## Agenda

We've done

- Growth of functions
- Asymptotic Notations ( $O, o, \Omega, \omega, \Theta$ )
- Recurrence relations and a few methods of solving them
- Divide and Conquer

Now

- Designing Algorithms with the Greedy Method


## Interval Scheduling - Problem Definition

- Scheduling requests on a single resource (a class room, a processor, etc.)
- Input:
- a set $\mathcal{R}=\left\{R_{1}, \ldots, R_{n}\right\}$ of $n$ requests to be scheduled
- $R_{i}$ represented by the time interval $\left[s_{i}, f_{i}\right)$
- Output: a set of as many non-overlapping intervals as possible
$\qquad$


## Attempts at Greedy Choices

Note: after first interval is chosen, remove all conflicting intervals and then recurse
(1) Select interval that starts earliest
(2) Select shortest interval
(3) Select interval that conflicts with fewest other intervals
(4) Select interval that ends earliest

## Greedy Algorithm - Recursive Implementation

Greedy-Interval-Scheduling $(\mathcal{R})$
1: if $\mathcal{R}$ is empty then
2: Return $\emptyset$
3: else
4: $\quad$ Let $R \in \mathcal{R}$ be the request with earliest finishing time
5: $\quad$ Let $\mathcal{R}^{\prime} \leftarrow(\mathcal{R}$ minus all requests overlapping with $R)$
6: $\quad$ Return $\{R\} \cup$ Greedy-Interval-Scheduling $\left(\mathcal{R}^{\prime}\right)$
7: end if

## Greedy Algorithm - A Better Implementation

Greedy-Interval-Scheduling( $\mathcal{R}$ )
1: if $\mathcal{R}$ is empty then
2: Return $\emptyset$
3: end if
4: Sort intervals in increasing order of finishing times
$/ /$ i.e. $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$
5: $C \leftarrow\left\{R_{1}\right\} / /$ select the first request
6: $j \leftarrow 1 \quad / /$ record the last chosen request
7: for $i \leftarrow 2$ to $n$ do
8: if $f_{j} \leq s_{i}$ then
9: $\quad C \leftarrow C \cup\left\{R_{i}\right\} / /$ add $R_{i}$ to the output set
10: $\quad j \leftarrow i \quad / /$ record the last chosen request
11: end if
12: end for
13: Return $C$

## Proving Correctness

- Induct on $|\mathcal{R}|$ that our algorithm returns an optimal solution.
- Base case. When $|\mathcal{R}|=1$, easy!
- Induction hypothesis. Suppose our algo is good when $|\mathcal{R}| \leq n-1$.
- Induction step. Consider $|\mathcal{R}|=n$.
- Claim 1: by the induction hypothesis, $C^{\prime}=C-\left\{R_{1}\right\}$ is optimal for the sub-problem $\mathcal{R}^{\prime}$
- Hence,

$$
\begin{equation*}
\operatorname{cost}(C)=1+\operatorname{cost}\left(C^{\prime}\right)=1+\operatorname{OPT}\left(\mathcal{R}^{\prime}\right) \tag{1}
\end{equation*}
$$

- Claim 2: there exists an optimal solution $O$ containing the greedy choice (the first interval $R_{1}$ )
- Claim 3: $O^{\prime}=O-\left\{R_{1}\right\}$ is an optimal solution for the sub-problem $\mathcal{R}^{\prime}$
- Thus,

$$
\begin{equation*}
\operatorname{OPT}(\mathcal{R})=\operatorname{cost}(O)=1+\operatorname{cost}\left(O^{\prime}\right)=1+\mathrm{OPT}\left(\mathcal{R}^{\prime}\right) \tag{2}
\end{equation*}
$$

- Conclusion: (1) and (2) imply $\operatorname{cost}(C)=\operatorname{OPt}(\mathcal{R})$


## Analysis

- Running time: $O(n \log n)$, where $n$ is the number of intervals
- Space: $O(n)$ (Quick-sort swap elements in place, the output set of intervals is just an array.)


