We've done

- Greedy Method
- Divide and Conquer

Now

- Designing Algorithms with the Dynamic Programming Method

Outline

(1) What is Dynamic Programming?
(2) Weighted Inverval Scheduling
(3) Longest Common Subsequence
(4) Segmented Least Squares
(5) Matrix-Chain Multiplication (MCM)
(6) 01-Knapsack and Subset Sum
(7) Sequence Alignment
(8) Shortest Paths in Graphs

- Bellman-Ford Algorithm
- All-Pairs Shortest Paths

A Quote from Richard Bellman

"Eye of the Hurricane: An Autobiography"

I spent the Fall quarter (of 1950) at RAND. My first task was to find a name for multistage decision processes. An interesting question is, Where did the name, dynamic programming, come from? The 1950s were not good years for mathematical research. We had a very interesting gentlemen in Washington named Wilson. He was Secretary of Defense, and he actually had a pathological fear and hatred of the word, research. ... I felt I had to do something to shield Wilson and the Air Force from the fact that I was really doing mathematics inside the RAND Corporation. ... Thus, I thought dynamic programming was a good name. It was something not even a Congressmann could object to. So I used it as an umbrella for my activities.

A General Description

A General Description

1 Identify the sub-problems

- Often sub-problems share subsub-problems
- Total number of (sub) ${ }^{i}$-problems is "small" (a polynomial number)

A General Description

1 Identify the sub-problems

- Often sub-problems share subsub-problems
- Total number of (sub) ${ }^{i}$-problems is "small" (a polynomial number)

2 Write a recurrence for the objective function: solution to a problem can be computed from solutions to sub-problems

- Be careful with the base cases

A General Description

1 Identify the sub-problems

- Often sub-problems share subsub-problems
- Total number of (sub) ${ }^{i}$-problems is "small" (a polynomial number)

2 Write a recurrence for the objective function: solution to a problem can be computed from solutions to sub-problems

- Be careful with the base cases

3 Investigate the recurrence to see how to use a "table" to solve it

A General Description

1 Identify the sub-problems

- Often sub-problems share subsub-problems
- Total number of (sub) ${ }^{i}$-problems is "small" (a polynomial number)

2 Write a recurrence for the objective function: solution to a problem can be computed from solutions to sub-problems

- Be careful with the base cases

3 Investigate the recurrence to see how to use a "table" to solve it
4 Design appropriate data structure(s) to construct an optimal solution

A General Description

1 Identify the sub-problems

- Often sub-problems share subsub-problems
- Total number of (sub) ${ }^{i}$-problems is "small" (a polynomial number)

2 Write a recurrence for the objective function: solution to a problem can be computed from solutions to sub-problems

- Be careful with the base cases

3 Investigate the recurrence to see how to use a "table" to solve it
4 Design appropriate data structure(s) to construct an optimal solution
5 Pseudo code

A General Description

1 Identify the sub-problems

- Often sub-problems share subsub-problems
- Total number of (sub) ${ }^{i}$-problems is "small" (a polynomial number)

2 Write a recurrence for the objective function: solution to a problem can be computed from solutions to sub-problems

- Be careful with the base cases

3 Investigate the recurrence to see how to use a "table" to solve it
4 Design appropriate data structure(s) to construct an optimal solution
5 Pseudo code
6 Analysis of time and space

Outline

(1) What is Dynamic Programming?
(2) Weighted Inverval Scheduling
(3) Longest Common Subsequence
(4) Segmented Least Squares
(5) Matrix-Chain Multiplication (MCM)
(6) 01-Knapsack and Subset Sum
(7) Sequence Alignment
(8) Shortest Paths in Graphs

- Bellman-Ford Algorithm
- All-Pairs Shortest Paths

Weighted Interval Scheduling: Problem Definition

- Each interval I_{j} now has a weight $w_{j} \in \mathbb{Z}^{+}$
- Find non-overlapping intervals with maximum total weight

The Structure of an Optimal Solution

The Structure of an Optimal Solution

- Order intervals so that $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$
- For each j, let $p(j)$ be the largest index $i<j$ such that I_{i} and I_{j} do not overlap; $p(j)=0$ if no such i

The Structure of an Optimal Solution

- Order intervals so that $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$
- For each j, let $p(j)$ be the largest index $i<j$ such that I_{i} and I_{j} do not overlap; $p(j)=0$ if no such i
$p(1)=0$
$p(2)=0$
$p(3)=0$
$p(4)=1$
$p(5)=0$
$p(6)=2$
$p(7)=3$
$\mathrm{p}(8)=5$

- Let \mathcal{O} be any optimal solution

The Structure of an Optimal Solution

- Order intervals so that $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$
- For each j, let $p(j)$ be the largest index $i<j$ such that I_{i} and I_{j} do not overlap; $p(j)=0$ if no such i

- Let \mathcal{O} be any optimal solution
- If $I_{n} \in \mathcal{O}$, then $\mathcal{O}^{\prime}=\mathcal{O}-\left\{I_{n}\right\}$ must be optimal for $\left\{I_{1}, \ldots, I_{p(n)}\right\}$
- Else $I_{n} \notin \mathcal{O}$, then \mathcal{O} must be optimal for $\left\{I_{1}, \ldots, I_{n-1}\right\}$

The Recurrence

- Identify subproblems: optimal solution for $\left\{I_{1}, \ldots, I_{n}\right\}$ seems to depend on some optimal solutions to $\left\{I_{1}, \ldots, I_{j}\right\}, j=0 . . n$
- For $j \leq n$, let $\operatorname{OPT}(j)$ be the cost of an optimal solution to $\left\{I_{1}, \ldots, I_{j}\right\}$
- Crucial Observation:

$$
\operatorname{OPT}(j)= \begin{cases}\max \left\{w_{j}+\operatorname{OPT}(p(j)), \operatorname{OPT}(j-1)\right\} & j \geq 1 \\ 0 & j=0\end{cases}
$$

The Recurrence

- Identify subproblems: optimal solution for $\left\{I_{1}, \ldots, I_{n}\right\}$ seems to depend on some optimal solutions to $\left\{I_{1}, \ldots, I_{j}\right\}, j=0 . . n$
- For $j \leq n$, let $\operatorname{OPT}(j)$ be the cost of an optimal solution to $\left\{I_{1}, \ldots, I_{j}\right\}$
- Crucial Observation:

$$
\operatorname{OPT}(j)= \begin{cases}\max \left\{w_{j}+\operatorname{OPT}(p(j)), \operatorname{OPT}(j-1)\right\} & j \geq 1 \\ 0 & j=0\end{cases}
$$

Related question

How do we compute the array $p(j)$ efficiently?

First Attempt at Implementing the Idea

Compute-Opt(j)
1: if $j \leq 0$ then
2: Return 0
else
4: Return $\max \left\{w_{j}+\operatorname{Compute-Opt}(p(j)), \operatorname{Compute-Opt}(j-1)\right\}$
5: end if

First Attempt at Implementing the Idea

Compute-Opt(j)
1: if $j \leq 0$ then
2: Return 0
3: else
4: Return $\max \left\{w_{j}+\operatorname{Compute-Opt}(p(j))\right.$, $\left.\operatorname{Compute-Opt}(j-1)\right\}$
5: end if
Proof of correctness: often not needed, because it can easily be done by induction.

First Attempt at Implementing the Idea

Compute-Opt(j)
1: if $j \leq 0$ then
2: Return 0
3: else
4: Return $\max \left\{w_{j}+\operatorname{Compute-Opt}(p(j))\right.$, $\left.\operatorname{Compute-Opt}(j-1)\right\}$
5: end if
Proof of correctness: often not needed, because it can easily be done by induction. (You do have to justify your recurrence though!)

