Agenda

We've discussed

- Administrative aspects
- A brief overview of the course

Now

- Growth of functions
- Asymptotic notations
- Scare some people off

Next

- Recurrence relations \& ways to solve them

Some conventions

$$
\begin{aligned}
\lg n & =\log _{2} n \\
\log n & =\log _{10} n \\
\ln n & =\log _{e} n
\end{aligned}
$$

Growth of functions

Consider a Pentium-4, 1 GHz , i.e. roughly 10^{-9} second for each basic instruction.

	10	20	30	40	50	1000
$\lg \lg n$	1.7 ns	2.17 ns	2.29 ns	2.4 ns	2.49 ns	3.3 ns
$\lg n$	3.3 ns	4.3 ns	4.9 ns	5.3 ns	5.6 ns	9.9 ns
n	10 ns	20 ns	3 ns	4 ns	5 ns	$1 \mu \mathrm{~s}$
n^{2}	$0.1 \mu \mathrm{~s}$	$0.4 \mu \mathrm{~s}$	$0.9 \mu \mathrm{~s}$	$1.6 \mu \mathrm{~s}$	$2.5 \mu \mathrm{~s}$	1 ms
n^{3}	$1 \mu \mathrm{~s}$	$8 \mu \mathrm{~s}$	$27 \mu \mathrm{~s}$	$64 \mu \mathrm{~s}$	$125 \mu \mathrm{~s}$	1 sec
n^{5}	0.1 ms	3.2 ms	24.3 ms	0.1 sec	0.3 sec	277 h
2^{n}	$1 \mu \mathrm{~s}$	1 ms	1 s	18.3 m	312 h	$3.4 \cdot 10^{282}$ Cent.
3^{n}	$59 \mu \mathrm{~s}$	3.5 s	57.2 h	386 y	227644 c	$4.2 \cdot 10^{458}$ Cent.
$1.6^{100} \mathrm{~ns}$ is approx. 82 centuries (Recall FibA).						

$$
\lg 10^{10}=33, \quad \lg \lg 10^{10}=4.9
$$

Some other large numbers

- The age of the universe ≤ 13 G-Years $=13 \cdot 10^{7}$ centuries.
\Rightarrow Number of seconds since big-bang $\approx 10^{18}$.
- $4 * 10^{78} \leq$ Number of atoms is the universe $\leq 6 * 10^{79}$.
- The probability that a monkey can compose Hamlet is $\frac{1}{10^{60}}$
so what's the philosophical implication of this?

Robert Wilensky, speech at a 1996 conference

We've heard that a million monkeys at a million keyboards could produce the complete works of Shakespeare; now, thanks to the Internet, we know that is not true.

Talking about large numbers

Puzzle \#2

What's the largest number you can describe using thirteen English words?

How about:
"Nine googol googol ... googol"
googol $\left(=10^{100}\right)$ is repeated 12 times.
A googol $=10^{100}$.

Dominating Terms

Compare the following functions:

$$
\begin{aligned}
f_{1}(n) & =2000 n^{2}+1,000,000 n+3 \\
f_{2}(n) & =100 n^{2} \\
f_{3}(n) & =n^{5}+10^{7} n \\
f_{4}(n) & =2^{n}+n^{10,000} \\
f_{5}(n) & =2^{n} \\
f_{6}(n) & =\frac{3^{n}}{10^{6}}
\end{aligned}
$$

when n is "large" (we often say "sufficiently large")

Behind comparing functions

- Mathematically, $f(n) \gg g(n)$ for "sufficiently large" n means

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty
$$

We also say $f(n)$ is asymptotically larger than $g(n)$.

- They are comparable (or of the same order) if

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c>0
$$

- and $f(n)$ is asymptotically smaller than $g(n)$ when

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

Question

Are there $f(n)$ and $g(n)$ not falling into one of the above cases?

Asymptotic notations

$$
\left.\begin{array}{rl}
f(n) & =O(g(n)) \\
\text { iff } & \exists c>0, n_{0}>0: f(n) \leq c g(n), \text { for } n \geq n_{0} \\
f(n)=\Omega(g(n)) & \text { iff } \\
f(n)=\Theta(g(n)) & \text { iff }
\end{array} \quad f(n)=O(g(n)) \& f(n)=\Omega(g(n)), n_{0}>0: f(n) \geq c g(n), \text { for } n \geq n_{0}\right)
$$

Note:

- we shall be concerned only with functions f of the form $f: \mathbb{N}^{+} \rightarrow \mathbb{R}^{+}$, unless specified otherwise.
- $f(n)=\mathbf{x}(g(n))$ isn't mathematically correct

An illustration of big- O

An illustration of big- Ω

An illustration of Θ

Some examples

$$
\begin{aligned}
a(n) & =\sqrt{n} \\
b(n) & =n^{5}+10^{7} n \\
c(n) & =(1.3)^{n} \\
d(n) & =(\lg n)^{100} \\
e(n) & =\frac{3^{n}}{10^{6}} \\
f(n) & =3180 \\
g(n) & =n^{0.0000001} \\
h(n) & =(\lg n)^{\lg n}
\end{aligned}
$$