## Optimization Problems

- Optimization problems: find an optimal solution among a large set of feasible solutions
- 0-1 KNAPSACK: A robber found $n$ items in a store, the ith item is worth $v_{i}$ dollars and weighs $w_{i}$ pounds ( $v_{i}, w_{i} \in \mathbb{Z}^{+}$), he can only carry $W$ pounds. Which items should he take?
- Traveling Salesman (TSP): find the shortest route for a salesman to visit each of the $n$ given cities once, and return to the starting city.
- Typically, a feasible solution is a combinatorial structure (graph, set, etc.) composed of smaller "building blocks".
- The combination of "building blocks" need to satisfy some conditions for the structure to be feasible


## Greedy Algorithms

- It is hard to define what a "greedy" algorithm is
- Roughly: at each iteration, select a "locally optimal" building block


## Example

01-KNAPSACK At each iteration, select the most valuable item that he could still carry

## Example

01-KNAPSACK At each iteration, select the item with the most value per pound that he could still carry

- Easy to construct examples where both greedy strategies lead to non-optimal solutions


## In General Terms

- A correct algorithm always returns an optimal solution. ("Correct algorithm" is somewhat of a misnomer. In general, an algorithm is correct if it always returns solutions as we intended it to return. The intention need not be optimality.)
- To prove that a greedy algorithm is incorrect, present one counter example.
- Note: an incorrect greedy algorithm may still give optimal solutions, depending on the inputs.
- To prove that a greedy algorithm is correct, there are two basic strategies (among others):
- Induction
- Exchange argument


## Proving Correctness Using Induction - Strategy 1

- Examples: Interval Scheduling, Huffman coding
- Often applicable to recursive greedy algorithms of the form
(1) select a locally optimal building block $b$ (greedy choice)
(2) recursively construct a solution $S^{\prime}$ to suitably defined a sub-problem,
(3) combine $b$ with $S^{\prime}$ to obtain the final solution $S=b \cup S^{\prime}$
- Proof strategy
(1) By induction, show that $\operatorname{cost}\left(S^{\prime}\right)=\mathrm{OPT}$ ( sub-problem ), leading to

$$
\operatorname{cost}(S)=\operatorname{cost}(b)+\operatorname{cost}\left(S^{\prime}\right)=\operatorname{cost}(b)+\text { OPT }(\text { sub-problem }) .
$$

(2) Show that there is an optimal solution $O$ containing $b$.
(3) Show that $O^{\prime}=O-b$ is optimal for the sub-problem, implying

$$
\left.\operatorname{cost}(O)=\operatorname{cost}(b)+\operatorname{cost}\left(O^{\prime}\right)=\operatorname{cost}(b)+\text { OPT(sub problem }\right) .
$$

(4) Conclude that

$$
\operatorname{cost}(S)=\mathrm{OPT}(\text { problem }) .
$$

## Important Note

Do not interpret $\cup,+,-$ literally! Their meanings are problem specific.

## Proving Correctness Using Induction - Strategy 2

- Induct that every "greedy step" produces a (growing) part of a globally optimal solution.
- Example: Single-Source Shortest Paths.


## Other strategies

There are other types of inductions too. Problem dependent.

## Proving Correctness Using the Exchange Argument

(1) Let $S$ be the solution returned by the greedy algorithm
(2) Let $O$ be any optimal solution
(3) Prove that $O$ can be turned into $S$ by gradual modifications without sacrificing the optimality of any solution along the way
3.1 Gradual modification: remove some building block $b$ from $O$, add another building block $b^{\prime}$ to obtain $O^{\prime}=O-b+b^{\prime}$
3.2 Show that $O^{\prime}$ is feasible and $\operatorname{cost}\left(O^{\prime}\right)=\operatorname{cost}(O)$
3.3 Show that, after a certain number of steps $O$ becomes $S$

- Often done by showing $O^{\prime}$ is "closer" to $S$ in some specific sense


## Examples:

- Scheduling to minimize lateness,
- Minimum spanning trees,
- Optimal Caching


## An abstraction

Strategy abstracted for a large class of problems using matroids

## Scheduling All Interval - Problem Definition

- Scheduling all requests on as few resources as possible
- Input:
- a set $\mathcal{R}=\left\{R_{1}, \ldots, R_{n}\right\}$ of $n$ requests to be scheduled
- $R_{i}$ represented by the time interval $\left[s_{i}, f_{i}\right)$
- Output: a partition of $\mathcal{R}$ into as few sets as possible, such that intervals in each set do not overlap.