First Attempt was Bad

- For the same reason FibA was bad.

$$
p(1)=0, p(j)=j-2
$$

Fixing the Algorithm: a Top-Down Approach

Fixing the Algorithm: a Top-Down Approach

- Key Idea of Dynamic Programming: use a table, in this case an array, to store already computed things

Fixing the Algorithm: a Top-Down Approach

- Key Idea of Dynamic Programming: use a table, in this case an array, to store already computed things
- Use $M[0 . . n]$ to store $\operatorname{OPT}(0), \ldots, \operatorname{OPT}(n)$, initially fill M with -1 's

Fixing the Algorithm: a Top-Down Approach

- Key Idea of Dynamic Programming: use a table, in this case an array, to store already computed things
- Use $M[0 . . n]$ to store $\operatorname{OPT}(0), \ldots, \operatorname{OPT}(n)$, initially fill M with -1 's

M-Comp-Opt(j)
: if $j=0$ then
Return 0
else if $M[j] \neq-1$ then
4: Return $M[j]$
5: else
6: $\quad M[j] \leftarrow \max \left\{w_{j}+\right.$ M-Comp-Opt $(p(j))$, M-Comp-Opt $\left.(j-1)\right\}$
7: Return $M[j]$
8: end if

- The top-down approach is often called memoization
- Running time: $O(n)$.

Fixing the Algorithm: a Bottom-Up Approach

```
Comp-Opt( \(j\) )
    1: \(M[0] \leftarrow 0\)
    for \(j=1\) to \(n\) do
        \(M[j] \leftarrow \max \left\{w_{j}+M[p(j)], M[j-1]\right\}\)
    end for
```


Fixing the Algorithm: a Bottom-Up Approach

Comp-Opt(j)
1: $M[0] \leftarrow 0$
2: for $j=1$ to n do
3: $\quad M[j] \leftarrow \max \left\{w_{j}+M[p(j)], M[j-1]\right\}$
4: end for
Bottom-Up vs Top-Down

- Bottom-Up solves all subproblems, Top-Down only solves necessary sub-problems
- Bottom-Up does not involve many function calls, and thus often is faster

Constructing an Optimal Schedule

Construct-Solution (j)
1: if $j=0$ then
2: Return \emptyset
3: else if $w_{j}+M[p(j)] \geq M[j-1]$ then
4: Return Construct-Solution $(p(j)) \cup\left\{I_{j}\right\}$
5: else
6: Return $\operatorname{Construct-Solution~}(p(j-1))$
7: end if

Outline

(1) What is Dynamic Programming?
(2) Weighted Inverval Scheduling
(3) Longest Common Subsequence
(4) Segmented Least Squares
(5) Matrix-Chain Multiplication (MCM)
(6) 01-Knapsack and Subset Sum
(7) Sequence Alignment
(8) Shortest Paths in Graphs

- Bellman-Ford Algorithm
- All-Pairs Shortest Paths

Longest Common Subsequence: Problem Definition

$$
\begin{array}{llllllllllll}
\mathrm{X} & = & \mathrm{t} & \mathrm{~h} & \mathrm{i} & \mathrm{~s} & \mathrm{i} & \mathrm{~s} & \mathrm{c} & \mathrm{r} & \mathrm{a} & \mathrm{z} \\
\mathrm{Z} & \mathrm{y} \\
\mathrm{Z} & & \mathrm{~h} & \mathrm{i} & & & & c & & a & \mathrm{z} & \mathrm{y}
\end{array}
$$

Z is a subsequence of X.

$$
\begin{aligned}
& X=t \quad h \quad i \quad s \quad i \quad s \quad c \quad r \quad a \quad z \quad y
\end{aligned}
$$

So, $Z=[t, i, s, i]$ is a common subsequence of X and Y

The Problem

Given 2 sequences X and Y of lengths m and n, respectively, find a common subsequence Z of longest length

The Structure of an Optimal Solution

- Denote $X=\left[x_{1}, \ldots, x_{m}\right], Y=\left[y_{1}, \ldots, y_{n}\right]$
- Key observation: let $\operatorname{LCS}(X, Y)$ be the length of an LCS of X and Y

The Structure of an Optimal Solution

- Denote $X=\left[x_{1}, \ldots, x_{m}\right], Y=\left[y_{1}, \ldots, y_{n}\right]$
- Key observation: let $\operatorname{LCS}(X, Y)$ be the length of an LCS of X and Y - If $x_{m}=y_{n}$, then

$$
\operatorname{LCS}(X, Y)=1+\operatorname{LCS}\left(\left[x_{1}, \ldots, x_{m-1}\right],\left[y_{1}, \ldots, y_{n-1}\right]\right)
$$

The Structure of an Optimal Solution

- Denote $X=\left[x_{1}, \ldots, x_{m}\right], Y=\left[y_{1}, \ldots, y_{n}\right]$
- Key observation: let $\operatorname{LCS}(X, Y)$ be the length of an LCS of X and Y - If $x_{m}=y_{n}$, then

$$
\operatorname{LCS}(X, Y)=1+\operatorname{LCS}\left(\left[x_{1}, \ldots, x_{m-1}\right],\left[y_{1}, \ldots, y_{n-1}\right]\right)
$$

- If $x_{m} \neq y_{n}$, then either

$$
\operatorname{LCS}(X, Y)=\operatorname{LCS}\left(\left[x_{1}, \ldots, x_{m}\right],\left[y_{1}, \ldots, y_{n-1}\right]\right)
$$

or

$$
\operatorname{LCS}(X, Y)=\operatorname{LCS}\left(\left[x_{1}, \ldots, x_{m-1}\right],\left[y_{1}, \ldots, y_{n}\right]\right)
$$

The Recurrence

The Recurrence

- For $0 \leq i \leq m, 0 \leq j \leq n$, let

$$
\begin{aligned}
X_{i} & =\left[x_{1}, \ldots, x_{i}\right] \\
Y_{j} & =\left[y_{1}, \ldots, y_{j}\right]
\end{aligned}
$$

The Recurrence

- For $0 \leq i \leq m, 0 \leq j \leq n$, let

$$
\begin{aligned}
X_{i} & =\left[x_{1}, \ldots, x_{i}\right] \\
Y_{j} & =\left[y_{1}, \ldots, y_{j}\right]
\end{aligned}
$$

- Let $c[i, j]=\operatorname{LCS}\left[X_{i}, Y_{j}\right]$, then

$$
c[i, j]= \begin{cases}0 & \text { if } i \text { or } j \text { is } 0 \\ 1+c[i-1, j-1] & \text { if } x_{i}=y_{j} \\ \max (c[i-1, j], c[i, j-1]) & \text { if } x_{i} \neq y_{j}\end{cases}
$$

The Recurrence

- For $0 \leq i \leq m, 0 \leq j \leq n$, let

$$
\begin{aligned}
X_{i} & =\left[x_{1}, \ldots, x_{i}\right] \\
Y_{j} & =\left[y_{1}, \ldots, y_{j}\right]
\end{aligned}
$$

- Let $c[i, j]=\operatorname{LCS}\left[X_{i}, Y_{j}\right]$, then

$$
c[i, j]= \begin{cases}0 & \text { if } i \text { or } j \text { is } 0 \\ 1+c[i-1, j-1] & \text { if } x_{i}=y_{j} \\ \max (c[i-1, j], c[i, j-1]) & \text { if } x_{i} \neq y_{j}\end{cases}
$$

- Hence, $c[i, j]$ in general depends on one of three entries: the North entry $c[i-1, j]$, the West entry $c[i, j-1]$, and the NorthWest entry $c[i-1, j-1]$.

Computing the Optimal Value

LCS-Length (X, Y, m, n)
1: $c[i, 0] \leftarrow 0, \forall i=0, \ldots, m ; \quad c[0, j] \leftarrow 0, \forall j=0, \ldots, n$;
2: for $i \leftarrow 1$ to m do
3: \quad for $j \leftarrow 1$ to n do
4: \quad if $x_{i}=y_{j}$ then $c[i, j] \leftarrow 1+c[i-1, j-1] ;$
else if $c[i-1, j]>c[i, j-1]$ then

$$
c[i, j] \leftarrow c[i-1, j] ;
$$

else
$c[i, j] \leftarrow c[i, j-1] ;$
end if
end for
end for

Construting an Optimal Solution

- Z is a global array, initially empty

LCS-Construction (Z, i, j)
1: $k \leftarrow c[i, j]$
2: if $i=0$ or $j=0$ then
Return Z
else if $x_{i}=y_{j}$ then
5: $\quad Z[k] \leftarrow x_{i}$
6: \quad LCS-Construction $(i-1, j-1)$
else if $c[i-1, j]>c[i, j-1]$ then
8: $\quad \operatorname{LCS}-C o n s t r u c t i o n ~(~ i-1, j) ~$
9: else
10: LCS-Construction $(i, j-1)$
11: end if

Time and Space Analysis

- Filling out the c table takes $\Theta(m n)$-time, which is also the running time of LCS-LENGTH
- The space requirement is also $\Theta(m n)$
- LCS-Construction takes $O(m+n)$ (why?)

