemma (Cancellation lemma)
$\omega_{d n}^{d k}=\omega_{n}^{k}, n \geq 0, k \geq 0$, and $d>0$,
In particular, $\omega_{2 m}^{m}=\omega_{2}=-1$.

Lemma (Summation lemma)

Given $n \geq 1, k$ not divisible by n, then $\sum_{j=0}^{n-1}\left(\omega_{n}^{k}\right)^{j}=0$.

Discrete Fourier Transform (DFT)

Given $A(x)=\sum_{j=0}^{n-1} a_{j} x^{j}$, let $y_{k}=A\left(\omega_{n}^{k}\right)$, then the vector

$$
\mathbf{y}=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)
$$

is the Discrete Fourier Transform (DFT) of the coefficient vector $\mathbf{a}=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$.
We write

$$
\mathbf{y}=\mathrm{DFT}_{n}(\mathbf{a}) .
$$

Fast Fourier Transform

FFT is an efficient D\&C algorithm to compute DFT (a transformation)
Idea: suppose $n=2 m$

1. Divide

$$
\begin{aligned}
A(x)= & a_{0}+a_{1} x+a_{2} x+\cdots+a_{2 m-1} x^{2 m-1} \\
= & a_{0}+a_{2} x^{2}+a_{4} x^{4}+\cdots+a_{2 m-2} x^{2 m-2}+ \\
& x\left(a_{1}+a_{3} x^{2}+a_{5} x^{4}+\cdots+a_{2 m-1} x^{2 m-2}\right) \\
= & A^{[0]}\left(x^{2}\right)+x A^{[1]}\left(x^{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& A^{[0]}(x)=a_{0}+a_{2} x+a_{4} x^{2}+\cdots+a_{2 m-2} x^{m-1} \\
& A^{[1]}(x)=a_{1}+a_{3} x+a_{5} x^{2}+\cdots+a_{2 m-1} x^{m-1}
\end{aligned}
$$

FFT (continue)

By the cancellation lemma,

$$
\begin{gathered}
\left(\omega_{2 m}^{0}\right)^{2}=\omega_{m}^{0}, \quad\left(\omega_{2 m}^{1}\right)^{2}=\omega_{m}^{1}, \quad \ldots, \quad\left(\omega_{2 m}^{m-1}\right)^{2}=\omega_{m}^{m-1} \\
\left(\omega_{2 m}^{m}\right)^{2}=\omega_{m}^{0}, \quad\left(\omega_{2 m}^{m+1}\right)^{2}=\omega_{m}^{1}, \quad \ldots, \quad\left(\omega_{2 m}^{2 m-1}\right)^{2}=\omega_{m}^{m-1}
\end{gathered}
$$

We thus get two smaller evaluation problems for $A^{[0]}(x)$ and $A^{[1]}(x)$:

$$
\begin{aligned}
A\left(\omega_{2 m}^{j}\right) & =A^{[0]}\left(\left(\omega_{2 m}^{j}\right)^{2}\right)+\omega_{2 m}^{j} A^{[1]}\left(\left(\omega_{2 m}^{j}\right)^{2}\right) \\
& =A^{[0]}\left(\omega_{m}^{j}\right)+\omega_{2 m}^{j} A^{[1]}\left(\omega_{m}^{j}\right) \\
& =A^{[0]}\left(\omega_{m}^{j \bmod m}\right)+\omega_{2 m}^{j} A^{[1]}\left(\omega_{m}^{j \bmod m}\right)
\end{aligned}
$$

FFT (continue)

From $\mathbf{a}=\left(a_{0}, a_{1}, \ldots, a_{2 m-1}\right)$, we want $\mathbf{y}=\mathrm{DFT}_{2 m}(\mathbf{a})$.
2. Conquer

$$
\begin{gathered}
\mathbf{a}^{[0]}=\left(a_{0}, a_{2}, \ldots, a_{2 m-2}\right), \quad \mathbf{a}^{[1]}=\left(a_{1}, a_{3}, \ldots, a_{2 m-1}\right) \\
\mathbf{y}^{[0]}=\operatorname{DFT}_{m}\left(\mathbf{a}^{[0]}\right), \quad \mathbf{y}^{[1]}=\operatorname{DFT}_{m}\left(\mathbf{a}^{[1]}\right)
\end{gathered}
$$