## Attempts at Greedy Choices

- Think of each set of non-overlapping intervals as a color
- Colors are represented by integers (color 1, color 2, etc.)
- Partitioning becomes coloring
- Two conflicting intervals need different colors
- Possible strategies
(1) Consider intervals one at a time, assign to a new interval the least non-conflicting integer.
(2) Sort intervals by starting times, then use strategy 1 .


## A lower bound

Let $d$ be the maximum number of mutually overlapping intervals, then we need at least $d$ colors.

## Greedy Algorithm

We will use only $d$ colors: $[d]=\{1, \ldots, d\}$
Greedy-Interval-Partitioning $(\mathcal{R})$
1: Sort requests by their starting times, breaking ties arbitrarily
2: // now $s_{1} \leq s_{2} \leq \cdots \leq s_{n}$
3: for $j=1$ to $n$ do
4: for each $R_{i}$ preceding $R_{j}$ and overlaps $R_{j}$ do
5: $\quad$ Exclude color of $R_{i}$ from consideration for $R_{j}$
6: end for
7: if there is any color in [d] available then
8: $\quad$ Use that color for $R_{j}$
9: else
10: $\quad$ Leave $R_{j}$ un-colored
11: end if
12: end for

## Proof of Correctness

- Let $J$ be the set of intervals overlapping $R_{j}$
- Then, $J \cup\left\{R_{j}\right\}$ is a mutually-overlapping set of intervals
- Thus $|J| \leq d-1$.
- Thus, there is always an available color for $R_{j}$
- Since we used only $d$ colors, our algorithm is optimal.


## Scheduling to Minimize Lateness - Problem Definition

- Input: $n$ jobs; job $J_{i}$ has duration $t_{i}$ and deadline $d_{i}$
- Output: a schedule on a single machine to minimize the maximum lateness.
- Lateness is the amount of time a job is late compared to its deadline, and is 0 if the job is on-time.



## Attempts at Greedy Choices

(1) Shortest processing time first
(2) Shortest slack time first (slack time is $d_{i}-t_{i}$ )
(3) Earliest deadline first

## Greedy Algorithm - Earliest Deadline First

Scheduling-Minimize-Lateness(t, d)
1: Sort jobs so that $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$
2: $f=0$
3: for $i=1$ to $n$ do
4: Assign job $J_{i}$ to the time interval $s_{i}=f, f_{i}=f+t_{i}$
5: $\quad f \leftarrow f+t_{i}$
6: end for
$\max$ lateness $=1$
$\downarrow$

|  | $\mathrm{d}_{1}=6$ | $d_{2}=8$ | $d_{3}=9$ | $d_{4}=9$ | $d_{5}=14$ | $d_{6}=15$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 2 | 4 | 5 |  |  |  |

## Proof of Correctness

- A schedule has an inversion if $d_{i}>d_{j}$ yet $J_{i}$ is scheduled before $d_{j}$
- The machine has idle time if it's free for a while between some two jobs


## Claim 1

There is an optimal schedule with no idle time

## Claim 2

All schedules with no idle time and no inversions have the same maximum lateness

## Claim 3

There is an optimal schedule with no idle time and no inversions

## Proof of Claim 1

| $d=4$ |  |  | $d=6$ |  |  |  | 7 | $d=12$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 |  | 8 | 9 | 10 | 11 |
|  | $d=4$ |  |  |  |  |  |  |  |  |  |  |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

## Proof of Claim 2

- Schedules with no inversions and no idle times might differ in ordering of jobs with the same deadline
- Among jobs with the same deadline, say $d_{i}$, the last one has the maximum lateness, which does not depend on the ordering of these jobs


## Proof of Claim 3

- Let $O$ be any optimal schedule with no idle time
- If $O$ has an inversion, there is an inversion where jobs $i$ and $j$ are next to each other in the schedule
- Swap $i$ and $j$ does not change optimality, yet reduces the number of inversions by 1
- Max number of inversions is a polynomial in $n$ (how many?), thus the method terminates in polynomial time



## Single Source Shortest Paths - Problem Definition

- $G=(V, E)$, a path is a sequence of vertices $P=\left(v_{0}, v_{1}, \ldots, v_{k}\right)$, where $\left(v_{i}, v_{i+1}\right) \in E$, and no vertex is repeated
- A walk is the same kind of sequence with repeated vertices allowed
- If $w: E \rightarrow \mathbb{R}$, then $w(P)=w\left(v_{0} v_{1}\right)+\cdots+w\left(v_{k-1} v_{k}\right)$.


