Agenda

We've discussed

- Administrative aspects
- A brief overview of the course

Now

- Growth of functions
- Asymptotic notations
- Scare some people off

Next

• Recurrence relations & ways to solve them

© Hung Q. Ngo (SUNY at Buffalo)

CSE 531 Algorithm Analysis and Design

1 / 22

Some conventions

$$lg n = log_2 n$$

$$log n = log_{10} n$$

$$ln n = log_e n$$

Growth of functions

Consider a Pentium-4, 1 GHz, i.e. roughly 10⁻⁹ second for each basic instruction.

	10	20	30	40	50	1000
lg lg <i>n</i>	1.7 ns	2.17 ns	2.29 ns	2.4 ns	2.49 ns	3.3 ns
lg n	3.3 ns	4.3 ns	4.9 ns	5.3 ns	5.6 ns	9.9 ns
n	10 ns	20 ns	3 ns	4 ns	5 ns	1 µs
n ²	0.1 μ s	0.4 μ s	0.9 μ s	1.6 μ s	2.5 μs	1 ms
n ³	1 μ s	8 μs	27 μ s	64 μ s	125 μ s	1 sec
п ⁵	0.1 ms	3.2 ms	24.3 ms	0.1 sec	0.3 sec	277 h
2 ⁿ	1 μ s	1 ms	1 s	18.3 m	312 h	3.4 · 10 ²⁸² Cent.
3 ⁿ	59 μ s	3.5 s	57.2 h	386 y	227644 c	4.2 · 10 ⁴⁵⁸ Cent.
1.6 ¹⁰⁰ ns is approx. 82 centuries (Recall FibA).						

 $\lg 10^{10} = 33, \ \lg \lg 10^{10} = 4.9$

©Hung Q. Ngo (SUNY at Buffalo)

CSE 531 Algorithm Analysis and Design

4 / 22

Some other large numbers

- The age of the universe \leq 13 G-Years = 13 \cdot 10⁷ centuries.
- \Rightarrow Number of seconds since big-bang $\approx 10^{18}$.
- $4 * 10^{78} \le$ Number of atoms is the universe $\le 6 * 10^{79}$.
- The probability that a monkey can compose Hamlet is $\frac{1}{10^{60}}$
- so what's the philosophical implication of this?

Robert Wilensky, speech at a 1996 conference

We've heard that a million monkeys at a million keyboards could produce the complete works of Shakespeare; now, thanks to the Internet, we know that is not true.

Talking about large numbers

Puzzle #2

What's the largest number you can describe using thirteen English words?

How about: "Nine googol googol ... googol" $googol (= 10^{100})$ is repeated 12 times. A googol = 10^{100} .

©Hung Q. Ngo (SUNY at Buffalo)

CSE 531 Algorithm Analysis and Design

Dominating Terms

Compare the following functions:

$$\begin{array}{rcl} f_1(n) &=& 2000n^2 + 1,000,000n + 3\\ f_2(n) &=& 100n^2\\ f_3(n) &=& n^5 + 10^7n\\ f_4(n) &=& 2^n + n^{10,000}\\ f_5(n) &=& 2^n\\ f_6(n) &=& \frac{3^n}{10^6} \end{array}$$

when *n* is "large" (we often say "sufficiently large")

Behind comparing functions

• Mathematically, $f(n) \gg g(n)$ for "sufficiently large" *n* means

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty.$$

We also say f(n) is asymptotically larger than g(n).

• They are comparable (or of the same order) if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c>0$$

• and f(n) is asymptotically smaller than g(n) when

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.$$

Question

Are there f(n) and g(n) not falling into one of the above cases?

©Hung Q. Ngo (SUNY at Buffalo)

CSE 531 Algorithm Analysis and Design

Asymptotic notations

$$\begin{split} f(n) &= O(g(n)) & \text{iff} \quad \exists c > 0, n_0 > 0 : f(n) \leq cg(n), \text{ for } n \geq n_0 \\ f(n) &= \Omega(g(n)) & \text{iff} \quad \exists c > 0, n_0 > 0 : f(n) \geq cg(n), \text{ for } n \geq n_0 \\ f(n) &= \Theta(g(n)) & \text{iff} \quad f(n) = O(g(n)) \& f(n) = \Omega(g(n)) \\ f(n) &= o(g(n)) & \text{iff} \quad \forall c > 0, \exists n_0 > 0 : f(n) \leq cg(n), \text{ for } n \geq n_0 \\ f(n) &= \omega(g(n)) & \text{iff} \quad \forall c > 0, \exists n_0 > 0 : f(n) \geq cg(n), \text{ for } n \geq n_0 \\ \end{split}$$

Note:

- we shall be concerned only with functions f of the form $f: \mathbb{N}^+ \to \mathbb{R}^+$, unless specified otherwise.
- $f(n) = \mathbf{x}(g(n))$ isn't mathematically correct