Outline

(1) What is Dynamic Programming?
(2) Weighted Inverval Scheduling
(3) Longest Common Subsequence
(4) Segmented Least Squares
(5) Matrix-Chain Multiplication (MCM)
(6) 01-Knapsack and Subset Sum
(7) Sequence Alignment
(8) Shortest Paths in Graphs

- Bellman-Ford Algorithm
- All-Pairs Shortest Paths

Segmented Least Square: Problem Definition

Segmented Least Square: Problem Definition

- Least Squares is a foundational problem in statistics and numerical analysis
- Given n points in the plane: $P=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Find a line $L: y=a x+b$ that "fits" them best

Segmented Least Square: Problem Definition

- Least Squares is a foundational problem in statistics and numerical analysis
- Given n points in the plane: $P=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Find a line $L: y=a x+b$ that "fits" them best
- "Fittest" means minimizing the error term

$$
\operatorname{ERROR}(L, P)=\sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)^{2}
$$

- Basic calculus gives

$$
a=\frac{n \sum_{i} x_{i} y_{i}-\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n \sum_{i} x_{i}^{2}-\left(\sum_{i} x_{i}\right)^{2}} \text { and } b=\frac{\sum_{i} y_{i}-a \sum_{i} x_{i}}{n}
$$

Practical Issues

A Compromised Objective Function

- Given n points $p_{1}=\left(x_{1}, y_{1}\right), \ldots, p_{n}=\left(x_{n}, y_{n}\right)$
- $x_{1}<x_{2}<\cdots<x_{n}$
- Want to minimize both the number s of segments and total (squared) error e
- A common method: use a weighted sum $e+c s$ for a given constant $c>0$

A Compromised Objective Function

- Given n points $p_{1}=\left(x_{1}, y_{1}\right), \ldots, p_{n}=\left(x_{n}, y_{n}\right)$
- $x_{1}<x_{2}<\cdots<x_{n}$
- Want to minimize both the number s of segments and total (squared) error e
- A common method: use a weighted sum $e+c s$ for a given constant $c>0$

More precisely

- Find a partition of the points into some k contiguous parts
- Fit j th part with the best segment with error e_{j}
- Want to minimize $\sum_{j=1}^{k} e_{j}+c k$

The Structure of an Optimal Solution

The Structure of an Optimal Solution

- The last part of an optimal solution \mathcal{O} consists of points p_{i}, \ldots, p_{n} for some $i=1, \ldots, n$

The Structure of an Optimal Solution

- The last part of an optimal solution \mathcal{O} consists of points p_{i}, \ldots, p_{n} for some $i=1, \ldots, n$
- The cost for segments fitting p_{1}, \ldots, p_{i-1} must be optimal too! Let \mathcal{O}^{\prime} be an optimal solution to p_{1}, \ldots, p_{i-1}

The Structure of an Optimal Solution

- The last part of an optimal solution \mathcal{O} consists of points p_{i}, \ldots, p_{n} for some $i=1, \ldots, n$
- The cost for segments fitting p_{1}, \ldots, p_{i-1} must be optimal too! Let \mathcal{O}^{\prime} be an optimal solution to p_{1}, \ldots, p_{i-1}
- In English, if p_{i}, \ldots, p_{n} forms the last part of \mathcal{O}, then

$$
\operatorname{cost}(\mathcal{O})=\operatorname{cost}\left(\mathcal{O}^{\prime}\right)+e(i, n)+c
$$

$\left(e(i, n)\right.$ is the least error of fitting a line through $\left.p_{i}, \ldots, p_{n}\right)$

The Recurrence

The Recurrence

- Let $e(i, j)$ be the least error fitting a line through $p_{i}, p_{i+1}, \ldots, p_{j}$
- Let $e(i, j)$ be the least error fitting a line through $p_{i}, p_{i+1}, \ldots, p_{j}$
- Let $\operatorname{OPT}(i)$ be the optimal cost for input $\left\{p_{1}, \ldots, p_{i}\right\}$

The Recurrence

- Let $e(i, j)$ be the least error fitting a line through $p_{i}, p_{i+1}, \ldots, p_{j}$
- Let $\operatorname{OPT}(i)$ be the optimal cost for input $\left\{p_{1}, \ldots, p_{i}\right\}$
- Then,

$$
\operatorname{OPT}(j)= \begin{cases}0 & \text { if } j=0 \\ \min _{1 \leq i \leq j}\{\operatorname{OPT}(i-1)+e(i, j)+c\} & \text { if } j>0\end{cases}
$$

Pseudo-Code

- Pre-compute $e(i, j)$ for all $i<j$: brute-force takes $O\left(n^{3}\right)$, finer implementation takes $O\left(n^{2}\right)$
- Use recurrence to fill up array $\operatorname{OPT}[0, \ldots, n]$, another $O\left(n^{2}\right)$

Find-Segments (j)
1: if $j=0$ then
Return \emptyset
else
4: Find i minimizing $\operatorname{OPT}(i-1)+e(i, j)+c$
5: Return segment $\left\{p_{i}, \ldots, p_{j}\right\}$ and result of $\operatorname{Find-SEGmEnts}(i-1)$
6: end if

Outline

(1) What is Dynamic Programming?
(2) Weighted Inverval Scheduling
(3) Longest Common Subsequence
(4) Segmented Least Squares
(5) Matrix-Chain Multiplication (MCM)
(6) 01-Knapsack and Subset Sum
(7) Sequence Alignment
(8) Shortest Paths in Graphs

- Bellman-Ford Algorithm
- All-Pairs Shortest Paths

Matrix Chain Multiplication: Problem Definitions

Given $\mathbf{A}_{10 \times 100}, \mathbf{B}_{100 \times 25}$, then calculating $\mathbf{A B}$ requires
$10 \cdot 100 \cdot 25=25,000$ multiplications.
Given $\mathbf{A}_{10 \times 100}, \mathbf{B}_{100 \times 25}, C_{25 \times 4}$, then by associativity

$$
\mathbf{A B C}=(\mathbf{A B}) \mathbf{C}=\mathbf{A}(\mathbf{B C})
$$

Matrix Chain Multiplication: Problem Definitions

Given $\mathbf{A}_{10 \times 100}, \mathbf{B}_{100 \times 25}$, then calculating $\mathbf{A B}$ requires
$10 \cdot 100 \cdot 25=25,000$ multiplications.
Given $\mathbf{A}_{10 \times 100}, \mathbf{B}_{100 \times 25}, C_{25 \times 4}$, then by associativity

$$
\mathbf{A B C}=(\mathbf{A B}) \mathbf{C}=\mathbf{A}(\mathbf{B C})
$$

- AB requires 25, 000 multiplications
- (AB)C requires $10 \cdot 25 \cdot 4=1000$ more multiplications
- totally 26,000 multiplications

Matrix Chain Multiplication: Problem Definitions

Given $\mathbf{A}_{10 \times 100}, \mathbf{B}_{100 \times 25}$, then calculating $\mathbf{A B}$ requires
$10 \cdot 100 \cdot 25=25,000$ multiplications.
Given $\mathbf{A}_{10 \times 100}, \mathbf{B}_{100 \times 25}, C_{25 \times 4}$, then by associativity

$$
\mathbf{A B C}=(\mathbf{A B}) \mathbf{C}=\mathbf{A}(\mathbf{B C})
$$

- $\mathbf{A B}$ requires 25,000 multiplications
- (AB)C requires $10 \cdot 25 \cdot 4=1000$ more multiplications
- totally 26,000 multiplications

On the other hand

- BC requires $100 \cdot 25 \cdot 4=10,000$ multiplications
- $\mathbf{A}(\mathbf{B C})$ requires $10 \times 100 \times 4=4000$ more multiplications
- totally 14,000 multiplications