## Single Source Shortest Paths Problem

Given a directed graph $G=(V, E)$, a source vertex $s \in V$, and a weight function $w: E \rightarrow \mathbb{R}^{+}$.
Find a shortest path from $s$ to each vertex $v \in V$

## Question

What if the graph is undirected?

## Representing Shortest Paths

How do we represent shortest paths from $s$ to each vertex $v \in V$ ?

## Lemma

If $P=(s, \ldots, u, v)$ is a shortest path from $s$ to $v$, then the part of $P$ from $s$ to $u$ is a shortest path from s to $u$.

## Shortest Path Tree

For each $v \in V$, maintain a pointer $\pi[v]$ to the previous vertex along a shortest path from $s$ to $v$. For the rest,

$$
\begin{aligned}
\pi[s] & =\text { NIL } \\
\pi[v] & =\text { NIL if } v \text { is not reachable from } s
\end{aligned}
$$

Notes:

- There could be multiple shortest paths to the same vertex
- The representation gives one set of shortest paths


## Shortest Path Tree

$$
\begin{aligned}
& S=\{s, 2,3,4,5,6,7, t\} \\
& P Q=\{ \}
\end{aligned}
$$



## Dijkstra's Algorithm

- $d[v]$ : current estimate of the weight of a shortest path to $v$
- $\pi[v]$ : pointer to the previous vertex on the shortest path to $v$


## DIJKStra( $G, s, w)$

1: Set $d[v] \leftarrow \infty$ and $\pi[v] \leftarrow$ NIL, for all $v$
2: $d[s] \leftarrow 0 ; S \leftarrow\{s\} / / S$ is the set of explored nodes
3: while $S \neq V$ do
4: $\quad$ Choose $v \notin S$ with at least one edge from $S$ for which

$$
d^{\prime}(v)=\min _{(u, v) \in E, u \in S}\{d[u]+w(u, v)\}
$$

is as small as possible. Let $u \in S$ be the vertex realizing the minimum $d^{\prime}(v)$
5: $\quad S \leftarrow S \cup\{v\} ; d[v] \leftarrow d^{\prime}(v), \pi[v] \leftarrow u$
6: end while

## Better Implementation

- $d[v]$ : current estimate of the weight of a shortest path to $v$
- $\pi[v]$ : pointer to the previous vertex on the shortest path to $v$

Initialize-Single-Source $(G, s)$
1: for each $v \in V(G)$ do
2: $\quad d[v] \leftarrow \infty$
3: $\quad \pi[v] \leftarrow \mathrm{NIL}$
4: end for
5: $d[s] \leftarrow 0$
$\operatorname{ReLAX}(u, v, w)$
1: if $d[v]>d[u]+w(u, v)$ then
2: $\quad d[v] \leftarrow d[u]+w(u, v)$
3: $\quad \pi[v] \leftarrow u$
4: end if

## Better Implementation - Priority Queues

A priority queue is a data structure that

- maintains a set $S$ of objects
- for each $s \in S$, key $[s] \in \mathbb{R}$

Two types: min-priority queue and max-priority queue
Min-Priority Queue - denoted by $Q$

- Insert $(Q, x)$ : insert $x$ into $Q$
- $\operatorname{Minimum}(Q)$ : returns element with min key
- Extract-Min $(Q)$ : removes and returns element with min key
- DECREASE-KEY $(Q, x, k)$ : change $k e y[x]$ to $k$, where $k \leq k e y[x]$

Using Heap, Min-PQ can be implemented so that:

- Building a $Q$ from an array takes $O(n)$
- Each of the operations takes $O(\lg n)$


## Better Implementation

## DiJkstra( $G, s, w)$

1: Initialize-Single-Source $(G, s)$
2: $S \leftarrow \emptyset \quad / /$ set of vertices considered so far
3: $Q \leftarrow V(G) / / \forall v, k e y[v]=d[v]$ after initialization
4: while $Q$ is not empty do
5: $\quad u \leftarrow$ Extract- $\operatorname{Min}(Q)$
6: $\quad S \leftarrow S \cup\{u\}$
7: $\quad$ for each $v \in \operatorname{Adj}[u]$ do
8: $\quad \operatorname{ReLAx}(u, v, w)$
9: end for
10: end while