Some examples

$$a(n) = \sqrt{n}$$

$$b(n) = n^{5} + 10^{7}n$$

$$c(n) = (1.3)^{n}$$

$$d(n) = (\lg n)^{100}$$

$$e(n) = \frac{3^{n}}{10^{6}}$$

$$f(n) = 3180$$

$$g(n) = n^{0.000001}$$

$$h(n) = (\lg n)^{\lg n}$$

$$f(n) = o(g(n)) \quad \Rightarrow \quad f(n) = O(g(n)) \& f(n) \neq \Theta(g(n))$$
(1)

$$f(n) = \omega(g(n)) \quad \Rightarrow \quad f(n) = \Omega(g(n)) \& f(n) \neq \Theta(g(n))$$
(2)

$$f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$$
 (3)

$$f(n) = \Theta(g(n)) \iff g(n) = \Theta(f(n))$$
 (4)

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = +\infty \quad \Leftrightarrow \quad f(n) = \omega(g(n)) \tag{5}$$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c>0 \quad \Rightarrow \quad f(n)=\Theta(g(n)) \tag{6}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \quad \Leftrightarrow \quad f(n) = o(g(n)) \tag{7}$$

Remember: we only consider functions from $\mathbb{N}^+ \to \mathbb{R}^+$.

©Hung Q. Ngo (SUNY at Buffalo)

CSE 531 Algorithm Analysis and Design

A reminder: L'Hôpital's rule

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{f'(n)}{g'(n)}$$

if

$$\lim_{n \to \infty} f(n)$$
 and $\lim_{n \to \infty} g(n)$ are both 0 or both $\pm \infty$

Examples:

$$\lim_{n \to \infty} \frac{\lg n}{\sqrt{n}} = 0 \tag{8}$$

$$\lim_{n\to\infty}\frac{(\lg n)^{\lg n}}{\sqrt{n}} = ?$$
 (9)

Stirling's approximation

For all $n \ge 1$,

$$n!=\sqrt{2\pi n}\left(rac{n}{e}
ight)^{n}e^{lpha_{n}},$$

where

$$\frac{1}{12n+1} < \alpha_n < \frac{1}{12n}.$$

It then follows that

$$n! = \sqrt{2\pi n} \left(rac{n}{e}
ight)^n \left(1 + \Theta\left(rac{1}{n}
ight)
ight).$$

The last formula is often referred to as the Stirling's approximation

© Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design

More examples

$$a(n) = \lfloor \lg n \rfloor!$$

$$b(n) = n^5 + 10^7 n$$

$$c(n) = 2^{\sqrt{\lg n}}$$

$$d(n) = (\lg n)^{100}$$

$$e(n) = 3^n$$

$$f(n) = (\lg n)^{\lg \lg n}$$

$$g(n) = 2^{n^{0.001}}$$

$$h(n) = (\lg n)^{\lg n}$$

Special functions

Some functions cannot be compared, e.g. $n^{1+\sin(n\frac{\pi}{2})}$ and *n*.

$$\lg^* n = \min\{i \ge 0 : \lg^{(i)} n \le 1\},\$$

where for any function $f : \mathbb{N}^+ \to \mathbb{R}^+$,

$$f^{(i)}(n) = \begin{cases} n & \text{if } i = 0\\ f(f^{(i-1)}(n)) & \text{if } i > 0 \end{cases}$$

Intuitively, compare

$$\begin{array}{rrrr} \lg^* n & \mathrm{vs} & \lg n \\ \lg^* n & \mathrm{vs} & (\lg n)^\epsilon, \ \epsilon > 0 \\ 2^n & \mathrm{vs} & n^n \\ \lg^*(\lg n) & \mathrm{vs} & \lg(\lg^* n) \end{array}$$

How about rigorously?

©Hung Q. Ngo (SUNY at Buffalo)

CSE 531 Algorithm Analysis and Design

19/22

Asymptotic notations in equations

$$5n^3 + 6n^2 + 3 = 5n^3 + \Theta(n^2)$$

means "the LHS is equal to $5n^3$ plus some function which is $\Theta(n^2)$."

$$o(n^6) + O(n^5) = o(n^6)$$

means "for any $f(n) = o(n^6)$, $g(n) = O(n^5)$, the function h(n) = f(n) + g(n) is equal to some function which is $o(n^6)$."

Be very careful!!

$$O(n^5) + \Omega(n^2) \stackrel{?}{=} \Omega(n^2)$$
$$O(n^5) + \Omega(n^2) \stackrel{?}{=} O(n^5)$$

Tight and not tight

 $n \log n = O(n^2)$ is not tight

 $n^2 = O(n^2)$ is tight

©Hung Q. Ngo (SUNY at Buffalo)

CSE 531 Algorithm Analysis and Design

21 / 22

When comparing functions asymptotically

- Determine the dominating term
- Use intuition first
- Transform intuition into rigorous proof.