Problem Definitions (cont)

There are 5 ways to parenthesize $\mathbf{A B C D}$:

$$
(\mathbf{A}(\mathbf{B}(\mathbf{C D}))),(\mathbf{A}((\mathbf{B C}) \mathbf{D})),((\mathbf{A B})(\mathbf{C D})),((\mathbf{A}(\mathbf{B C})) \mathbf{D}),(((\mathbf{A B}) \mathbf{C}) \mathbf{D})
$$

In general, given n matrices:

$$
\begin{array}{rcl}
\mathbf{A}_{1} & \text { of dimension } & p_{0} \times p_{1} \\
\mathbf{A}_{2} & \text { of dimension } & p_{1} \times p_{2} \\
\vdots & \vdots & \vdots \\
\mathbf{A}_{n} & \text { of dimension } & p_{n-1} \times p_{n}
\end{array}
$$

Number of ways to parenthesis $\mathbf{A}_{1} \mathbf{A}_{2} \ldots \mathbf{A}_{n}$ is

Problem Definitions (cont)

There are 5 ways to parenthesize $\mathbf{A B C D}$:
$(\mathbf{A}(\mathbf{B}(\mathbf{C D}))),(\mathbf{A}((\mathbf{B C}) \mathbf{D})),((\mathbf{A B})(\mathbf{C D})),((\mathbf{A}(\mathbf{B C})) \mathbf{D}),(((\mathbf{A B}) \mathbf{C}) \mathbf{D})$
In general, given n matrices:
\mathbf{A}_{1} of dimension $p_{0} \times p_{1}$
\mathbf{A}_{2} of dimension $p_{1} \times p_{2}$
\mathbf{A}_{n} of dimension $p_{n-1} \times p_{n}$
Number of ways to parenthesis $\mathbf{A}_{1} \mathbf{A}_{2} \ldots \mathbf{A}_{n}$ is

$$
\frac{1}{n+1}\binom{2 n}{n}=\frac{1}{n+1} \frac{(2 n)!}{n!n!}=\Omega\left(\frac{4^{n}}{n^{3 / 2}}\right)
$$

Problem Definitions (cont)

There are 5 ways to parenthesize $\mathbf{A B C D}$:

$$
(\mathbf{A}(\mathbf{B}(\mathbf{C D}))),(\mathbf{A}((\mathbf{B C}) \mathbf{D})),((\mathbf{A B})(\mathbf{C D})),((\mathbf{A}(\mathbf{B C})) \mathbf{D}),(((\mathbf{A B}) \mathbf{C}) \mathbf{D})
$$

In general, given n matrices:
\mathbf{A}_{1} of dimension $p_{0} \times p_{1}$
\mathbf{A}_{2} of dimension $p_{1} \times p_{2}$
\mathbf{A}_{n} of dimension $p_{n-1} \times p_{n}$
Number of ways to parenthesis $\mathbf{A}_{1} \mathbf{A}_{2} \ldots \mathbf{A}_{n}$ is

$$
\frac{1}{n+1}\binom{2 n}{n}=\frac{1}{n+1} \frac{(2 n)!}{n!n!}=\Omega\left(\frac{4^{n}}{n^{3 / 2}}\right)
$$

The Problem

Find a parenthesization with the least number of multiplications

Structure of an Optimal Solution

Structure of an Optimal Solution

- Suppose we split between \mathbf{A}_{k} and \mathbf{A}_{k+1}, then the parenthesization of $\mathbf{A}_{1} \ldots \mathbf{A}_{k}$ and $\mathbf{A}_{k+1} \ldots \mathbf{A}_{n}$ have to also be optimal

Structure of an Optimal Solution

- Suppose we split between \mathbf{A}_{k} and \mathbf{A}_{k+1}, then the parenthesization of $\mathbf{A}_{1} \ldots \mathbf{A}_{k}$ and $\mathbf{A}_{k+1} \ldots \mathbf{A}_{n}$ have to also be optimal
- Let $c[1, k]$ and $c[k+1, n]$ be the optimal costs for the subproblems, then the cost of splitting at $k, k+1$ is

$$
c[1, k]+c[k+1, n]+p_{0} p_{k} p_{n}
$$

Structure of an Optimal Solution

- Suppose we split between \mathbf{A}_{k} and \mathbf{A}_{k+1}, then the parenthesization of $\mathbf{A}_{1} \ldots \mathbf{A}_{k}$ and $\mathbf{A}_{k+1} \ldots \mathbf{A}_{n}$ have to also be optimal
- Let $c[1, k]$ and $c[k+1, n]$ be the optimal costs for the subproblems, then the cost of splitting at $k, k+1$ is

$$
c[1, k]+c[k+1, n]+p_{0} p_{k} p_{n}
$$

- Thus, the main recurrence is

$$
c[1, n]=\min _{1 \leq k<n}\left(c[1, k]+c[k+1, n]+p_{0} p_{k} p_{n}\right)
$$

Structure of an Optimal Solution

- Suppose we split between \mathbf{A}_{k} and \mathbf{A}_{k+1}, then the parenthesization of $\mathbf{A}_{1} \ldots \mathbf{A}_{k}$ and $\mathbf{A}_{k+1} \ldots \mathbf{A}_{n}$ have to also be optimal
- Let $c[1, k]$ and $c[k+1, n]$ be the optimal costs for the subproblems, then the cost of splitting at $k, k+1$ is

$$
c[1, k]+c[k+1, n]+p_{0} p_{k} p_{n}
$$

- Thus, the main recurrence is

$$
c[1, n]=\min _{1 \leq k<n}\left(c[1, k]+c[k+1, n]+p_{0} p_{k} p_{n}\right)
$$

- Hence, in general we need $c[i, j]$ for $i<j$:

$$
c[i, j]=\min _{i \leq k<j}\left(c[i, k]+c[k+1, j]+p_{i-1} p_{k} p_{j}\right)
$$

The Recurrence

$$
c[i, j]= \begin{cases}0 & \text { if } i=j \\ \min _{i \leq k<j}\left(c[i, k]+c[k+1, j]+p_{i-1} p_{k} p_{j}\right) & \text { if } i<j\end{cases}
$$

Pseudo Code

- Main Question: how do we fill out the table c ?

```
\(\operatorname{MCM}-\operatorname{Order}(p, n)\)
    1: \(c[i, i] \leftarrow 0\) for \(i=1, \ldots, n\)
    for \(l=1\) to \(n-1\) do
        for \(i \leftarrow 1\) to \(n-l\) do
            \(j \leftarrow i+l\); // not really needed, just to be clearer
            \(c[i, j] \leftarrow \infty\);
            for \(k \leftarrow i\) to \(j-1\) do
                    \(t \leftarrow c[i, k]+c[k+1, j]+p_{i-1} p_{k} p_{j} ;\)
            if \(c[i, j]>t\) then
                \(c[i, j] \leftarrow t ;\)
                end if
            end for
        end for
    end for
    return \(c[1, n]\);
```


Constructing the Solution

Use $s[i, j]$ to store the optimal splitting point k :
$\operatorname{MCM}-\operatorname{Order}(p, n)$
$c[i, i] \leftarrow 0$ for $i=1, \ldots, n$
for $l=1$ to $n-1$ do
for $i \leftarrow 1$ to $n-l$ do
$j \leftarrow i+l$; // not really needed, just to be clearer
$c[i, j] \leftarrow \infty$;
for $k \leftarrow i$ to $j-1$ do
$t \leftarrow c[i, k]+c[k+1, j]+p_{i-1} p_{k} p_{j} ;$
if $c[i, j]>t$ then
$c[i, j] \leftarrow t ; \quad s[i, j] \leftarrow k ;$
end if
end for
end for
end for
14: return c, s;

Space and Time Complexity

- Space needed is $O\left(n^{2}\right)$ for the tables c and s
- Suppose the inner-most loop takes about 1 time unit, then the running time is

$$
\begin{aligned}
\sum_{l=1}^{n-1} \sum_{i=1}^{n-l} l & =\sum_{l=1}^{n-1} l(n-l) \\
& =n \sum_{l=1}^{n-1} l-\sum_{l=1}^{n-1} l^{2} \\
& =n \frac{n(n-1)}{2}-\frac{(n-1) n(2(n-1)+6)}{6} \\
& =\Theta\left(n^{3}\right)
\end{aligned}
$$