## Running Time

| PQ Op. | Dijkstra | Array | Bin. Heap | $d$-way Heap | Fib. Heap |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INSERT | $n$ | $n$ | $\lg n$ | $d \log _{d} n$ | 1 |
| EXR-MIN | $n$ | $n$ | $\lg n$ | $d \log _{d} n$ | $\lg n$ |
| DEC-KEY | $m$ | 1 | $\lg n$ | $\log _{d} n$ | 1 |
| Is-EMPTY | $n$ | 1 | 1 | 1 | 1 |
| Total |  | $n^{2}$ | $m \lg n$ | $m \log _{m / n} n$ | $m+n \lg n$ |

## Correctness of Dijkstra's Algorithm

For each $u$, let $P_{u}$ be the path from $s$ to $u$ in the shortest path tree returned by Dijkstra's algorithm.

## Theorem

Consider the set $S$ at any point in the execution of the algorithm. For each vertex $u \in S$, the path $P_{u}$ is a shortest $s-u$ path

## Proof.

Induction on $|S|$.

## Analysis of Dijkstra's Algorithm

Let $n=|V(G)|$, and $m=|E(G)|$

- Initialize-Single-Source takes $O(n)$
- Building the queue takes $O(n)$
- The while loop is done $n$ times, so Extract-Min is called $n$ times for a total of $O(n \lg n)$
- For each $u$ extracted, and each $v$ adjacent to $u, \operatorname{ReLAX}(u, v, w)$ is called, hence totally $|E|$ calls to ReLAX were made
- Each call to Relax implicitly implies a call to Decrease-Key, which takes $O(\lg n)$; hence, totally $O(m \lg n)$-time on Decrease-Key
In total, we have $O((m+n) \lg n)$, which could be improved using
FIBONACCI-HEAP to implement the priority queue


## Minimum Spanning Tree - Problem Definition

- Input: a connected graph $G=(V, E)$, edge cost $c: E \rightarrow \mathbb{R}^{+}$
- Output: a spanning tree $T$ of $G$, i.e. a connected sub-graph with no cycle which spans all vertices.

$G=(V, E)$

$T, \Sigma_{e \in T} C_{e}=50$


## Attempts at Greedy Choices

- (Kruskal) Start with $T=\emptyset$. Consider edges in ascending order of costs. Add edge $e$ into $T$ unless $e$ completes a cycle in $T$.
- (Prim) Start from any vertex $s$ of $G$. Grow a tree $T$ from $s$. At each step, add the cheapest edge $e$ with exactly one end in $T$
- (Reverse Delete) Start with $T=E$. Consider edges in descending order of costs. Remove $e$ from $T$ unless doing so disconnects $T$


## Amazingly

All three attempts are good greedy algorithms

## Proof of Correctness - An Exchange Lemma

## Lemma (Exchange Lemma)

Let $T$ be any minimum spanning tree of $G$. Let e be any edge of $G$ with $e \notin T$. Then,

- e forms a cycle with some edges of $T$,
- all edges on this cycle has cost at least $c(e)$



## Correctness of Kruskal's and Prim's Algorithms

## Kruskal is correct

Let $e_{1}, \ldots, e_{n-1}$ be edges of the tree that Kruskal algorithm selects, in that order. Prove by induction that, for each $i \in\{1, \ldots, n-1\}$ there exists an MST containing $e_{1}, \ldots, e_{i}$.

## Prim is correct

Let $e_{1}, \ldots, e_{n-1}$ be edges of the tree that Prim algorithm selects, in that order. Prove by induction that, for each $i \in\{1, \ldots, n-1\}$ there exists an MST containing $e_{1}, \ldots, e_{i}$.

## Reverse-delete is correct

Let $e_{1}, \ldots, e_{m-(n-1)}$ be edges that REVERSE-DELETE deleted during its execution, in that order. Prove by induction that, for each $i \in\{1, \ldots, m-(n-1)\}$ there exists an MST not containing any of $e_{1}, \ldots, e_{i}$.