A few properties

$$
\begin{align*}
f(n)=o(g(n)) & \Rightarrow f(n)=O(g(n)) \& f(n) \neq \Theta(g(n)) \tag{1}\\
f(n)=\omega(g(n)) & \Rightarrow f(n)=\Omega(g(n)) \& f(n) \neq \Theta(g(n)) \tag{2}\\
f(n)=O(g(n)) & \Leftrightarrow g(n)=\Omega(f(n)) \tag{3}\\
f(n)=\Theta(g(n)) & \Leftrightarrow g(n)=\Theta(f(n)) \tag{4}\\
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=+\infty & \Leftrightarrow f(n)=\omega(g(n)) \tag{5}\\
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c>0 & \Rightarrow f(n)=\Theta(g(n)) \tag{6}\\
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 & \Leftrightarrow f(n)=o(g(n)) \tag{7}
\end{align*}
$$

Remember: we only consider functions from $\mathbb{N}^{+} \rightarrow \mathbb{R}^{+}$.

A reminder: L'Hôpital's rule

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
$$

if

$$
\lim _{n \rightarrow \infty} f(n) \text { and } \lim _{n \rightarrow \infty} g(n) \text { are both } 0 \text { or both } \pm \infty
$$

Examples:

$$
\begin{align*}
\lim _{n \rightarrow \infty} \frac{\lg n}{\sqrt{n}} & =0 \tag{8}\\
\lim _{n \rightarrow \infty} \frac{(\lg n)^{\lg n}}{\sqrt{n}} & =? \tag{9}
\end{align*}
$$

Stirling's approximation

For all $n \geq 1$,

$$
n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{\alpha_{n}},
$$

where

$$
\frac{1}{12 n+1}<\alpha_{n}<\frac{1}{12 n} .
$$

It then follows that

$$
n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\left(1+\Theta\left(\frac{1}{n}\right)\right) .
$$

The last formula is often referred to as the Stirling's approximation

More examples

$$
\begin{aligned}
a(n) & =\lfloor\lg n\rfloor! \\
b(n) & =n^{5}+10^{7} n \\
c(n) & =2^{\sqrt{\lg n}} \\
d(n) & =(\lg n)^{100} \\
e(n) & =3^{n} \\
f(n) & =(\lg n)^{\lg \lg n} \\
g(n) & =2^{n^{0.001}} \\
h(n) & =(\lg n)^{\lg n} \\
i(n) & =n!
\end{aligned}
$$

Special functions

Some functions cannot be compared, e.g. $n^{1+\sin \left(n \frac{\pi}{2}\right)}$ and n.

$$
\lg ^{*} n=\min \left\{i \geq 0: \lg ^{(i)} n \leq 1\right\}
$$

where for any function $f: \mathbb{N}^{+} \rightarrow \mathbb{R}^{+}$,

$$
f^{(i)}(n)= \begin{cases}n & \text { if } i=0 \\ f\left(f^{(i-1)}(n)\right) & \text { if } i>0\end{cases}
$$

Intuitively, compare

$$
\begin{array}{rlll}
\lg ^{*} n & \text { vs } & \lg n \\
\lg ^{*} n & \text { vs } & (\lg n)^{\epsilon}, \epsilon>0 \\
2^{n} & \text { vs } & n^{n} \\
\lg ^{*}(\lg n) & \text { vs } & \lg \left(\lg ^{*} n\right)
\end{array}
$$

How about rigorously?

Asymptotic notations in equations

$$
5 n^{3}+6 n^{2}+3=5 n^{3}+\Theta\left(n^{2}\right)
$$

means "the LHS is equal to $5 n^{3}$ plus some function which is $\Theta\left(n^{2}\right)$."

$$
o\left(n^{6}\right)+O\left(n^{5}\right)=o\left(n^{6}\right)
$$

means "for any $f(n)=o\left(n^{6}\right), g(n)=O\left(n^{5}\right)$, the function $h(n)=f(n)+g(n)$ is equal to some function which is $o\left(n^{6}\right)$."

Be very careful!!

$$
\begin{array}{ll}
O\left(n^{5}\right)+\Omega\left(n^{2}\right) & \stackrel{?}{=} \Omega\left(n^{2}\right) \\
O\left(n^{5}\right)+\Omega\left(n^{2}\right) & \stackrel{?}{=} O\left(n^{5}\right)
\end{array}
$$

Tight and not tight

$n \log n=O\left(n^{2}\right)$ is not tight
$n^{2}=O\left(n^{2}\right)$ is tight

When comparing functions asymptotically

- Determine the dominating term
- Use intuition first
- Transform intuition into rigorous proof.