Outline

(1) What is Dynamic Programming?
(2) Weighted Inverval Scheduling
(3) Longest Common Subsequence
(4) Segmented Least Squares
(5) Matrix-Chain Multiplication (MCM)
(6) 01-Knapsack and Subset Sum
(7) Sequence Alignment
(8) Shortest Paths in Graphs

- Bellman-Ford Algorithm
- All-Pairs Shortest Paths

Knapsack \& Subset Sum: Problem Definitions

Knapsack \& Subset Sum: Problem Definitions

- Subset Sum: given n positive integers w_{1}, \ldots, w_{n}, and a bound W, return a subset of integers whose sum is as large as possible but not more than W

Knapsack \& Subset Sum: Problem Definitions

- Subset Sum: given n positive integers w_{1}, \ldots, w_{n}, and a bound W, return a subset of integers whose sum is as large as possible but not more than W
- 01-KnAPSACK: given n items with weights w_{1}, \ldots, w_{n} and corresponding values v_{1}, \ldots, v_{n}, and abound W, find a subset of items with maximum total value whose total weight is bounded by W

Knapsack \& Subset Sum: Problem Definitions

- Subset Sum: given n positive integers w_{1}, \ldots, w_{n}, and a bound W, return a subset of integers whose sum is as large as possible but not more than W
- 01-KnAPSACK: given n items with weights w_{1}, \ldots, w_{n} and corresponding values v_{1}, \ldots, v_{n}, and abound W, find a subset of items with maximum total value whose total weight is bounded by W
- Subset Sum is a special case of 01-Knapsack when $v_{i}=w_{i}$ for all i. Thus, we will try to solve 01-Knapsack only.

Structure of an Optimal Solution

Structure of an Optimal Solution

- Let \mathcal{O} be an optimal solution, then either the nth item I_{n} is in \mathcal{O} or not

Structure of an Optimal Solution

- Let \mathcal{O} be an optimal solution, then either the nth item I_{n} is in \mathcal{O} or not
- If $I_{n} \in \mathcal{O}$, then $\mathcal{O}^{\prime}=\mathcal{O}-\left\{I_{n}\right\}$ must be optimal for the problem $\left\{I_{1}, \ldots, I_{n-1}\right\}$ with weight bound $W-w_{n}$

Structure of an Optimal Solution

- Let \mathcal{O} be an optimal solution, then either the nth item I_{n} is in \mathcal{O} or not
- If $I_{n} \in \mathcal{O}$, then $\mathcal{O}^{\prime}=\mathcal{O}-\left\{I_{n}\right\}$ must be optimal for the problem $\left\{I_{1}, \ldots, I_{n-1}\right\}$ with weight bound $W-w_{n}$
- If $I_{n} \notin \mathcal{O}$, then $\mathcal{O}^{\prime}=\mathcal{O}$ must be optimal for the problem $\left\{I_{1}, \ldots, I_{n-1}\right\}$ with weight bound W

Structure of an Optimal Solution

- Let \mathcal{O} be an optimal solution, then either the nth item I_{n} is in \mathcal{O} or not
- If $I_{n} \in \mathcal{O}$, then $\mathcal{O}^{\prime}=\mathcal{O}-\left\{I_{n}\right\}$ must be optimal for the problem $\left\{I_{1}, \ldots, I_{n-1}\right\}$ with weight bound $W-w_{n}$
- If $I_{n} \notin \mathcal{O}$, then $\mathcal{O}^{\prime}=\mathcal{O}$ must be optimal for the problem $\left\{I_{1}, \ldots, I_{n-1}\right\}$ with weight bound W
- The above analysis suggests defining $\operatorname{OPT}(j, w)$ to be the optimal value for the problem $\left\{I_{1}, \ldots, I_{j}\right\}$ with weight bound w

The Recurrence and Analysis

$$
\operatorname{OPT}(j, w)= \begin{cases}0 & j=0 \\ \operatorname{OPT}(j-1, w) & w<w_{j} \\ \max \left\{\operatorname{OPT}(j-1, w), v_{j}+\operatorname{OPT}\left(j-1, w-w_{j}\right)\right\} & w \geq w_{j}\end{cases}
$$

The Recurrence and Analysis

$$
\operatorname{OPT}(j, w)= \begin{cases}0 & j=0 \\ \operatorname{OPT}(j-1, w) & w<w_{j} \\ \max \left\{\operatorname{OPT}(j-1, w), v_{j}+\operatorname{OPT}\left(j-1, w-w_{j}\right)\right\} & w \geq w_{j}\end{cases}
$$

- Running time is $\Theta(n W)$: not polynomial
- This is called pseudo-polynomial time
- 01-KnAPSACK is NP-hard \Rightarrow extremely unlikely to have polynomial-time solution
- However, there exists a poly-time algorithm that returns a feasible solution with value within ϵ of optimality

Outline

(1) What is Dynamic Programming?
(2) Weighted Inverval Scheduling
(3) Longest Common Subsequence
(4) Segmented Least Squares
(5) Matrix-Chain Multiplication (MCM)
(6) 01-Knapsack and Subset Sum
(7) Sequence Alignment
(8) Shortest Paths in Graphs

- Bellman-Ford Algorithm
- All-Pairs Shortest Paths

Sequence Alignment: Motivation 1

How similar are "ocurrance" and "occurrence"?

Sequence Alignment: Motivation 1

How similar are "ocurrance" and "occurrence"?

o	c	u	r	r	a	n	c	e	-
o	c	c	u	r	r	e	n	c	e

Sequence Alignment: Motivation 1

How similar are "ocurrance" and "occurrence"?

o	c	u	r	r	a	n	c	e	-
o	c	c	u	r	r	e	n	c	e

o	c	-	u	r	r	a	n	c	e
o	c	c	u	r	r	e	n	c	e

Sequence Alignment: Motivation 1

How similar are "ocurrance" and "occurrence"?

o	c	u	r	r	a	n	c	e	-
o	c	c	u	r	r	e	n	c	e

o	c	-	u	r	r	a	n	c	e
o	c	c	u	r	r	e	n	c	e

o	c	-	u	r	r	a	-	n	c	e
o	c	c	u	r	r	-	e	n	c	e

Sequence Alignment: Motivation 2

- Applications in Unix diff program, speech recognition, computational biology
- Edit distance (Levenshtein 1966, Needleman-Wunsch 1970)
- Gap penalty δ, mismatch penalty $\alpha_{p q}$
- Distance or cost equals sum of penalties

A	C	-	A	G	T	A	-	T	G	C				
A	C	C	A	T	T	G	T	T	G	C				
$\operatorname{cost}=2 \delta+\alpha_{G T}+\alpha_{A G}$														

Sequence Alignment: Problem Definition

- Given two strings x_{1}, \ldots, x_{m} and y_{1}, \ldots, y_{n}, find an alignment of minimum cost
- An alignment is a set M of ordered pairs $\left(x_{i}, y_{j}\right)$ such that each item is in at most one pair and there is no crossing
- Two pairs $\left(x_{i}, y_{j}\right)$ and $\left(x_{p}, y_{q}\right)$ cross if $i<p$ but $j>q$

$$
\begin{aligned}
\operatorname{cost}(M) & =\sum_{\left(x_{i}, y_{j}\right) \in M} \alpha_{x_{i} y_{j}}+\sum_{\text {unmatched } x_{i}} \delta+\sum_{\text {unmatched } y_{i}} \delta \\
& =\sum_{\left(x_{i}, y_{j}\right) \in M} \alpha_{x_{i} y_{j}}+\delta\left(\# \text { unmatched } x_{i}+\# \text { unmatched } y_{j}\right)
\end{aligned}
$$

Structure of Optimal Solution and Recurrence

Structure of Optimal Solution and Recurrence

- Key observation: either $\left(x_{m}, y_{n}\right) \in M$ or x_{m} unmatched or y_{n} unmatched