## Implementing Prim's Algorithm with a Priority Queue

- Similar to Dijkstra's algorithm, grow the tree from $S$
- For each unexplored $v$, maintain "attachment cost" $a[v]=$ cost of cheapest edge connecting $S$ to $v$


## MST-Prim $(G, w)$

$a[v] \leftarrow \infty, \forall v \in V ; \quad S \leftarrow 0, \quad Q \leftarrow \emptyset$
2: Insert all $v$ into $Q$
3: while $Q$ is not empty do
4: $\quad u \leftarrow$ Extract- $\operatorname{Min}(Q) ; \quad S \leftarrow S \cup\{u\}$
5: $\quad$ for each $v$ such that $e=(u, v) \in E$ do
6: if $w_{e}<a[v]$ then
7: $\quad$ Decrease-Key $\left(Q, v, w_{e}\right)$ end if
9: end for
10: end while
Time: $O\left(n^{2}\right)$ with an array as $Q, O(m \lg n)$ with a binary heap.

## Implementing Kruskal's Algorithm with Union-Find Data Structure

```
MST-Kruskal(G,w)
```

    1: \(A \leftarrow \emptyset / /\) the set of edges of \(T\)
    2: Sort \(E\) in increasing order of costs \(/ / c\left(e_{1}\right) \leq \cdots \leq c\left(e_{m}\right)\)
    for each vertex \(v \in V(G)\) do
        MAKE-SET(v)
    end for
    for \(i=1\) to \(m\) do
        // Suppose \(e_{i}=(u, v)\)
        if \(\operatorname{Find}-\operatorname{SET}(u) \neq \operatorname{FIND}-\operatorname{SET}(v)\) then
            \(A \leftarrow A \cup\left\{e_{i}\right\}\)
    10: $\quad \operatorname{Set}-\operatorname{Union}(u, v)$
11: end if
12: end for

- It is known that $O(m)$ set operations take $O(m \lg m)$.
- Totally, Kruskal's Algorithm takes $O(m \lg m)$.


## Huffman Coding - Problem Definition

- 7-bit ASCII code for "abbccc" uses 42 bits
- Suppose we use '0' to code 'c', '10' to code 'b', and '11' to code 'c': "111010000" - 9 bits
- To code effectively:
- Variable codes
- No code of a character is a prefix of a code for another: prefix code
- The characters with higher frequencies should get shorter codes
- Prefix codes can be represented by binary trees with characters at leaves
- The binary trees have to be full if we want the code to be optimal (why?)
- The problem: given the frequencies, find an optimal full binary tree


## More Precise Formulation

## - Input:

- $C$ : the set of characters
- Frequency $f(c)$ for each $c \in C$
- Output: an optimal coding tree $T$.

Let $d_{T}(c)$ be the depth of a leaf $c$ of $T$
The total number of bits required is

$$
B(T)=\sum_{c \in C} f(c) d_{T}(c)
$$

We want to find $T$ with the least $B(T)$

## Huffman's Algorithm

1: while there are two or more leaves in $C$ do
2: $\quad$ Pick two leaves $x, y$ with least frequency
3: Create a node $z$ with two children $x, y$, and frequency $f(z)=f(x)+f(y)$
4: $\quad C=(C-\{x, y\}) \cup\{z\}$
5: end while

## Correctness of Huffman's Algorithm

## Lemma

Let $C$ be a character set, where each $c \in C$ has frequency $f(c)$. Let $x$ and $y$ be two characters with least frequencies. Then, there exists an optimal prefix code for $C$ in which the codewords for $x$ and $y$ have the same length and differ only in the last bit

## Lemma

Let $T$ be a full binary tree representing an optimal prefix code for $C$. Let $x$ and $y$ be any leaves of $T$ which share the same parent $z$. Let
$C^{\prime}=(C-\{x, y\}) \cup\{z\}$, with $f(z)=f(x)+f(y)$. Then, $T^{\prime}=T-\{x, y\}$ is an optimal tree for $C^{\prime}$.