3. Combine \mathbf{y} computed from $\mathbf{y}^{[0]}$ and $\mathbf{y}^{[1]}$ as follows.

For $0 \leq j \leq m-1$:

$$
y_{j}=A\left(\omega_{2 m}^{j}\right)=A^{[0]}\left(\omega_{m}^{j}\right)+\omega_{2 m}^{j} A^{[1]}\left(\omega_{m}^{j}\right)=y_{j}^{[0]}+\omega_{2 m}^{j} y_{j}^{[1]} .
$$

For $m \leq j \leq 2 m-1$:
$y_{j}=A\left(\omega_{2 m}^{j}\right)=A^{[0]}\left(\omega_{m}^{j-m}\right)+\omega_{2 m}^{j} A^{[1]}\left(\omega_{m}^{j-m}\right)=y_{j-m}^{[0]}+\omega_{2 m}^{j} y_{j-m}^{[1]}=y_{j-m}^{[0]}-\omega_{2 m}^{j-m} y_{j-m}^{[1]}$

FFT - Pseudo Code

Recursive-FFT(a)

1: $n \leftarrow \operatorname{length}(\mathbf{a}) / / n$ is a power of 2
2: if $n=1$ then

3: return a

4: end if
5: $\omega_{n} \leftarrow e^{2 \pi i / n} \quad / /$ principal nth root of unity
6: $\mathbf{a}^{[0]} \leftarrow\left(a_{0}, a_{2}, \ldots, a_{n-2}\right), \mathbf{a}^{[1]} \leftarrow\left(a_{1}, a_{3}, \ldots, a_{n-1}\right)$
7: $\mathbf{y}^{[0]} \leftarrow$ Recursive-FFT $\left(\mathbf{a}^{[0]}\right), \mathbf{y}^{[1]} \leftarrow$ Recursive-FFT $\left(\mathbf{a}^{[1]}\right)$
8: $w \leftarrow 1$ really meant $w \leftarrow \omega_{n}^{0}$
9: for $k \leftarrow 0$ to $n / 2-1$ do
10: $\quad y_{k} \leftarrow y_{k}^{[0]}+w y_{k}^{[1]}, \quad y_{k+n / 2} \leftarrow y_{k}^{[0]}-w y_{k}^{[1]}$
11: $w \leftarrow w \omega_{n}$
12: end for
13: return y

$$
T(n)=2 T(n / 2)+\Theta(n) \Rightarrow T(n)=\Theta(n \lg n)
$$

Inverse DFT - Interpolation at the Roots

Now that we know \mathbf{y}, how to compute $\mathbf{a}=\operatorname{DFT}_{n}^{-1}(\mathbf{y})$?

$$
\left[\begin{array}{ccccc}
1 & \omega_{n} & \omega_{n}^{2} & \ldots & \omega_{n}^{n-1} \\
1 & \omega_{n}^{2} & \omega_{n}^{4} & \ldots & \omega_{n}^{2(n-1)} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
1 & \omega_{n}^{n-1} & \omega_{n}^{2(n-1)} & \ldots & \omega_{n}^{(n-1)(n-1)}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n-1}
\end{array}\right]
$$

Need the inverse V_{n}^{-1} of $V_{n}:=V\left(1, \omega_{n}, \omega_{n}^{2} \ldots, \omega_{n}^{n-1}\right)$

Inverse DFT - Interpolation at the Roots

Theorem

For $0 \leq j, k \leq n-1$,

$$
\left[V_{n}^{-1}\right]_{j, k}=\frac{\omega_{n}^{-k j}}{n}
$$

Thus,

$$
\begin{aligned}
& a_{j}=\sum_{k=0}^{n-1}\left[V_{n}^{-1}\right]_{j, k} y_{k}=\sum_{k=0}^{n-1} \frac{\omega_{n}^{-k j}}{n} y_{k}=\sum_{k=0}^{n-1} \frac{y_{k}}{n}\left(\omega_{n}^{-j}\right)^{k} \\
& a_{j}=Y\left(\omega_{n}^{-j}\right), \quad Y(x)=\frac{y_{0}}{n}+\frac{y_{1}}{n} x+\cdots+\frac{y_{n-1}}{n} x^{n-1}
\end{aligned}
$$

We can easily modify the pseudo code for FFT to compute a from \mathbf{y} in $\Theta(n \lg n)$-time (homework!)