Structure of Optimal Solution and Recurrence

- Key observation: either $\left(x_{m}, y_{n}\right) \in M$ or x_{m} unmatched or y_{n} unmatched
- Let $\operatorname{OPT}(i, j)$ be the optimal cost of aligning x_{1}, \ldots, x_{i} with y_{1}, \ldots, y_{j}, then

Structure of Optimal Solution and Recurrence

- Key observation: either $\left(x_{m}, y_{n}\right) \in M$ or x_{m} unmatched or y_{n} unmatched
- Let $\operatorname{OPT}(i, j)$ be the optimal cost of aligning x_{1}, \ldots, x_{i} with y_{1}, \ldots, y_{j}, then

$$
\begin{aligned}
\operatorname{OPT}(i, 0)= & i \delta \\
\operatorname{OPT}(0, j)= & j \delta \\
\operatorname{OPT}(i, j)= & \min \left\{\alpha_{x_{i} y_{j}}+\operatorname{OPT}(i-1, j-1),\right. \\
& \delta+\operatorname{OPT}(i-1, j), \delta+\operatorname{OPT}(i, j-1)\}
\end{aligned}
$$

Time and Space Complexity

- $\Theta(m n)$ for time and space

Time and Space Complexity

- $\Theta(m n)$ for time and space
- Question: for RNA sequences ($m, n \approx 10,000$), $\Theta(m n)$-space is too large, can we do better?

Time and Space Complexity

- $\Theta(m n)$ for time and space
- Question: for RNA sequences ($m, n \approx 10,000$), $\Theta(m n)$-space is too large, can we do better?
- Answer is YES - $\Theta(m+n)$ is possible, due to a beautiful idea by Herschberg in 1975

Time and Space Complexity

- $\Theta(m n)$ for time and space
- Question: for RNA sequences $(m, n \approx 10,000), \Theta(m n)$-space is too large, can we do better?
- Answer is yes - $\Theta(m+n)$ is possible, due to a beautiful idea by Herschberg in 1975
- First attempt: computing $\operatorname{OPT}(m, n)$ using $\Theta(m+n)$-space. How?

Time and Space Complexity

- $\Theta(m n)$ for time and space
- Question: for RNA sequences $(m, n \approx 10,000), \Theta(m n)$-space is too large, can we do better?
- Answer is YES - $\Theta(m+n)$ is possible, due to a beautiful idea by Herschberg in 1975
- First attempt: computing $\operatorname{Opt}(m, n)$ using $\Theta(m+n)$-space. How?
- Unfortunately, no easy way to recover the alignment itself.

Sequence Alignment in Linear Space

- Herschberg's idea: combine D\&C and dynamic programming in a clever way
- Inspired by Savitch's theorem in complexity theory
- Edit Distance Graph: let $f(i, j)$ be the shortest path length from $(0,0)$ to (i, j), then $f(i, j)=\operatorname{OPT}(i, j)$

Sequence Alignment in Linear Space

- For any j, can compute $f(\cdot, j)$ in $O(m n)$-time and $O(m+n)$-space j

Sequence Alignment in Linear Space

- Let $g(i, j)$ be the shortest distance from (i, j) to (m, n), then $g(\cdot, j)$ can be computed in in $O(m n)$-time and $O(m+n)$-space, for any fixed j

Sequence Alignment in Linear Space

- The cost of a shortest path from $(0,0)$ to (m, n) which goes through (i, j) is $f(i, j)+g(i, j)$

Sequence Alignment in Linear Space

- Let q be an index minimizing $f(q, n / 2)+g(q, n / 2)$, then a shortest path through $(q, n / 2)$ is also a shortest path overall

Sequence Alignment in Linear Space using D\&C

- Compute q as described, output ($q, n / 2$), then recursively solve two sub-problems.
$n / 2$

Sequence Alignment in Linear Space: Analysis

$$
T(m, n) \leq c m n+T(q, n / 2)+T(m-q, n / 2)
$$

Induction gives $T(m, n)=O(m n)$
Thus, the running time remains $O(m n)$, yet space requirement is only $O(m+n)$

Outline

(1) What is Dynamic Programming?
(2) Weighted Inverval Scheduling
(3) Longest Common Subsequence
4. Segmented Least Squares
(5) Matrix-Chain Multiplication (MCM)
(6) 01-Knapsack and Subset Sum
(7) Sequence Alignment
(8) Shortest Paths in Graphs

- Bellman-Ford Algorithm
- All-Pairs Shortest Paths

Outline

(1) What is Dynamic Programming?
(2) Weighted Inverval Scheduling
(3) Longest Common Subsequence
(4) Segmented Least Squares
(5) Matrix-Chain Multiplication (MCM)
(6) 01-Knapsack and Subset Sum
(7) Sequence Alignment
(8) Shortest Paths in Graphs

- Bellman-Ford Algorithm
- All-Pairs Shortest Paths

Shortest Path: Problem Definition

- Shortest Path Problem: given a directed graph $G=(V, E)$ with edge cost $c: E \rightarrow \mathbb{R}$, find a shortest path from a given source s to a destination t
- Dijkstra's algorithm does not work because there might be negative cycles.
- We will also address the problem of finding a negative cycle (if any).

Structure of an Optimal Solution

Structure of an Optimal Solution

- Consider first the case when there's no negative cycle

Structure of an Optimal Solution

- Consider first the case when there's no negative cycle
- Let $P=s, v_{1}, \ldots, v_{k-1}, t$ be a shortest path from s to t, we can assume (why?) that P is a simple path (i.e. no repeated vertex)

Structure of an Optimal Solution

- Consider first the case when there's no negative cycle
- Let $P=s, v_{1}, \ldots, v_{k-1}, t$ be a shortest path from s to t, we can assume (why?) that P is a simple path (i.e. no repeated vertex)
- Attempt 1: let $\operatorname{OPT}(u, t)$ be the length of a shortest path from u to t, clearly

$$
\operatorname{OPT}(u, t)=\min \{\mathrm{OPT}(v, t) \mid(u, v) \in E\}
$$

Structure of an Optimal Solution

- Consider first the case when there's no negative cycle
- Let $P=s, v_{1}, \ldots, v_{k-1}, t$ be a shortest path from s to t, we can assume (why?) that P is a simple path (i.e. no repeated vertex)
- Attempt 1: let $\operatorname{OPT}(u, t)$ be the length of a shortest path from u to t, clearly

$$
\mathrm{OPT}(u, t)=\min \{\mathrm{OPT}(v, t) \mid(u, v) \in E\}
$$

- Problem is, it's not clear how the $\operatorname{OPT}(v, t)$ are "smaller" problems than the original $\operatorname{OPT}(u, t)$. Thus, we need a way to clearly say some $\operatorname{OPT}(v, t)$ are "smaller" than another $\operatorname{OPT}(u, t)$

Structure of an Optimal Solution

- Consider first the case when there's no negative cycle
- Let $P=s, v_{1}, \ldots, v_{k-1}, t$ be a shortest path from s to t, we can assume (why?) that P is a simple path (i.e. no repeated vertex)
- Attempt 1: let $\operatorname{OPT}(u, t)$ be the length of a shortest path from u to t, clearly

$$
\operatorname{OPT}(u, t)=\min \{\mathrm{OPT}(v, t) \mid(u, v) \in E\}
$$

- Problem is, it's not clear how the $\operatorname{OPT}(v, t)$ are "smaller" problems than the original $\operatorname{OPT}(u, t)$. Thus, we need a way to clearly say some $\operatorname{OPT}(v, t)$ are "smaller" than another $\operatorname{OPT}(u, t)$
- Bellman-Ford: fix $\operatorname{target} t$, let $\operatorname{OPT}(i, u)$ be the length of a shortest path from u to t with at most i edges
- What we want is $\operatorname{OPT}(n-1, s)$

The Recurrence and Analysis

$\operatorname{OPT}(i, u)= \begin{cases}0 & i=0, u=t \\ \infty & i=0, u \neq t \\ \min \left\{\operatorname{OPT}(i-1, u), \min _{v:(u, v) \in E}\left\{\operatorname{OPT}(i-1, v)+c_{u v}\right\}\right\} & i>0\end{cases}$

- Space complexity is $O\left(n^{2}\right)$
- Time complexity is $O\left(n^{3}\right)$: filling out the $n \times n$ table row by row, top to bottom, computing each entry takes $O(n)$
- Better time analysis: computing $\operatorname{OPT}(i, u)$ takes time $O($ out-deg $(u))$, for a total of

$$
O\left(n \sum_{u} \text { out-deg }(u)\right)=O(m n)
$$

More Space-Efficient Implementation

More Space-Efficient Implementation

- First Attempt: use a two column table, since $\operatorname{Opt}(i, u)$ only depends on $\operatorname{OPt}(i-1, *)$; thus need $O(n)$-space.