## Optimal Caching - Problem Definition

## Setting

- A cache with capacity to store $k$ items, $k<n$, initially full
- A sequence of $n$ requests for items: $d_{1}, \ldots, d_{n}$
- Cache hit: requested item already in cache when requested
- Cache miss: requested item not in cache, must evict some item to bring requested item into cache
Objective find an eviction schedule (which item(s) to evict and when) to minimize the number of evictions
Example: $k=2$, initial cache $a b$, requests $a, b, c, b, c, a, b$

| Cache content | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~b} \end{aligned}$ | $\begin{aligned} & \mathrm{a} \\ & \mathrm{~b} \end{aligned}$ | $\begin{aligned} & \mathrm{c} \\ & \mathrm{~b} \end{aligned}$ | $\begin{aligned} & c \\ & b \end{aligned}$ | $\begin{aligned} & \mathrm{c} \\ & \mathrm{~b} \end{aligned}$ | b | b |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Requests | a | b | C | b | C | a | b |

## Attempts at Greedy Choices

- First In Last Out (FILO)
- First In First Out (FIFO)
- Evict item least frequently used in the past
- Evict item referenced farthest into the past (Least Recently Used - LRU)
- Evict item least frequently used in the future
- Evict item needed the farthest into the future (Les Belady's idea, 1960s): this works!


## Reduced Schedules

Notes:

- At each step, we can evict and bring in as many items as we wish
- We can assume that the cache is always full

Reduced schedules:

- A schedule is reduced if it only brings in an item at the point when the item is requested (and missed)
- Every schedule $S$ can be transformed into a reduced schedule $S^{\prime}$ with the same number of misses $\Rightarrow$ there is a reduced optimal schedule!


## Transforming Schedules to Reduced Schedules

| Evicted Item | . | . | e | . | . | . | . |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\cdot$ |
|  | $\cdot$ |
|  | $\cdot$ | $\cdot$ | d | $\cdot$ | $\cdot$ | $\cdot$ | $\cdot$ |
|  | $\cdot$ |
| Requests | $\\|$ | $\cdot$ | $\cdot$ | x | $\cdot$ | $\cdot$ | $\cdot$ |
|  | $\cdot$ | $\cdot$ |  |  |  |  |  |

- Say, $d$ was inserted before needed, $e$ was sacrificed
- If $e$ is brought back in before $d$ is requested $\Rightarrow$ miss
- If $e$ is not brought back in before $d$ is requested, $e$ could have just remained, and bring $d$ in when requested


## Correctness of Farthest-in-Future

## Let $S_{F}$ be the schedule returned by Farthest-in-Future

## We show by induction on $j$ that

For every $j \geq 0$, there exists a reduced optimal schedule $S$ which makes the same evictions as $S_{F}$ through the first $j$ steps.

- Base case: $j=0$ is obvious.
- Let $S$ be a reduced optimal schedule agreeing with $S_{F}$ 'til step $j$
- Consider step $j+1$ : suppose $d$ is requested, $S_{F}$ evicts $e, S$ evicts $f$
- Define another $S^{\prime}: S^{\prime}$ evicts $e$, then mimics $S$ as far as possible
- The first time $S^{\prime}$ can't follow $S$, suppose $g$ is requested
- Case 1: $g \neq e, g \neq f, S$ evicts $e$
- Case 2: $g=f$, (2a) $S$ evicts $e$, (2b) $S$ evicts $e^{\prime} \neq e$
- Case 3: $g=e$-impossible!
- Thus, $S^{\prime}$ is optimal and agree with $S_{F}$ till step $j+1$


## $S$ and $S_{F}$

| Evicted |  |  | e |  |  |  |  | . |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $S_{F}$ | $\cdot$ |  | d <br> f |  | - | - | $\cdot$ |  |  |  |
| Requests | . |  | d |  |  |  |  |  |  |  |


| Evicted | $\cdot$ | $\cdot$ | f | $\cdot$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $S$ | $\cdot$ |
|  | $\cdot$ | $\cdot$ | d | $\cdot$ |
|  | $\cdot$ |
| Requests | $\cdot$ | $\cdot$ | $\cdot$ | e | $\cdot$ | $\cdot$ | $\cdot$ | $\cdot$ | $\cdot$ | $\cdot$ |

$S$ and $S^{\prime}$, Case 1: $g \neq e, g \neq f$



## Case 2a: $g=f, S$ evicts $e$




Case 2b: $g=f, S$ evicts $e^{\prime} \neq e$

| Evicted |  |  | e | . |  |  |  | e' | . |  |  | . |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $S^{\prime}$ |  |  | d d f | . | . |  |  | e | - |  |  | $\cdot$ |
| Requests |  |  | d |  |  |  |  | f |  |  |  |  |