More Space-Efficient Implementation

- First Attempt: use a two column table, since $\operatorname{OPT}(i, u)$ only depends on $\operatorname{OPT}(i-1, *)$; thus need $O(n)$-space.
- Second Attempt: use a one column table. Instead of $\operatorname{OPT}(i, u)$ we only have $\operatorname{OPT}(u)$, using i as the iteration number

Space Efficient Bellman-Ford (G, t)
1: $\operatorname{OPT}(u) \leftarrow \infty, \forall u ; \quad \operatorname{OPT}(t) \leftarrow 0$
: for $i=1$ to $n-1$ do
3: for each vertex u do
4: $\quad \operatorname{OPT}(u) \leftarrow \min \left\{\operatorname{OPT}(u), \min _{v:(u, v) \in E}\left\{\operatorname{OPT}(v)+c_{u v}\right\}\right\}$
5: end for
end for

Why Does Space Efficient Bellman-Ford Work?

- What might be the problem?

Why Does Space Efficient Bellman-Ford Work?

- What might be the problem?
- Before, $\operatorname{OPt}(i, u)=$ length of shortest u, t-path with $\leq i$ edges
- Now, after iteration $i, \operatorname{OPT}(u)$ may no longer be the length of shortest u, t-path with $\leq i$ edges

Why Does Space Efficient Bellman-Ford Work?

- What might be the problem?
- Before, $\operatorname{OPt}(i, u)=$ length of shortest u, t-path with $\leq i$ edges
- Now, after iteration $i, \operatorname{OPT}(u)$ may no longer be the length of shortest u, t-path with $\leq i$ edges
- However, by induction we can show

Why Does Space Efficient Bellman-Ford Work?

- What might be the problem?
- Before, $\operatorname{OPt}(i, u)=$ length of shortest u, t-path with $\leq i$ edges
- Now, after iteration $i, \operatorname{OPT}(u)$ may no longer be the length of shortest u, t-path with $\leq i$ edges
- However, by induction we can show
- For any i, if $\operatorname{OPT}(u)<\infty$ then there is a u, t-path with length $\operatorname{OPT}(u)$

Why Does Space Efficient Bellman-Ford Work?

- What might be the problem?
- Before, $\operatorname{\text {Opt}}(i, u)=$ length of shortest u, t-path with $\leq i$ edges
- Now, after iteration $i, \operatorname{OPT}(u)$ may no longer be the length of shortest u, t-path with $\leq i$ edges
- However, by induction we can show
- For any i, if $\operatorname{OPT}(u)<\infty$ then there is a u, t-path with length $\operatorname{OPT}(u)$
- After i iterations, $\operatorname{OPT}(u) \leq \operatorname{OPT}(i, u)$

Why Does Space Efficient Bellman-Ford Work?

- What might be the problem?
- Before, $\operatorname{OPt}(i, u)=$ length of shortest u, t-path with $\leq i$ edges
- Now, after iteration $i, \operatorname{OPT}(u)$ may no longer be the length of shortest u, t-path with $\leq i$ edges
- However, by induction we can show
- For any i, if $\operatorname{OPT}(u)<\infty$ then there is a u, t-path with length $\operatorname{OPT}(u)$
- After i iterations, $\operatorname{OPT}(u) \leq \operatorname{OPT}(i, u)$
- Consequently, after $n-1$ iterations we have $\operatorname{OPT}(u) \leq \operatorname{OPT}(n-1, u)$, done!

Construction of Shortest Paths

Similar to Dijkstra's algorithm, maintain a pointer $\operatorname{SUCCESSOR}(u)$ for each u, pointing to the next vertex along the current path to t (thus, total space complexity $=O(m+n)$)

Space Efficient Bellman-Ford (G, t)
1: $\operatorname{OPT}(u) \leftarrow \infty, \forall u ; \quad \operatorname{OPT}(t) \leftarrow 0$
2: $\operatorname{SUCCESSOR}(u) \leftarrow \mathrm{NIL}, \forall u$
3: for $i=1$ to $n-1$ do
4: for each vertex u do
5: $\quad w \leftarrow \underset{v:(u, v) \in E}{\operatorname{argmin}}\left\{\operatorname{OPT}(v)+c_{u v}\right\}$
6: \quad if $\operatorname{OPT}(u)>\operatorname{OPT}(w)+c_{u w}$ then
7: $\quad \operatorname{OPT}(u) \leftarrow \operatorname{OPT}(w)+c_{u w}$
8: $\quad \operatorname{SUCCESSOR}(u) \leftarrow w$
9: end if
10: end for

11: end for

Detecting Negative Cycles

Detecting Negative Cycles

Lemma

If $\operatorname{OPT}(n, u)=\operatorname{OPT}(n-1, u)$ for all nodes u, then there is no negative cycle on any path from u to t

Detecting Negative Cycles

Lemma

If $\operatorname{OPT}(n, u)=\operatorname{OPT}(n-1, u)$ for all nodes u, then there is no negative cycle on any path from u to t

Theorem

If $\operatorname{OPT}(n, u)<\operatorname{OPT}(n-1, u)$ for some node u, then any shortest path from u to t contains a negative cycle C.

Detecting Negative Cycles

Detecting Negative Cycles: Application

- Given n currencies and exchange rates between them, is there an arbitrage opportunity?
- Fast algorithm is ... money!

Outline

(1) What is Dynamic Programming?
(2) Weighted Inverval Scheduling
(3) Longest Common Subsequence
(4) Segmented Least Squares
(5) Matrix-Chain Multiplication (MCM)
(6) 01-Knapsack and Subset Sum
(7) Sequence Alignment
(8) Shortest Paths in Graphs

- Bellman-Ford Algorithm
- All-Pairs Shortest Paths

All-Pairs Shorest Paths: Problem Definition

- Input: directed graph $G=(V, E)$, cost function $c: E \rightarrow \mathbb{R}$. Assume no negative cycle.
- Input represented by a cost matrix $\mathbf{C}=\left(c_{u v}\right)$

$$
c_{u v}= \begin{cases}c(u v) & \text { if } u v \in E \\ 0 & \text { if } u=v \\ \infty & \text { otherwise }\end{cases}
$$

- Output:
- a distance matrix $\mathbf{D}=\left(d_{u v}\right)$, where $d_{u v}=$ shortest path length from u to v, and ∞ otherwise.
- a predecessor matrix $\boldsymbol{\Pi}=\left(\pi_{u v}\right)$, where $\pi_{u v}$ is v 's previous vertex on a shortest path from u to v, and NIL if v is not reachable from u or $u=v$.

A Solution Based on Bellman-Ford's Idea

- $d_{u v}^{(k)}$: length of a shortest path from u to v with $\leq k$ edges $(k \geq 1)$
- Let $\mathbf{D}^{(k)}=\left(d_{u v}^{(k)}\right)$ (a matrix)
- We can see that $\mathbf{D}=\mathbf{D}^{(n-1)}, \mathbf{D}^{(1)}=\mathbf{C}$

A Solution Based on Bellman-Ford's Idea

- $d_{u v}^{(k)}$: length of a shortest path from u to v with $\leq k$ edges $(k \geq 1)$
- Let $\mathbf{D}^{(k)}=\left(d_{u v}^{(k)}\right)$ (a matrix)
- We can see that $\mathbf{D}=\mathbf{D}^{(n-1)}, \mathbf{D}^{(1)}=\mathbf{C}$

Then,

$$
\begin{aligned}
d_{u v}^{(k)} & =\min _{w \in V, w \neq v}\left\{d_{u v}^{(k-1)}, d_{u w}^{(k-1)}+c_{w v}\right\} \\
& =\min _{w \in V}\left\{d_{u w}^{(k-1)}+c_{w v}\right\}
\end{aligned}
$$

Implementation of the Idea

Use a 3 -dimensional table for the $d_{u v}^{(k)}$, how to fill the table?

Implementation of the Idea

Use a 3 -dimensional table for the $d_{u v}^{(k)}$, how to fill the table?
Bellman-Ford APSP(C, n)
1: $\mathbf{D}^{(1)} \leftarrow \mathbf{C} / /$ this actually takes $O\left(n^{2}\right)$
2: for $k \leftarrow 2$ to $n-1$ do
3: for each $u \in V$ do
4: \quad for each $v \in V$ do
5: $\quad d_{u v}^{(k)} \leftarrow \min _{w \in V}\left\{d_{u w}^{(k-1)}+c_{w v}\right\}$
6: end for
7: end for
8: end for
9: Return $\mathbf{D}^{(n-1)} / /$ the last "layer"

Implementation of the Idea

Use a 3 -dimensional table for the $d_{u v}^{(k)}$, how to fill the table?
Bellman-Ford $\operatorname{APSP}(\mathbf{C}, n)$
1: $\mathbf{D}^{(1)} \leftarrow \mathbf{C} / /$ this actually takes $O\left(n^{2}\right)$
2: for $k \leftarrow 2$ to $n-1$ do
3: for each $u \in V$ do
4: \quad for each $v \in V$ do
5: $\quad d_{u v}^{(k)} \leftarrow \min _{w \in V}\left\{d_{u w}^{(k-1)}+c_{w v}\right\}$
6: end for
7: end for
8: end for
9: Return $\mathbf{D}^{(n-1)} / /$ the last "layer"

- $O\left(n^{4}\right)$-time, $O\left(n^{3}\right)$-space.
- Space can be reduced to $O\left(n^{2}\right)$, how?

Some Observations

- Π can be updated at each step as usual
- Ignoring the outer loop, replace min by \sum and + by \cdot, the previous code becomes
1: for each $u \in V$ do
2: \quad for each $v \in V$ do
3: $\quad d_{u v}^{(k)} \leftarrow \sum_{w \in V} d_{u w}^{(k-1)} \cdot c_{w v}$
4: end for
5: end for
- This is like $\mathbf{D}^{(k)} \leftarrow \mathbf{D}^{(k-1)} \odot \mathbf{C}$, where \odot is identical to matrix multiplication, except that \sum replaced by min, and replaced by +
- $\mathbf{D}^{(n-1)}$ is just $\mathbf{C} \odot \mathbf{C} \cdots \odot \mathbf{C}, n-1$ times.
- It is easy (?) to show that \odot is associative
- Hence, $\mathbf{D}^{(n-1)}$ can be calculated from \mathbf{C} in $O(\lg n)$ steps by "repeated squaring," for a total running time of $O\left(n^{3} \lg n\right)$

Floyd-Warshall's Idea

- Write $V=\{1,2, \ldots, n\}$
- Let $d_{i j}^{(k)}$ be the length of a shortest path from i to j, all of whose intermediate vertices are in the set $[k]:=\{1, \ldots, k\} .0 \leq k \leq n$
- We agree that $[0]=\emptyset$, so that $d_{i j}^{(0)}$ is the length of a shortest path between i and j with no intermediate vertex.
- Then, we get the following recurrence:

$$
d_{i j}^{(k)}= \begin{cases}c_{i j} & \text { if } k=0 \\ \min \left\{\left(d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right), d_{i j}^{(k-1)}\right\} & \text { if } k \geq 1\end{cases}
$$

- The matrix we are looking for is $D=D^{(n)}$.

Pseudo Code for Floyd-Warshall Algorithm

Floyd-Warshall (C, n)
1: $\mathbf{D}^{(0)} \leftarrow \mathbf{C}$
2: for $k \leftarrow 1$ to n do
3: \quad for $i \leftarrow 1$ to n do
4: \quad for $j \leftarrow 1$ to n do
5: $\quad d_{i j}^{(k)} \leftarrow \min \left\{\left(d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right), d_{i j}^{(k-1)}\right\}$
6: end for
7: end for
8: end for
9: Return $\mathbf{D}^{n} / /$ the last "layer"
Time: $O\left(n^{3}\right)$, space: $O\left(n^{3}\right)$.

Constructing the Π matrix

$$
\pi_{i j}^{(0)}= \begin{cases}\text { NIL } & \text { if } i=j \text { or } c_{i j}=\infty \\ i & \text { otherwise }\end{cases}
$$

and for $k \geq 1$

$$
\pi_{i j}^{(k)}= \begin{cases}\pi_{i j}^{(k-1)} & \text { if } d_{i j}^{(k-1)} \leq d_{i k}^{(k-1)}+d_{k j}^{(k-1)} \\ \pi_{k j}^{(k-1)} & \text { if } d_{i j}^{(k-1)}>d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\end{cases}
$$

Question: is it correct if we do

$$
\pi_{i j}^{(k)}= \begin{cases}\pi_{i j}^{(k-1)} & \text { if } d_{i j}^{(k-1)}<d_{i k}^{(k-1)}+d_{k j}^{(k-1)} \\ \pi_{k j}^{(k-1)} & \text { if } d_{i j}^{(k-1)} \geq d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\end{cases}
$$

Finally, $\boldsymbol{\Pi}=\boldsymbol{\Pi}^{(n)}$.

Floyd-Warshall with Less Space

Space Efficient Floyd-Warshall(\mathbf{C}, n)
1: $\mathbf{D} \leftarrow \mathbf{C}$
2: for $k \leftarrow 1$ to n do
3: \quad for $i \leftarrow 1$ to n do
4: \quad for $j \leftarrow 1$ to n do
5: $\quad d_{i j} \leftarrow \min \left\{\left(d_{i k}+d_{k j}\right), d_{i j}\right\}$
6: end for
7: end for
8: end for
9: Return D
Time: $O\left(n^{3}\right)$, space: $O\left(n^{2}\right)$.
Why does this work?

Application: Transitive Closure of a Graph

- Given a directed graph $G=(V, E)$
- We'd like to find out whether there is a path between i and j for every pair i, j.
- $G^{*}=\left(V, E^{*}\right)$, the transitive closure of G, is defined by

$$
i j \in E^{*} \text { iff there is a path from } i \text { to } j \text { in } G .
$$

- Given the adjacency matrix \mathbf{A} of G ($a_{i j}=1$ if $i j \in E$, and 0 otherwise)
- Compute the adjacency matrix \mathbf{A}^{*} of \mathbf{G}^{*}

Transitive Closure with Dynamic Programming

- Let $a_{i j}^{(k)}$ be a boolean variable, indicating whether there is a path from i to j all of whose intermediate vertices are in the set $[k]$.
- We want $\mathbf{A}^{*}=\mathbf{A}^{(n)}$.
- Note that

$$
a_{i j}^{(0)}= \begin{cases}\text { TRUE } & \text { if } i j \in E \text { or } i=j \\ \text { FALSE } & \text { otherwise }\end{cases}
$$

and for $k \geq 1$

$$
a_{i j}^{(k)}=a_{i j}^{(k-1)} \vee\left(a_{i k}^{(k-1)} \wedge a_{k j}^{(k-1)}\right)
$$

- Time: $O\left(n^{3}\right)$, space $O\left(n^{3}\right)$

Transitive Closure with Dynamic Programming

- Let $a_{i j}^{(k)}$ be a boolean variable, indicating whether there is a path from i to j all of whose intermediate vertices are in the set $[k]$.
- We want $\mathbf{A}^{*}=\mathbf{A}^{(n)}$.
- Note that

$$
a_{i j}^{(0)}= \begin{cases}\operatorname{TRUE} & \text { if } i j \in E \text { or } i=j \\ \text { FALSE } & \text { otherwise }\end{cases}
$$

and for $k \geq 1$

$$
a_{i j}^{(k)}=a_{i j}^{(k-1)} \vee\left(a_{i k}^{(k-1)} \wedge a_{k j}^{(k-1)}\right)
$$

- Time: $O\left(n^{3}\right)$, space $O\left(n^{3}\right)$
- So what's the advantage of doing this instead of Floyd-Warshall?

